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PREFACE 
 
 
'Metabolic aspects of chronic liver disease' is a subject that has been practically 

transformed in recent years. It reveals not only fascinating research achievements, but also 
their practical translation to the bedside and to improved patient care and better patient 
outcomes. All these are presented here by leaders in the field whose own research has made 
significant contributions to our understanding of the metabolic aspects of chronic liver 
diseases and is bound to do so in the future as well. 

Nonalcoholic fatty liver disease (NAFLD) is now recognized as the most prevalent 
disorder of the liver in developed countries, related to obesity and insulin resistance. It 
comprises a spectrum of hepatic pathology from benign steatosis to the more severe form of 
nonalcoholic steatohepatitis (NASH), that can lead to the dreaded complications of cirrhosis 
and hepatocellular carcinoma. Three whole chapters are devoted to NAFLD due to its 
prevalence and public health burden on one side, and to the growing research and expanding 
knowledge on the other. 

Keith Lindor and Phunchai Charatcharoenwitthaya from the Mayo Clinic at 
Rochester, provide an excellent review of the clinical and histological aspects of NAFLD. 
They summarize the epidemiological data, highlighting the rapid increase in NAFLD related 
to the epidemic of obesity and the metabolic syndrome. The most common presentation of 
NAFLD is asymptomatic increased liver enzymes but nonspecific clinical features may be 
associated. Various imaging modalities can diagnose liver steatosis and ultrasonography is 
the most widely used. However, liver biopsy may still be needed in some patients to confirm 
the diagnosis, exclude other etiologies and perform staging. The authors provide clinical 
parameters that can guide the clinicians in decisions regarding the performance of a liver 
biopsy and its use to determine patient care and long-term prognosis.  

A comprehensive review by Brent Neuschwander-Tetri from Saint Louis University 
Missouri and Metin Basaranoglu from Selcuk University, Turkey, describes in great depth 
the pathophsiology of NAFLD and NASH. Genetic and environmental factors lead to insulin 
resistance and inflammation, both having pivotal role in NAFLD. Insulin resistance in 
adipose tissue leads to increased peripheral lipolysis and elevated non-esterified fatty acids. 
Accumulation of triglycerides in hepatocytes, the hallmark of NAFLD, is a result of an 
increased non-esterified fatty acids pool, due to increased uptake, increased de-novo 
synthesis, impaired intracellular catabolism and impaired secretion of triglycerides in the 
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form of very-low-density lipoproteins (VLDL). The progression of NAFLD to NASH may be 
the consequence of secondary abnormalities such as injured and dysfunctional mitochondria, 
generation of reactive oxygen species, lipid peroxidation, disturbed production of 
adipocytokines and gut-derived cytotoxic products. This event which occurs in a minority of 
patients is central to the development of the more severe complications. 

Stephen Malnick from the Hebrew University Hadassah, Jerusalem, Yitzhak Halperin 
from Ashkelon, Israel and Lee Kaplan from the MGH, Boston, discuss the available 
therapeutic options in NAFLD - "an entity in evolution". They describe the difficulties 
arising from the lack of uniform diagnostic criteria and existence of different subsets of 
patients. In addition, many studies are small and non-randomized making informed decisions 
difficult. Nevertheless, they present interesting and important data demonstrating that weight 
loss is an effective treatment resulting in improved biochemical markers as well as 
histological findings. Other therapeutic modalities including insulin sensitizing agents, 
antioxidants and probiotics may also have a beneficial role, but the authors conclude that 
further studies are needed before they become part of the routine treatment of NAFLD. 

Hilla Knobler and Ami Schattner of the Hebrew University Hadassah Medical School, 
Jerusalem, analyze the compelling evidence of the increased prevalence of type 2 diabetes 
mellitus among patients with chronic hepatitis C which was found to be striking even in the 
absence of liver cirrhosis. These relatively recent observations have already generated a 
unifying hypothesis that links liver inflammation and fibrosis with inflammatory cytokines, 
resulting in insulin resistance in susceptible patients. The practical implications of this 
important association affecting an enormous number of patients worldwide are discussed, as 
well as directions for future research. 

The role of iron toxicity in other chronic liver diseases such as: alcoholic liver disease, 
NASH, chronic hepatitis C and porphyria cutanea tarda is discussed by Bruce Bacon from 
Saint Louis University School of Medicine, and by John Olynyk, John Ombiga and Debbie 
Trinder from Fremantle Hospital, Western Australia. In an intriguing review they provide 
data for the complex interaction between iron toxicity and the development of advanced 
hepatic fibrosis and cirrhosis in alcoholic liver disease, and poor response to interferon 
therapy in chronic hepatitis C.  

David Lomas and Meera Mallya and Russel Phillips from the University of 
Cambridge, United Kingdom, discuss in unusual depth and clarity genetic alpha1-antitrypsin 
deficiency. The progress of our understanding the structure and function of antitrypsin is a 
remarkable journey from bedside to bench and back. Associated liver disease has a broad 
clinical spectrum and its pathogenesis is very different from that of pulmonary emphysema 
and the other associated pulmonary syndromes. Current diagnostic and treatment strategies 
are meticulously presented to increase awareness, early diagnosis and better patient 
management. 

Hemochromatosis, an iron loading disorder, is a common inherited metabolic disorder. A 
high index of suspicion leading to early diagnosis of hemochromatosis is crucial since a safe 
and relatively simple treatment is available. Repeated phlebotomies can restore normal life 
expectancy if it is introduced before irreversible end-organ damage occurs. The diagnosis of 
hemochromatosis has therefore to be taken into account in the evaluation of patients with 
hepatomegaly or elevated liver enzymes. The elegant review by Antonello Pietrangelo, 
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Elena Corradini, and Francesca Ferrara from the University of Modena and Reggio 
Emilia, Italy, summarizes the clinical aspects and the molecular pathogenesis of 
hemochromatosis. They provide fascinating data on the recently discovered iron hormone 
that has a central role in the pathogenesis of all forms of hemochromatosis and review the 
optimal screening and treatment plan for hemochromatosis patients.  

Wilson disease is another disease caused by accumulation of metal - copper, in various 
organs including the liver, cornea and the brain. As in hemochromatosis, a high index of 
suspicion is crucial, leading to early diagnosis of Wilson disease before serious complications 
and eventually mortality in untreated cases, occurs. Peter Ferenci from the University of 
Vienna, Austria, a leading figure in the field of Wilson disease, summarizes for us the 
pathogenesis and clinical presentations and provides insights to the complexity of diagnosis 
and treatment. 

The genetic vulnerability of Ashkenazi Jews to Gaucher disease - the most common 
lysosomal storage disease, is caused by mutations in the  β-glucocerebrosidase gene. Ari 
Zimran and Deborah Elstein from the Herew University Hadassah School of Medicine, 
Jerusalem together with Stephan vom Dahl from Cologne, Germany offer a fascinating 
overview of the molecular biology and clinical results of the accumulation of 
glucosylceramide in macrophages of the reticuloendothelial system. Since the advent of 
enzyme replacement therapy for Gaucher disease a decade and a half ago, the quality of life 
of these patients has dramatically improved. These treatments are now accurately discussed 
and their future is skillfully outlined.  

Joseph Wolfsdorf of Children's Hospital and the Harvard Medical School, Boston and 
David Weinstein currently at the University of Florida, have done an admirable job of 
discussing glycogen storage diseases (glycogenoses) – the inherited diseases caused by 
abnormalities of the enzymes that regulate glycogen synthesis or degradation. With much 
expertise they identify the different mechanisms, epidemiology and treatment for each of the 
disorders starting with type I glycogen storage disease that is highly amenable to dietary 
therapy and going on to the ominous (but fortunately rare) type IV glycogen storage disease 
that can rapidly deteriorate to liver cirrhosis in infancy and responds to liver transplantation 
alone. 

Over twenty different metabolic disorders in children and adults have been treated with 
liver transplantation, usually in the context of fulminant hepatic failure or advanced disease 
refractory to medical therapy. Kris Kowdley of the University of Washington Medical 
Center, Seattle, and Narendra Siddaiah have undertaken to present an up to date review of 
this relatively new treatment modality, covering their own experience, as well as the 
cumulative data from many other groups. Although only about 5% of liver transplantations 
among adults were performed for metabolic liver diseases, excellent survival rates have been 
achieved in both pediatric and adult transplantation, making liver transplantation an 
important treatment modality in life threatening metabolic liver diseases. 
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Thus 'The Metabolic Aspects of Chronic Liver Disease' presents an opportunity to study 
an up to date account of all the truly exciting developments and insights in the field, 
presented by researchers of many nations but a common commitment to excellence and 
leading contributions in their fields. We are certain that it would prove illuminating and 
stimulating reading for scientists, clinicians and students alike. 

 
 

Ami Schattner  
Hilla Knobler 
 
Hebrew University Hadassah Medical School 
Jerusalem, Israel 

 
 



 

 
 
 
 
 
 
 
 
 

BIOGRAPHICAL SKETCHES OF  
EDITORS AND CONTRIBUTORS 

 
 

 
Professor Bruce R. Bacon, M.D. 

 
Dr. Bruce Bacon graduated the Case Western Reserve University School of Medicine, 

trained in medicine and gastroenterology and hepatology at the Cleveland Metropolitan 
General Hospital, joined the faculty at his alma mater, and in 1988, became Chief of the 
Section of Gastroenterology and Hepatology at Louisiana State University School of 
Medicine. Moving to Saint Louis University School of Medicine in 1990, Dr. Bacon became 
the James F. King, MD Endowed Chair in Gastroenterology, Professor of Internal Medicine, 
and Director of the Division of Gastroenterology and Hepatology. Dr. Bacon’s research has 
largely been focused on iron metabolism in the liver. He won the 1989 Marcel Simon Award 
for best research in hemochromatosis and was elected to the American Society for Clinical 
Investigation. He has held senior posts at the American Liver Foundation and the NIH, was a 
member of key editorial boards and the President of the American Association for the Study 
of Liver Diseases in 2004. Dr. Bacon is co-author of Essentials of Clinical Hepatology, co-
editor of Liver Disease: Diagnosis and Management and of Comprehensive Clinical 
Hepatology and has written more than 295 original articles, reviews, and book chapters.  



Ami Schattner and Hilla Knobler xii 

 
Metin Basaranoglu, M.D. 

 
Metin Basaronoglu obtained his M.D. degree from Istanbul University School of 

Medicine and is currently working as a faculty member in the gastroenterology and 
hepatology division of Selcuk University School of Medicine, Turkey. His primary research 
interest is the pathogenesis and therapy of non-alcoholic steatohepatitis (NASH) and other 
areas of interest include viral hepatitis treatment, biliary system disorders and the 
etiopathogenesis of sarcoidosis. He was twice awarded young investigator travel awards by 
the American Association for the Study of Liver Diseases to present his research on fatty 
liver disease. 

 

 
Phunchai Charatcharoenwitthaya, M.D. 

 
Phunchai Charatcharoenwitthaya, M.D. is a research fellow in the Department of 

Gastroenterology and Hepatology at Mayo Clinic in Rochester, Minnesota, working with 
Professor Keith D. Lindor. His research program is focused on management of nonalcoholic 
steatohepatitis and chronic cholestatic liver disease, including primary biliary cirrhosis and 
primary sclerosing cholangitis. His major focus has been on clinical trials in these diseases. 
He is sponsored by an overseas medical fellowship from The Faculty of Medicine, Siriraj 
Hospital, Mahidol University, Thailand. 



Biographical Sketches of Editors and Contributors xiii

 
Elena Corradini, M.D. 

 
Elena Corradini received her degree in Medicine from the University of Modena and 

Reggio Emilia, Italy, discussing a doctoral thesis on genetics and clinical aspects of the 
newly discovered ferroportin disease. She then joined the Centre for Hemochromatosis 
directed by Prof. Antonello Pietrangelo and got involved in basic research studies on the 
pathogenesis of hemochromatosis. Dr. Corradini has concluded her residency in Internal 
Medicine in the General Hospital of Modena and is presently a Senior Physician in the out-
patient clinic of hemochromatosis patients. 

 

 
Deborah Elstein, Ph.D. 

 
Deborah Elstein, has been the Coordinator of Clinical Research at the Gaucher Clinic in 

Shaare Zedek Medical Center (Jerusalem, Israel) since 1993. Prior to moving to Israel in 
1979, she did her initial research at Cornell Medical College (NYC) in the field of Pediatric 
Nephrology. She attended the Hebrew University - Hadassah Medical School (Jerusalem) 
graduating with a Ph.D. in Medicine in 1983. Her fellowship training from 1984-1987 was in 
Biochemistry-Biophysics and Molecular Genetics at Columbia-Presbyterian Medical Center 
(NYC) under the mentorship of Profs. Isidor Edelman and Jurgen Brosius. She is happily 
married to a dentist and the mother of seven children. 



Ami Schattner and Hilla Knobler xiv 

 
Professor Peter Ferenci, M.D. 

 
Peter Ferenci was born in Budapest, Hungary and graduated from the Medical University 

of Vienna, Austria in 1972. He trained in internal medicine and Gastroenterology/Hepatology 
in Vienna and at the National Institutes of Health (Bethesda, MD, USA). His special interests 
focus on chronic viral hepatitis, genetic liver diseases and hepatic encephalopathy. Since 
1990, Dr. Ferenci has been Professor of Medicine at the Medical Faculty of the University of 
Vienna, Austria. He was also appointed Dr. honoris causae at the University of Cluj Napoca, 
Romania.  

Dr. Ferenci is a member of the American Gastroenterological Association (AGA), the 
American Association for the Study of Liver Diseases (AASLD), and the European 
Association for the Study the Liver (EASL). He is the current chairman of the United 
European Gastroenterology Federation (UEGF). He was President of the Austrian 
Association of Gastroenterology and Hepatology, 1996–1998, and of the Association des 
Sociétés Européennes et Méditerranées de Gastroentérologie (ASNEMGE) 2001-2004. He 
was the program director of the 11th World Congresses of Gastroenterology, Vienna 1998 and 
the organizer of the 27th Annual Meeting of EASL 1992. 

Dr. Ferenci has published over 300 papers and abstracts including authoritative papers on 
various topics in liver diseases and is the author or editor of one book and of 20 chapters in 
leading textbooks. He has been an invited lecturer at universities and hospitals throughout the 
world. 

 

 
Francesca Ferrara, M.D. 

 
Francesca Ferrara was born in Modena, Italy, and graduated in Medicine in 2000. She 

completed her residency in Internal Medicine in 2005 and has been working since at the 
Centre for Hemochromatosis directed by Professor Antonello Pietrangelo, at the University 



Biographical Sketches of Editors and Contributors xv

of Modena and Reggio Emilia. Dr. Ferrara is mainly involved in clinical research and she is 
presently responsible for the in-patient clinic of primary and secondary hemochromatosis and 
chronic liver disease. 

 

 
Yitzchak Halperin, M.D. 

 
Yitzchak Halperin is currently director of the Endocrine unit at Barzili Medical Center in 

Ashkelon, Israel. Dr. Halperin completed his medical studies at the Hebrew University 
Hadassah Medical School in Jerusalem, Israel and his residency in internal medicine and 
endocrinology at the Hadassah Medical Center. Following a fellowship in New York, Dr. 
Halperin is currently a Senior Lecturer in medicine at the Ben-Gurion University of the 
Negev Medical School. 

 

 
Professor Lee M. Kaplan, M.D., Ph.D. 

 
Lee M. Kaplan is Director of the MGH Weight Center and the Obesity Research Center 

at Massachusetts General Hospital and an Associate Professor of Medicine at Harvard 
Medical School. Dr. Kaplan graduated from Harvard University and the Albert Einstein 
College of Medicine. He completed his internship and residency in internal medicine and his 



Ami Schattner and Hilla Knobler xvi 

fellowship in gastroenterology at the Massachusetts General Hospital and Harvard Medical 
School. Dr. Kaplan’s clinical expertise is in the areas of gastrointestinal and liver diseases, 
with a particular focus on fatty liver disease, viral hepatitis and obesity. His current research 
is focused on the regulation of body weight, the mechanisms of weight loss and improvement 
in insulin sensitivity after gastric surgery, and the causes and treatment of fatty liver disease. 

 

 
Professor Hilla Knobler, M.D.  

 
Hilla Knobler was born in Jerusalem. She graduated the Hebrew University and 

Hadassah Medical School in Jerusalem and did her residency in Internal Medicine in 
Hadassah University Hospital. During 1991-1993 she did her fellowship in Endocrinology 
and Metabolism at Mount Sinai Medical Center, New York, where she first became 
interested in the association between diabetes and chronic hepatitis C infection. 

Currently she is the head of the Unit of Metabolic Diseases and Diabetes at Kaplan 
Medical Center and Clinical Associate Professor of Medicine at the Hebrew University and 
Hadassah Medical School in Jerusalem. In addition she is a visiting scientist at the Weizmann 
Institute Rehovot, an active member of the Israel Diabetes Association, the Israeli Diabetes 
Research Group and the Israeli Society for Research, Prevention and Treatment of 
Atherosclerosis. 

Her current fields of research: glucose metabolism and insulin signal transduction in 
chronic hepatitis C infection; the role of insulin resistance in NAFLD and in cardiovascular 
diseases. 

 



Biographical Sketches of Editors and Contributors xvii

 
Professor Kris V. Kowdley M.D., FACP, FACG, AGAF 

 
Kris V. Kowdley is a Professor of Medicine at the University of Washington School of 

Medicine in the Division of Gastroenterology and Hepatology. He is the Director and 
Founder of the Iron Overload Clinic at the University of Washington Medical Center. Dr. 
Kowdley received his BS in Biology and Anthropology as a member of the Dean's List at 
Columbia University, and his medical degree from Mount Sinai School of Medicine. He 
completed his internship and residency at Oregon Health Science University and a 
Fellowship in Gastroenterology and Hepatology at Tufts University School of Medicine. Dr. 
Kowdley has presented his research in liver diseases at more than 100 national and 
international medical centers and scientific symposia. He is the author of over 300 articles, 
book chapters, reviews and commentaries in this area and has been published in the New 
England Journal of Medicine, Annals of Internal Medicine, Hepatology, Gastroenterology, 
Archives of Surgery, Journal of Clinical Gastroenterology and among other professional 
publications. Dr. Kowdley also serves as a consultant on drug safety for several 
pharmaceutical and biotechnology companies. 

 

 
Professor Keith Lindor, M.D. 

 
Keith Lindor, M.D. is a Professor of Medicine in the Department of Gastroenterology 

and Hepatology at the Mayo Clinic in Rochester, Minnesota and is currently the Dean of the 
Mayo Medical School. His research program is focused on management of chronic 



Ami Schattner and Hilla Knobler xviii 

cholestatic liver diseases, including primary biliary cirrhosis and primary sclerosing 
cholangitis, and more recently on nonalcoholic steatohepatitis. His major focus has been on 
clinical trials in these diseases. He has over 200 peer-reviewed publications in this field. His 
research has been funded by the National Institutes of Health, and he speaks widely on these 
topics. Prior to assuming the role of Dean of Mayo Medical School, he was Chair of the 
Division of Gastroenterology and Hepatology. 

 

 
Professor David Lomas Ph.D. Sc.D FRCP 

 
Professor David Lomas PhD ScD FRCP FMed Sci qualified from the University of 

Nottingham in 1985 and then worked in Nottingham and Birmingham as a junior hospital 
doctor in General and Respiratory Medicine. He moved to Cambridge as an MRC Training 
Fellow to undertake his PhD and then secured a second fellowship as an MRC Clinician 
Scientist. In 1994 he was appointed as University Lecturer at the University of Cambridge 
and in 1998 was appointed to the Professorship of Respiratory Biology. He has been an 
Honorary Consultant Respiratory Physician at Addenbrooke’s and Papworth Hospitals in 
Cambridge since 1994 and has a particular interest in α1-antitrypsin deficiency, the 
serpinopathies and the genetic basis of emphysema. 

 

 
Meera Mallya B.Sc. (Hons) Ph.D. 

 
Dr Meera Mallya qualified in Biochemistry from Imperial College (University of 

London) in 1999 and then obtained her Ph.D. in Cambridge in 2003 studying Molecular 



Biographical Sketches of Editors and Contributors xix

Biology at the Wellcome Trust Genome Campus in Hinxton. She is currently employed in the 
laboratory of Professor David Lomas as a Post Doctoral Research Fellow in the University of 
Cambridge, where she is working on the structural biology of �1-antitrypsin, in particular 
strategies to prevent polymerisation of Z α1-antitrypsin and has obtained a European α1-
Antitrypsin Laurell’s Training Award (ALTA) fellowship. 

 

 
Stephen Malnick, M.A. (Oxon) M.sc. MBBS (Lond) 

 
Stephen Malnick is currently Director of the Department of Internal Medicine C at 

Kaplan Medical Center in Rehovot, Israel and a Senior Lecturer in medicine at Hadassah 
Medical School, Hebrew University in Jerusalem. Dr Malnick graduated from Oriel College, 
Oxford and completed his medical studies at Middlesex Hospital, London, England. He 
completed his internal medicine residency and gastroenterology fellowship at Kaplan 
Medical Center. Dr Malnick's clinical specialty is in the area of treatment of viral hepatitis 
and non-alcoholic fatty liver disease (NAFLD). His research interests focus on the clinical 
aspects of NAFLD and the effects of obesity on the heart. 

 

 
Professor Brent A. Neuschwander-Tetri, M.D., FACP 

 
Brent A. Neuschwander-Tetri completed his undergraduate studies at the University of 

Oregon and received his M.D. degree from Yale University. He completed his internship and 
residency in internal medicine at the University of Wisconsin Madison and went on to a 



Ami Schattner and Hilla Knobler xx 

fellowship in gastroenterology and liver diseases at University of California San Francisco. In 
1991 he joined the faculty at Saint Louis University in the Division of Gastroenterology and 
Hepatology where he directs the teaching of the basic science of gastroenterology and 
hepatology to medical students, conducts clinical research in nonalcoholic steatohepatitis and 
basic research in pancreatic fibrogenesis. 

 

 
Professor John K. Olynyk, M.D. 

 
Professor John Olynyk is a Gastroenterologist and Hepatologist based in the School of 

Medicine and Pharmacology at Fremantle Hospital. He has been in his current position since 
April 1994. He has established major research programs in the broad areas of colorectal 
cancer screening, pathogenesis of hereditary haemochromatosis and the role of hepatic stem 
cells in the pathogenesis of liver cancer. His research is funded by NH&MRC and the Cancer 
Foundation of Western Australia.  

 

 
John Ombiga, M.D. 

 
Dr. John Ombiga is a Gastroenterology Research Fellow based at Fremantle Hospital 

since January 2005 where he has been involved with research in inflammatory bowel disease, 



Biographical Sketches of Editors and Contributors xxi

and the publication of an important review on screening for the HFE gene in hereditary 
haemochromatosis and iron overload. 

 

 
Russell Phillips BSc (Hons) MB; BS (Hons), MRCP (Lond) 

 
Dr. Russell Phillips qualified from the Royal Free Hospital Medical School (University 

of London) in 1997 and then worked in London and Cambridge as a junior hospital doctor 
before becoming a Specialist Registrar in Respiratory and General Internal Medicine in 
Cambridge and the East Anglia region in 2001. As part of his training he is currently 
undertaking a Ph..D. in the laboratory of Professor David Lomas in the University of 
Cambridge where he is working with Dr. Meera Mallya on the structural biology of α1-
antitrypsin deficiency having been awarded a Wellcome Trust Clinical Research Fellowship. 

 

 
Professor Antonello Pietrangello, M.D., Ph.D. 

 
Antonello Pietrangello, M.D., Ph.D. was born in 1956. He graduated cum laude the 

University of Modena where he later trained in Gastroenterology and completed his PhD 
(cum laude). He spent several years at the Liver Research Center of the Albert Einstein 
College of Medicine, New York and came back to the University of Modena and Reggio 



Ami Schattner and Hilla Knobler xxii 

Emilia where he is Professor of Medicine since 2001 and Chief of the Center for 
Hemochromatosis and Hereditary Liver Diseases at the University Hospital of Modena.  

In addition to his being the senior author on numerous publications, Dr. Pietrangello 
received the NATO Advanced Fellowship award (1989), the Fogarty International 
Fellowship Award (1990), the International Young Investigator Award of the European 
Association for the Study of Liver Diseases (EASLD) (1993), the Marcel Simon Award for 
excellence in research in disorders of iron metabolism (1995) and the EASLD International 
Investigator award (1996). He was also the chairman of the World Iron Congress in 1999, 
president of the International Bioiron Society (IBIS) and member of the Scientific Committee 
of the EASLD. His main fields of interest are iron metabolism and hemochromatosis; 
molecular and cell biology of oxidant stress, inflammation and fibrosis in liver diseases and 
hepatic gene expression and gene therapy. 

 

 
Narendra Siddaiah, M.D. 

 
Narendra Siddaiah, M.D. is a Research Fellow in Hepatology at the University of 

Washington School of Medicine, Division of Gastroenterology and Hepatology. He 
completed Internship and Residency in Internal Medicine at St. Francis Hospital in Evanston, 
Illinois and has practiced and taught Internal Medicine. Dr. Siddaiah received his M.B.B.S 
degree from Bangalore University in India and pursued graduate studies in Immunology at 
the University of Saskatchewan, Canada. He will begin his clinical fellowship in 
Gastroenterolgy and Hepatology at the University of Mississippi Medical Center. 

 



Biographical Sketches of Editors and Contributors xxiii

 
Professor Ami Schattner, M.D. 

 
Ami Schattner was born in Haifa, Israel to parents who emigrated from Europe days 

before the war and the Holocaust. He graduated from the Hebrew University and Hadassah 
Medical School in Jerusalem (1974) where he is now an Associate Professor of Medicine and 
a distinguished teacher. After his residency in Internal Medicine he gained research 
experience at the Department of Virology of the Weizmann Institute of Science in Rehovot, 
and was a Fulbright Fellow at the Albert Einstein School of Medicine in New York and later 
at Tufts University Medical School, Boston. He is currently Chief (since 1991) of a 
Department of Medicine at the Kaplan Medical Center, a Hadassah Medical School teaching 
hospital in Rehovot. Dr. Schattner has spent Sabbaticals as a Visiting Professor at Stanford 
(1996), Harvard (2001) and Cambridge (2004) Universities and has initiated many research 
projects and authored numerous publications and book chapters. His main research interests 
are cytokines in autoimmunity, autoimmune diseases, hepatitis C-induced cytokines and their 
effects on the liver and on insulin resistance, patient-physician relationship and the quality of 
care. 

 

 
Debbie Trinder, Ph.D.  

 
Dr Debbie Trinder is a Senior Research Fellow in the University of Western Australia, 

School of Medicine and Pharmacology at Fremantle Hospital, Perth, Western Australia. Her 
main research interests are liver iron metabolism and hereditary haemochromatosis.  



Ami Schattner and Hilla Knobler xxiv 

 
Professor Stephan vom Dahl, M.D. 

 
Stephan vom Dahl graduated from Medical School of University of Dusseldorf in 

Germany in 1989. His medical education included the universities of Freiburg, Duesseldorf 
and the University of Pennsylvania, Philadelphia. He is an internist and gastroenterologist 
who became Associate Professor of internal medicine and hepatology at the University of 
Duesseldorf in 2001. Since 2005 he is Chief of the Department of Internal Medicine at St. 
Franziskus-Hospital, Cologne. His basic research interests are the regulation of liver 
metabolism, and his clinical fields include metabolic liver diseases and Gaucher disease. He 
has published numerous articles on regulation of liver metabolism and clinical issues of 
Gaucher disease.  

 

 
Professor David A. Weinstein, M.D., M.M.Sc. 

 
David A. Weinstein graduated from Trinity College (CT) and Harvard Medical School, 

and then completed a residency, chief residency, and fellowship in pediatric endocrinology at 
Children's Hospital, Boston. He subsequently obtained a Masters in clinical investigation 
from Harvard and MIT, and became Director of the Glycogen Storage Disease Program at 
Children's Hospital Boston. In 2005, Dr. Weinstein moved to the University of Florida where 



Biographical Sketches of Editors and Contributors xxv

he directs the Glycogen Storage Disease Program and is an Associate Professor of Pediatrics. 
Dr. Weinstein follows one of the largest cohorts of GSD patients in the world, and he directs 
a research team investigating novel therapies for the glycogen storage diseases. He is a 
former Jan Albrecht Award winner from the American Association for the Study of Liver 
Diseases, and he is on the Board of Directors for the Association for Glycogen Storage 
Disease. 

 

 
Professor Joseph I. Wolfsdorf, M.B., B.Ch. 

 
Dr. Joseph I. Wolfsdorf received his medical education from the University of 

Witwatersrand in Johannesburg, South Africa, from which he graduated with an M.B., B.Ch. 
in 1969. He was a registrar in pediatrics at Baragwanath Hospital and the Transvaal 
Memorial Hospital for Children from 1972-1975. After obtaining a Diploma in Child Health 
in 1973 and the Fellowship of the College of Physicians of South Africa (with Pediatrics) in 
1974, he emigrated to the United States of America in 1975. From 1975-1976, he was a 
Fellow in Pediatric Endocrinology at the University of Chicago, and from 1976-1978 a 
Clinical and Research Fellow in Pediatric Endocrinology and Metabolism, at Tufts-New 
England Medical Center in Boston, where he developed an interest in glycogen storage 
diseases while working with Dr. Boris Senior. In 1982, he began to work on glycogen storage 
disease with Dr. John F. Crigler, Jr., at Children’s Hospital Boston. Dr. Wolfsdorf is 
Associate Chief of the Division of Endocrinology, Director of the Diabetes Program, and an 
Associate Professor of Pediatrics at Harvard Medical School.  

 



Ami Schattner and Hilla Knobler xxvi 

 
Professor Ari Zimran, M.D. 

 
Ari Zimran graduated from the Hebrew University, Hadassah Medical School, Jerusalem, 

Israel in 1975. He served several years as a medical officer in the Israeli army, prior to 
completion of his residency in Internal Medicine at Shaare Zedek Medical Center in 
Jerusalem in 1986. During 3 years of research fellowship at the Scripps Research Institute in 
La-Jolla, under the mentorship of Prof. Ernest Beutler, he became interested in both 
molecular and clinical aspects of Gaucher disease. Upon return to Israel he founded a referral 
center for patients with Gaucher disease, where over 600 patients with Gaucher disease are 
being followed. Dr. Zimran participated in several clinical trials that led to market approval 
of new treatments for patients with Gaucher disease, both multi-center and single center 
studies. He published over 150 papers and edited two books - one on Gaucher disease and the 
other on Lysosomal Storage Disorders.  

 
 
 



In: Metabolic Aspects of Chronic Liver Disease ISBN: 1-60021-201-8 
Editors: A. Schattner, H. Knobler, pp. 1-70  © 2007 Nova Science Publishers, Inc. 

 
 
 
 
 
 
 

Chapter I 
 
 

PATHOPHYSIOLOGY OF NASH 
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ABSTRACT 
 
Rapid advances on molecular studies, manipulation of the mouse genome, the 
development of a number of animal models, and using these in studies of nonalcoholic 
fatty liver disease (NAFLD) have provided important insights into the pathogenesis of 
this relatively common disorder. One of the most crucial advances was to recognize the 
links among obesity, insulin resistance, inflammation and NAFLD. A growing body of 
literature has shown that insulin resistance and its liver-related consequence, NAFLD, 
could be the result of generalized inflammation. Genetic and behavioral factors 
contribute to increased visceral adipose tissue where increased oxidative stress and lipid 
peroxidation may contribute to dysregulated production of adipocytokines, fatty acids, 
and bioactive lipids. This chain of these events may contribute to local and peripheral 
insulin resistance, a central underlying pathophysiological process that may both cause 
and result from increased peripheral lipolysis and elevated free fatty acid concentrations 
in the circulation. Abnormally elevated free fatty acids taken up by organs other than 
adipose tissue, such as liver and skeletal muscle, contributes to steatosis of these organs 
(ectopic lipogenesis). Increased muscle and hepatocellular lipid content provides 
substrates for oxidative stress and lipid peroxidation, and also promotes insulin resistance 
in both liver and muscle by disturbing their downstream insulin signaling cascades. 
Insulin resistance further increases peripheral lipolysis in adipose tissue, further elevates 
circulating free fatty acids, inhibits hepatic fatty acid β-oxidation and increases de novo 
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synthesis of both fatty acids and triglycerides in the liver. Excessively produced 
triglycerides in the liver are either stored as fat droplets or secreted into the plasma as 
very-low-density lipoproteins. If this complex mechanism of hepatic fat synthesis and 
secretion capacity is overwhelmed, excessive triglycerides accumulate within the 
hepatocytes and manifests as NAFLD. 
A fatty liver is sensitive to hepatocellular injury and sustained injury can manifest as 
nonalcoholic steatohepatitis (NASH), NASH-associated cirrhosis, and NASH-associated 
hepatocellular carcinoma. Specific depletion of hepatic natural killer T cells with 
consequent proinflammatory cytokine polarization of liver cytokine production might be 
one reason for this increased hepatic sensitivity against various stimuli. Only a minority 
of patients with NAFLD have the necroinflammatory changes of NASH. The 
development of NASH in patients with NAFLD may be the consequence of secondary 
abnormalities such as injured and dysfunctional mitochondria, generation of reactive 
oxygen species with down-regulation or consumption of antioxidants causing oxidative 
stress and lipid peroxidation, increased activity of cytochrome P450 2E1, disturbed 
production of adipocytokines, and the effects of gut-derived cytotoxic products. The 
dynamic interplay of these processes in the pathogenesis of NAFLD remains 
incompletely understood and is an area of active research.  
 

Keywords: nonalcoholic steatohepatitis, insulin resistance, fatty acids, adipocytokines, 
CYP2E1, oxidative stress, mitochondrial dysfunction. 

 
 

ABBREVIATIONS 
 
AdipoR, adiponectin receptor; αSMA; α-smooth muscle actin; AOX, acyl-CoA oxidase; 

apoB 100, apolipoprotein B100; APS, adaptor protein with a PH (pleckstrin homology) and 
SH2 (Src homology 2) domain; BMI, body mass index; ChREBP, carbohydrate response 
element binding protein; CIS, cytokine-inducible src homology 2 domain-containing protein; 
CPT, carnitine palmitoyltransferase; CRP, C-reactive protein; CTGF, connective tissue 
growth factor; CYP, cytochrome P450; DNL, de novo lipogenesis; ECM, extracellular matrix 
components; GLUT, glucose transporter; HCC, hepatocellular carcinoma; HSC, hepatic 
stellate cells; HSP, heat shock protein; JNK, c-Jun N-terminal kinase; HFE, hemochromatosis 
gene; IDL, intermediate density lipoproteins; IKK-β, inhibitor κB kinase β; IL, interleukin; 
iNOS, inducible nitric oxide synthase; IRS, insulin receptor substrate; LPS, 
lipopolysaccharide; LXR-α, liver X receptor- α; MAPK, mitogen-activated protein kinase; 
MCD, methionine-choline deficient; MMC, megamitochondria with true crystalline 
inclusions; MRC, mitochondrial respiratory chain; MTP, mitochondrial trifunctional protein; 
MTTP, microsomal triglyceride transfer protein; NAFLD, nonalcoholic fatty liver disease; 
NASH, nonalcoholic steatohepatitis; NEFA, non-esterified fatty acids; NF-κB, nuclear factor 
kappa B; NKT cells, natural killer T cells; NOS2, nitric oxide synthase-2; PERPP, 
postendoplasmic reticulum presecretory proteolysis; PI3-K, phosphatidyl inositol 3-kinase; 
PKB, protein kinase B; PKCδ, protein kinase C delta; PKCε, protein kinase C epsilon; PKCλ, 
protein kinase C lamda; PKCθ, protein kinase C theta; PKCξ, protein kinase C XI; PPAR, 
peroxisome proliferator-activated receptor; PUFAs, polyunsaturated fatty acids; r-
metHuLeptin; recombinant methionyl human leptin; ROS, reactive oxygen species; Ser, 
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serine; Shc, Src homology collagen; SOCS, suppressors of cytokine signaling; SREBP-1c, 
sterol regulatory element-binding protein-1c; STAT-3, signal transduction and activator of 
transcription-3; TBARSs, thiobarbituric acid-reactive substances; TNF-α, tumor necrosis 
factor-alpha; TGF-β, transforming growth factor-β; UCP, uncoupling protein; VLDL, very-
low-density lipoprotein; WAT, white adipose tissue. 

 
 

PATHOPHYSIOLOGY OF EXCESSIVE FAT ACCUMULATION IN 

THE LIVER IN THE ABSENCE OF ALCOHOL ABUSE: NAFLD 
 
Excessive accumulation of triglycerides in hepatocytes in the absence of significant 

alcohol consumption, defined as > 5% fat by weight, [1,2] occurs in about 20-30% of adults 
[3-8]. Excessive fat in the liver, called nonalcoholic fatty liver disease or NAFLD, 
predisposes to the development of nonalcoholic steatohepatitis (NASH) [1,2]. NASH 
constitutes the subset of NAFLD that is most worrisome because it is a significant risk factor 
for developing cirrhosis and its complications, including hepatocellular carcinoma (HCC) 
(Table 1) [9-17]. Because the accumulation of excess fat in the liver is a prerequisite for the 
development of NASH, understanding the underlying causes of NAFLD forms the basis for 
rational preventive and treatment strategies of this major form of chronic liver disease. 
Insulin resistance and hyperinsulinemia are the most common underlying abnormalities in 
people with NAFLD. 
 

Table 1. Terminology of NAFLD. 
 

NAFLD: an inclusive term for liver disease characterized by predominantly 
macrovesicular steatosis in which hepatocytes contain vacuoles of triglyceride 

Benign or simple steatosis: the generally non-progressive form of NAFLD  
NASH: the progressive form of NAFLD that also includes significant necroinflammatory 

changes and variable degrees of fibrosis 
NASH-associated subacute liver failure 
NASH-associated cirrhosis: may lose the histological features of NASH 
NASH-associated HCC 

 
 

Obesity, Insulin Resistance and Hyperinsulinemia as Risk Factors for 
NAFLD 

 
Overwhelming evidence now indicates that identifying NAFLD in a patient is a sensitive 

surrogate marker for the presence of underlying insulin resistance in most patients [18-27]. 
Ideally, a balance exists between energy demand and intake in the human body. Overnutrition 
(obesity) and starvation are the two major abnormalities of this well preserved equilibrium. 
Obesity, and its consequences such as insulin resistance and the metabolic syndrome (Table 
2), is a growing threat to the health of people in developed nations [27-30]. While insulin 
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receptor defects cause severe insulin resistance, most patients with insulin resistance have 
impaired post-receptor intracellular insulin signaling. Moreover, there is a cross-talk among 
insulin sensitive tissues. For example, a single genetic defect in one insulin target tissue could 
result in insulin resistance in other tissues [29]. Understanding the causes and consequences 
of these defects is the focus of intense investigation to better understand the pathophysiology 
of type 2 diabetes mellitus, a common consequence of decades of insulin resistance. 
 

Table 2. The metabolic syndrome is present when  
three or more of five criteria are met [422]. 

 
Abdominal obesity: waist circumference > 40 inches (men) or > 35 inches (women) 
Elevated fasting glucose: ≥ 100 or treatment of elevated glucose 
Elevated blood pressure: systolic ≥ 130 mm Hg or diastolic ≥ 85 mm Hg or treatment of 

hypertension 
Elevated triglycerides: ≥ 150 mg/dL or treatment of elevated triglycerides 
Low HDL-cholesterol: < 40 mg/dL (men) or < 50 mg/dL (women) or treatment 

 
Insulin binds α-subunits of its receptor which is a cell surface receptor on the major 

insulin sensitive cells such as skeletal muscle, adipocytes, and hepatocytes leading to 
autophosphorylation of the cytoplasmic domains (β-subunits) of the receptor [29-33]. The 
insulin receptor has intrinsic tyrosine kinase activity activated by insulin binding and the 
autophosphorylated receptor activates its substrates that included insulin receptor substrate 
(IRS) -1, IRS-2, Shc (Src homology collagen), and APS (adaptor protein with a PH 
[pleckstrin homology] and SH2 [Src homology 2] domain) by tyrosine phosphorylation. 
These phosphorylated docking proteins bind and activate several downstream components of 
the insulin signaling pathways. For example, tyrosine phosphorylated Shc, with Grb2-SOS, 
activates mitogen-activated protein kinase (MAPK) cascade. MAPK regulates gene 
expression and is involved in cellular growth. Activated IRS-1 associates with phosphatidyl 
inositol 3-kinase (PI3-K), which then activates Akt. In both skeletal muscle and adipose 
tissue, these insulin-mediated phosphorylation-dephosphorylation signaling cascades induce 
the translocation of glucose transporters (GLUT), predominantly GLUT4 -containing 
vesicles, from intracellular storage sites to the plasma membrane, increasing glucose uptake 
to prevent abnormal glucose and insulin elevations in the plasma (insulin-stimulated glucose 
transport). These events and insulin-dependent inhibition of hepatic glucose output maintain 
glucose homeostasis. Insulin also affects glucose homeostasis indirectly by its regulatory 
effect on lipid metabolism. Any interference in this insulin signaling pathway causes 
glucotoxicity, insulin resistance and, when islet beta cells are capable of responding, 
compensatory hyperinsulinemia. 

Hepatic expression of insulin receptor protein in humans and the levels of both IRS-1 
and IRS-2 in animals were decreased in chronic hyperinsulinemic states [34-36]. 
Interestingly, near total to total ablation of insulin receptor protein expression in the liver (up 
to 95%) did not alter the hepatic glucose production in mice [36] while liver-specific insulin 
receptor deficient mice showed both insulin resistance and glucose intolerance [37]. It was 
also demonstrated in mice that hepatic IRS-1 and IRS-2 play complementary roles in the 
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regulation of hepatic metabolism. IRS-1 was more closely linked to glucose homeostasis with 
the regulation of glucokinase expression while IRS-2 was more closely linked to the 
lipogenesis with the regulation of lipogenic enzymes SREBP-1c (sterol regulatory element-
binding protein-1c) and fatty acid synthase [35].  

Additional physiological roles of insulin include regulating the metabolism of 
macronutrients and stimulating cellular growth (Figure 1). Insulin activates synthesis and 
inhibits catabolism of lipids while shutting off the synthesis of glucose in the liver. Adipose 
tissue is one of the major insulin sensitive organs in human body and the process of 
differentiation of preadipocytes to adipocytes, induced by insulin, is called as adipogenesis 
[30,31,38-42]. Within the adipose tissue, insulin stimulates triglyceride synthesis 
(lipogenesis) and inhibits lipolysis by upregulating lipoprotein lipase activity which is the 
most sensitive pathway in insulin action, facilitating free fatty acid uptake and glucose 
transport, inhibiting hormone sensitive lipase, and increasing gene expression of lipogenic 
enzymes. Insulin also induces the degradation of apolipoprotein B100 (apoB 100), a key 
component of very-low-density lipoprotein (VLDL), in the liver [38]. 
 

 

Figure 1. The major functions of insulin. Muscle, adipose tissue and the liver are the major targets of 
circulating insulin. Elevated insulin levels in the fed state effect a major change in whole body 
metabolic processes from gluconeogenesis and breakdown of fat to glucose uptake and disposal by 
formation of glycogen and fat while shutting off the catabolism of fat. In muscle, insulin promote 
glucose uptake by increasing the membrane expression of the glucose transporter GLUT4. In adipose 
tissue, triglyceride synthesis is increased as lipolysis and formation of free fatty acids is shut off. In the 
liver, gluconeogenesis and mitochondrial β-oxidation are shut off while synthesis of fatty acids and 
triglyceride are upregulated. These processes are impaired in the insulin resistant state such that muscle 
inadequately removes glucose from the circulation, adipose tissue continues to release free fatty acids 
even in fed state and the liver must handle this excess of fatty acids. GLUT4: glucose transporter 4. 

Insulin resistance can be defined as the failure of insulin sensitive cells to respond to 
insulin normally. It is characterized by elevated plasma glucose and, before attrition of 
pancreatic β-cells develops, elevated insulin levels. Chronic hyperinsulinemia is a major 
contributor to glucose and lipid metabolism abnormalities. Insulin resistance diminishes the 
inhibitory effect of insulin on hepatic glucose output and causes impaired insulin mediated 
glucose uptake in both skeletal muscle and adipocytes [30,43,44]. Insulin resistance also 
inappropriately activates peripheral lipolysis and stimulates free fatty acid mobilization from 
adipocytes in the fed state. Increased circulating free fatty acids contribute to fat 
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accumulation in the liver and muscle, further causing these tissues to be insulin resistant via 
disturbing their downstream insulin signaling cascades. 

 
Cellular Mechanisms of Insulin Resistance 

The most common mechanism of insulin resistance is disturbed post-receptor insulin 
signaling (Figure 2) [29-32,45,46]. Whereas most insulin signaling is propagated by tyrosine 
phosphorylation, serine (Ser) phosphorylation is often inhibitory. Ser phosphorylation of 
IRS-1 decreases both insulin stimulated tyrosine phosphorylation of IRS-1 (phosphorylated 
Ser residues of IRS-1 become poor substrates for insulin receptor) and PI3-K activation. This 
diminishes the downstream insulin signaling and insulin sensitivity of insulin target tissues. 
IRS-1 has several Ser residues such as Ser 307, Ser 612, and Ser 632 which can be 
phosphorylated. Prolonged insulin stimulation also causes phosphorylation of Ser residues of 
IRS-1 under physiological conditions [32]. Insulin and tumor necrosis factor-alpha (TNF-α) 
could phosphorylate the same Ser residues of IRS-1. 

TNF-α and plasma free fatty acids have been shown to be major stimuli of Ser 307 
phosphorylation of IRS-1 [29-32,45-49]. Inhibition of IRS-1 due to the phosphorylation of its 
Ser 307 residues also requires the activation of both c-Jun N-terminal kinase (JNK) and 
inhibitor κB kinase β (IKK-β). Both TNF-α and free fatty acids induce JNK and IKK-β 
activation.  

TNF-α stimulates phosphorylation of Ser residues of both IRS-1 and IRS-2 in 
hepatocytes [46,50,51] and Ser residues of IRS-1 in muscles [47]. It was recently reported 
that monocyte-derived macrophages increasingly accumulated within adipose tissue of obese 
patients. In addition to the dysregulated production of adipocytokines by adipocytes, adipose 
tissue macrophages also produce proinflammatory cytokines such as TNF-α and interleukin-6 
(IL-6), and C-reactive protein (CRP). Both adipose tissue and its macrophages contribute to 
the TNF-α burden. TNF-α functions in both an autocrine and paracrine manner. Indeed, its 
circulating concentrations are very low, commonly undetectable even in obese mice or 
humans. Thus, TNF-α may exert primarily local effects rather than distant effects [52]. 

Elevated free fatty acids in the circulation are also major contributors to insulin 
resistance in both humans and mice by stimulating Ser 307 phosphorylation of IRS-1. 
Adipose tissue triglycerides are the main source of circulating free fatty acids in obese. One 
mechanism of elevated free fatty acid-induced insulin resistance in muscle is the impaired 
activation of PKCλ (protein kinase C lamda) and PKCξ (protein kinase C XI) [53]. PKCδ 
(protein kinase C delta) and β2 might also play roles in human muscle insulin resistance. 
Additionally, PKCδ is reported as a possible mediator of fatty acid-induced hepatic insulin 
resistance [54]. In contrast, PKCε (protein kinase C epsilon), not PKCδ, is reported as a 
possible mediator for fatty acid-induced hepatic insulin resistance in rats (see below) [55]. 
Diacylglycerol, a metabolic product of long chain acyl CoAs, activates PKCθ (protein kinase 
C theta) which phosphorylates Ser 307 residues of IRS-1 and subsequently causes skeletal 
muscle insulin resistance in rodents [56]. PKCθ could also activate IKK-β which 
phosphorylates Ser 307 residues of IRS-1. Additionally, increased acyl CoAs or ceramide 
which is a derivative of acyl CoAs, promote insulin resistance by diminishing Akt1 activation 
[57]. Increased ceramide activates a phosphatase (protein phosphatase 2A) that reverses 
tyrosine phosphorylation of Akt/protein kinase B (PKB). Inactivated PKB inhibits insulin 
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downstream signaling cascade and leading to insulin resistance in muscles [32]. It was shown 
in the liver of rats fed high-fat diet that activation of PKCε and JNK-1 caused the inactivation 
of IRS-1 and IRS-2, and eventually insulin resistance [55]. Human studies in insulin resistant 
patients with obesity or diabetes also pointed out a mitochondrial oxidative phosphorylation 
defect. Moreover, this defect was found associated with the accumulation of triglycerides in 
muscle [58]. Several oxidative stress mediators might also induce insulin resistance by 
affecting insulin downstream signaling.  
 

 

Figure 2. Major mechanisms of insulin resistance. Insulin resistance is most commonly caused by post-
receptor signaling defects. The insulin receptor is a tyrosine kinase that autophosphorylates itself and 
also phosphorylates tyrosine residues on multiple other proteins that participate in signal transduction of 
the insulin binding such as the insulin receptor substrate (IRS) molecules, Shc, and APS and further 
downstream mediators such as PI3-K and AkT. Such tyrosine phosphorylation is required for 
transmitting the signal of insulin binding through the cascade of post-receptor molecules. The 
phosphotyrosines are dephosphorylated by a number of phosphatases, a process that is normally needed 
to shut off insulin signaling but can be inappropriately activated to cause insulin resistance. The 
receptor and the other post-receptor molecules can also be phosphorylated on serine residues, and serine 
phosphorylation generally impairs the functions of these proteins in transmitting the insulin signal and 
is a major cause of insulin resistance. Ins: insulin; InsR: insulin receptor; IRSs: insulin receptor 
substrates; Tyr: tyrosine; Ser: serine; TNF-α: tumor necrosis factor alpha; NEFA: non-esterified free 
fatty acids; JNK: c-Jun N-terminal kinase; IKK-β: inhibitor IκB kinase; PTEN: phosphatase and tensin 
homolog deleted on chromosome ten; SHP2: Src homology 2 containing protein tyrosine phosphatase 
2; PTP1B: protein tyrosine phosphatase 1B; PI3-K: phosphatidyl inositol 3-kinase; APS: adaptor 
protein with a PH (pleckstrin homology) and SH2 (Src homology 2) domain; Shc: Src homology 
collagen. 

Phosphatases such as PTEN, SHP 2, and PTP 1B are now recognized to be major 
mediators involved in insulin resistance. They dephosphorylate activated PI3-K, IRS, and the 
insulin receptor, respectively to induce insulin resistance. Another possible mechanism for 
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insulin resistance is defective glucose transport such as down-regulation of GLUT4 (see 
above) [59]. 

JNK is one of the stress related kinases and plays an important role in the development of 
insulin resistance [46,60,61]. The three members of the JNK group of serine/threonine 
kinases, namely JNK-1, -2, and -3 are activated by proinflammatory cytokines such as TNF-α 
as well as free fatty acids and endoplasmic reticulum stress due to metabolic overload which 
is an intracellular abnormality found in obesity. Activated JNK induces Ser 307 
phosphorylation of IRS-1, disturbs insulin downstream signaling, and subsequently causes 
insulin resistance. JNK activity has been found to be elevated in liver, muscle, and adipose 
tissue of obese experimental models [46]. Additionally, the loss of JNK-1 activity such as in 
JNK-1 knockout mice has been shown to prevent the development of insulin resistance in 
leptin deficient ob/ob mice or mice with high-fat induced dietary obesity. 

 
Proinflammatory Signaling and Insulin Resistance 

PKCθ and IKK-β are two proinflammatory kinases involved in insulin downstream 
signaling [60,61]. They are activated by lipid metabolites such as high plasma free fatty acid 
concentrations and there is a positive relationship between the activation of PKCθ and the 
concentration of intermediate fatty acid products. PKCθ activates both IKK-β and JNK, 
leading to increased Ser 307 phosphorylation of IRS-1 and insulin resistance. IKK-β is a 
mediator of insulin resistance and one of the other stress related kinases [45,62-64]. 
Activation or overexpression of IKK-β diminishes insulin signaling and causes insulin 
resistance whereas inhibition of IKK-β improves insulin sensitivity. Inhibition of IKK-β 
activity prevented insulin resistance due to TNF-α in cultured cells. Moreover, high-dose 
salicylates inhibited IKK-β activation and subsequently reversed insulin resistance in ob/ob 
mice and obese mice by a high-fat diet [45,63]. Mice heterozygous for IKK-β deletion are 
also partially protected against insulin resistance caused by intravenous lipid infusions, high 
fat diet, or genetic obesity. Evidence that this process is relevant to human disease was 
provided by the observation of improved insulin signaling in diabetic patients in whom high-
dose aspirin inhibited IKK-β activation [65]. IKK-β phosphorylates the inhibitor of nuclear 
factor kappa B (NF-κB) leading to the activation of NF-κB by the translocation of NF-κB to 
the nucleus. NF-κB is an inducible transcription factor and promotes specific gene expression 
in the nucleus. For example, NF-κB regulates the production of multiple inflammatory 
mediators such as TNF-α and IL-6 [66]. TNF- α and reactive oxygen species (ROS) could 
also activate NF-κB. In contrast, antioxidants inhibit this activation. NF-κB has both 
apoptotic and anti-apoptotic effects. The finding that NF-κB deficient mice were protected 
from high-fat diet induced insulin resistance suggests that NF-κB directly participates in 
processes that impair insulin signaling. High-dose salicylates also inhibit NF-κB and 
subsequently improve insulin sensitivity. Moreover, Cai and colleagues demonstrated that 
lipid accumulation in the livers of obese mice due to high-fat diet led to subacute hepatic 
inflammation through activated NF-κB and activation of its targets, such as up-regulation of 
proinflammatory cytokines [66]. These subsequently promoted hepatic and systemic insulin 
resistance. Additionally, ROS-induced early NF-κB activation might increase the production 
of inflammatory mediators and cause steatohepatitis in a methionine-choline deficient (MCD) 
diet fed animal model [67]. The same study group also showed that these results were 
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reversed by curcumin which inhibits NF-κB activity. Curcumin also has the ability to induce 
antioxidant enzymes and scavenge ROS.  

SOCS (suppressors of cytokine signaling) and iNOS (inducible nitric oxide synthase) are 
two inflammatory mediators recently recognized to play a role in insulin signaling [68-70]. 
Induction of SOCS proteins (SOCS 1-7 and cytokine-inducible src homology 2 domain-
containing protein [CIS]) by proinflammatory cytokines might contribute to the cytokine 
mediated insulin resistance in obese subjects [68-73]. In fact, the isoforms of SOCS are the 
members of a negative feedback loop of cytokine signaling, regulated by both 
phosphorylation and transcription events. SOCS-1 and particularly SOCS-3 are involved in 
the inhibition of insulin signaling either by interfering with IRS-1 and IRS-2 tyrosine 
phosphorylation or by the degradation of their substrates. SOCS-3 might also regulate central 
leptin action and play a role in the leptin resistance of obese human subjects [74]. SOCS 
might be a link between leptin and insulin resistance because insulin levels are increased in 
leptin resistant conditions due to the diminished insulin suppression effect of leptin because 
of insufficient leptin levels. Moreover, SOCS proteins might involve insulin/insulin like 
growth factor-1 signaling. SOCS-1 knockout mice showed low glucose concentrations and 
increased insulin sensitivity. In animal studies, inactivation of SOCS-3 or SOCS-1 or both in 
the livers of db/db mice partially improved insulin sensitivity and decreased hyperinsulinemia 
whereas overexpression of SOCS-1 and SOCS-3 in obese animals caused insulin resistance 
and also increased activation of SREBP-1c [70]. SREBP-1c is one of the key mediators of 
lipid synthesis from glucose and other precursors (de novo lipogenesis) in the liver [75]. 
Indeed, SOCS proteins markedly induce de novo fatty acid synthesis in the liver by both the 
up-regulation of SREBP-1c and persistent insulin resistance with hyperinsulinemia which 
stimulates SREBP-1c-mediated gene expression. These eventually cause NAFLD. Liver is 
the insulin clearance organ. Thus, decreased insulin clearance in patients with NAFLD 
further elevates insulin levels in the circulation and de novo lipogenesis rate in the liver. 
SOCS-1 and SOCS-3 may exert these effects by inhibiting signal transduction and activator 
of transcription proteins (STAT), particularly STAT-3, via binding JAK tyrosine kinase 
because this binding diminishes phosphorylation ability of JAK kinase to STAT-3. STAT-3 
inhibits the activation of SREBP-1c. Specific STAT-3 knockout mice showed markedly 
increased expression of SREBP-1c and subsequently increased fat content in the liver. 
Conversely, inhibition of SOCS proteins, particularly SOCS-3 improved both insulin 
sensitivity and the activation of SREBP-1c which eventually reduced liver steatosis and 
hypertriglyceridemia in db/db mice. These results had been achieved by the improvement of 
STAT-3 phosphorylation and subsequently normalization of the upregulated expression of 
SREBP-1c [70]. 

Nitric oxide synthase-2 (NOS2) or iNOS production are also induced by 
proinflammatory cytokines [61,76,77]. High-fat diet in rats causes up-regulation of iNOS 
mRNA expression and increases iNOS protein activity [78]. Increased production of NOS2 
might reduce insulin action in both muscle and pancreas and decreased iNOS activity protects 
muscles from the high-fat diet induced insulin resistance. It was also shown that leptin 
deficient ob/ob mice without iNOS were more insulin sensitive than ob wild-type. Thus, the 
production of nitric oxide may be one link between inflammation and insulin resistance. 
Although the concentration of iNOS was found higher in advanced stage NASH than in mild 
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stage in obese patients with NASH [79], iNOS deficient mice developed NASH by high-fat 
diet [80]. The issue whether iNOS is harmful in the liver remains unestablished. 

 
 

Sources of Liver Fat 
 
Accumulation of triglycerides as fat droplets within the cytoplasm of hepatocytes is a 

prerequisite for subsequent events of NASH. Accumulation of excess triglyceride in 
hepatocytes is generally the result of increased delivery of non-esterified fatty acids 
(NEFAs), increased synthesis of NEFAs, or impaired intracellular catabolism of NEFAs, 
impaired secretion as triglyceride, or a combination of these abnormalities (Figure 3) [1]. 
Recent techniques such as isotope methodologies, multiple-stable-isotope approach and gas 
chromatography/mass spectrometry provided valuable information regarding the fate of fatty 
acids during both fasting and fed states [81] such as the relative contribution of three fatty 
acid sources to the accumulated fat in NAFLD: adipose tissue, de novo lipogenesis, and 
dietary (see below). Additionally, these studies reported that plasma NEFA pool is the main 
contributor of both hepatic-triglycerides in the fasting state and VLDL-triglycerides in both 
fasting and fed states (see below). 
 

 

Figure 3. Sources and fates of liver fat. The major sources of fat in the liver are delivery as NEFA from 
adipose tissue and de novo lipogenesis from carbohydrates and amino acids. Short chain NEFA from 
the gut are a small fraction of total circulating NEFA in the fed state. Uptake of triglyceride in the form 
of LDL and IDL constitutes a minor fraction. The intrahepatic NEFA pool has two major fates. Some 
undergoes mitochondrial β-oxidation while most is generally re-esterified to triglyceride, incorporated 
into VLDL and secreted into the circulation. Catabolic pathways that contribute to the disposition of a 
minor fraction of NEFA include peroxisomal β-oxidation and cytochrome P450 mediated ω-oxidation. 
Although peroxisomal and CYP oxidation is quantitatively small, it may increase the burden of oxidant 
stress in the liver. NEFA: non-esterified free fatty acids; HSL: hormone sensitive lipase; IDL: 
intermediate density lipoproteins; LDL; low density lipoproteins; VLDL: very-low-density lipoproteins. 
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Dysregulated Peripheral Lipolysis 
After a meal, insulin normally inhibits peripheral lipolysis by inhibiting hormone 

sensitive lipase, while reducing β-oxidation of fatty acids and increasing fatty acid synthesis 
from the glucose in the liver [30,44]. Moreover, under physiologic conditions, insulin inhibits 
the hepatic secretion of VLDL-triglycerides to the circulation by inducing apoB 100 
degradation in the liver [30,82] while increased fatty acid flux into the liver increases 
hepatic-VLDL synthesis [83]. Additionally, free fatty acid trafficking between the adipose 
tissue and the liver would not cause accumulation of fatty acids in the liver under physiologic 
conditions. However, regulation of hormone sensitive lipase is diminished in the insulin 
resistant states [21,84] and lipoprotein lipase activity in adipose tissue is reduced due to the 
insulin resistance [30]. Hormone sensitive lipase catalyzes the hydrolytic release and 
mobilization of fatty acids from the increased adipose tissue triglycerides in obese subjects 
with insulin resistance. Increased triglyceride lipolysis enhances NEFA burden in the 
circulation. A recently performed NAFLD study with the combination of recent techniques 
(see above) showed that adipose tissue makes a major contribution to plasma NEFA pool, 
contributing 81.7% in fasted state and 61.7% in fed state [81]. Additionally, the contribution 
of dietary lipids to the plasma NEFA pool was found to be only 26.2% and 10.4% in fed and 
fasted states respectively in the same study. Finally, the contribution of newly made fatty 
acids (originating from the adipose tissue and liver) to the plasma NEFA pool was 7.0% and 
9.4% for the fasted and fed states, respectively. 

The liver takes up free fatty acids from the circulating NEFA pool and the rate of uptake 
depends only on the plasma free fatty acid concentrations. Hepatic NEFA uptake continues 
despite increased hepatic content of fatty acids and triglycerides [44,85] and there is no 
known regulatory mechanism or limitation of this process. The concentration of free fatty 
acids is increased in the portal circulation rapidly when the lipolysis occurs in visceral 
adipose tissue [30]. These products directly flux to the liver via the splanchnic circulation and 
contribute to hepatic triglyceride synthesis, NAFLD, and hepatic insulin resistance. 
Additionally, decreased adipocyte glucose uptake due to insulin resistance reduces glycerol-
3-phosphate concentration in adipose tissue. This diminishes the conversion of fatty acids 
into intracellular triglyceride and further increases the plasma NEFA pool.  

 
Hepatic de Novo Lipogenesis (DNL) 

Hepatic de novo lipogenesis (fatty acid and triglyceride synthesis) is increased in patients 
with NAFLD. Stable-isotope studies showed that increased DNL in patients with NAFLD 
contributed to fat accumulation in the liver and the development of NAFLD [81,86]. 
Specifically, DNL was responsible for 26% of accumulated hepatic triglycerides [81] and 15-
23% [81,86] of secreted VLDL triglycerides in patients with NAFLD compared to an 
estimated less than 5% DNL in healthy subjects and 10% DNL in obese people with 
hyperinsulinemia [87-89]. Interestingly, Donnelly and colleagues demonstrated the similarity 
between VLDL-triglycerides and hepatic-triglycerides regarding contributions of fatty acid 
sources such as 62% vs 59% for NEFA contribution, respectively; 23% vs 26% for DNL, 
respectively; and 15% vs 15% for dietary fatty acids, respectively in NAFLD patients [81]. 
These studies also showed that increased DNL in the fasting state is not increased more in fed 
state. 
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Substrates used for the synthesis of newly made fatty acids by DNL are primarily 
glucose, fructose, and amino acids; oleic acid (18:1, a ω-6 monounsaturated fatty acid, which 
is relatively resistant to peroxidation) is the major end product of de novo fatty acid 
synthesis. Other studies have shown that oleic acid is one of major fatty acids found in the 
liver in humans [90] as well as in mice with NAFLD [91]. Oleic acid is also a common 
dietary fatty acid type. Listenberger and colleagues demonstrated that oleic acid is readily 
incorporated into triglycerides and leads to the accumulation of triglycerides which was well-
tolerated by cultured cells [92]. Moreover, these studies demonstrated that the cellular ability 
to produce triglycerides from fatty acids is strongly associated with the protection from 
lipotoxicity. Most importantly, this process appears a cellular adaptation mechanism against 
changed environmental conditions such as increased fatty acid flux into the liver in obese 
patients with insulin resistance. However, lipotoxicity might occur over time by chronically 
increased fatty acid supply when the triglyceride synthesis and storage capacity are exceeded. 
Palmitic acid, a saturated fatty acid, alone has no ability to incorporate into triglycerides and 
causes lipoapoptosis by generating both ROS and ceramides. Another crucial observation in 
these studies is that oleic acid generated endogenously by DNL or exogenously prevents 
palmitic acid-induced apoptosis. These effects had been achieved by oleic acid-inducing 
palmitate incorporation into triglycerides. However, lipotoxicity might occur by decreased or 
overwhelmed triglyceride synthesis capacity, even in oleic acid rich-medium.  

Regarding NAFLD, the purpose of the increased oleic acid synthesis by DNL might be a 
buffer against chronically increased fatty acid supply to the hepatocytes. We might also 
propose that all fats in the liver might not be harmful, even they might be evidence of a 
protective mechanism against increased fatty acids. This might be also an explanation for 
whether mild degree steatosis, less than 5% fat, is important.  

Although a growing body of literature suggests that NAFLD is primarily associated with 
a peripheral insulin resistant state, there is also a relationship between NAFLD and hepatic 
insulin resistance. Hepatic insulin resistance causes dysregulation of hepatic lipogenesis and 
fat accumulation within hepatocytes. Moreover, the contribution of hepatic insulin resistance 
on the development of type 2 diabetes mellitus is critical, with both increased hepatic glucose 
production and postprandial hyperglycemia [37,93]. One mechanism of hepatic insulin 
resistance in NAFLD was recently demonstrated in rats in which hepatic fat accumulation 
was a specific cause of hepatic insulin resistance [55]. After high-fat feeding for 3 days, rats 
showed increased hepatic fat content (triglycerides and fatty acyl-CoA) which originated 
from diet, hepatic insulin resistance, blunted insulin-stimulated IRS-1 and IRS-2 tyrosine 
phosphorylation, increased activation of PKCε and JNK-1, diminished insulin activation of 
AKT2 and inactivation of GSK3 while there was no significant peripheral insulin resistance, 
and no significant increase in the fat content of muscle and adipose tissue. In this model, 
increased hepatocellular fatty acid metabolites activated PKCε and JNK-1 which impaired 
IRS-1 and IRS-2 tyrosine phosphorylation and subsequently caused hepatic insulin 
resistance. 

Elevated insulin and glucose concentrations in the plasma, abnormalities that 
characterize insulin resistance, independently stimulate DNL in the liver through activation 
of hepatic SREBP-1c and carbohydrate response element binding protein (ChREBP), 
respectively [94]. SREBPs are transcription factors involved in the uptake and synthesis of 
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fatty acids [75,95-97]. The SREBP family includes SREBP-1a, 1c, and 2. SREBP-1c is 
predominantly located in the liver and can activate transcriptionally the genes involved in 
hepatic lipogenesis [75,97]. A study performed with ob/ob mice deficient for SREBP-1c 
demonstrated 50% reduction in hepatic triglyceride content [98]. Fasting reduces and feeding 
increases the amount of SREBP-1c in the liver. In patients with NAFLD, insulin continues to 
stimulate SREBP-1c mediated lipogenic genes expression despite profound insulin 
resistance. SREBP-1c also stimulates the expression of enzymes that produce malonyl-CoA 
at the mitochondrial membrane, a molecule that potently inhibits mitochondrial fatty acid 
uptake and β-oxidation. Fatty acids thus undergo triglyceride synthesis or oxidation in 
peroxisomes and smooth endoplasmic reticulum which produces more ROS. Thus, SREBP-
1c activation not only favors the formation of fatty acids, but it also down-regulates their 
catabolism which further contributes to the formation of triglyceride.  

Fatty acid synthesis is only partially (30-50%) dependent on SREBPs [99]. Another 
transcription factor, ChREBP, regulates the genes involved in the synthesis of fatty acids 
from glucose [100,101]. Elevated plasma glucose levels stimulate cytoplasmic ChREBP to 
enter the nucleus and bind to DNA leading to specific gene expression. For example, 
activated ChREBP activates liver type pyruvate kinase which increases both glycolysis to 
produce more citrate and stimulate DNL to produce fatty acids. 

 
Uptake of Dietary Fat into the Liver 

In the fed state, most triglyceride in the plasma is found in gut-derived chylomicrons or 
liver-derived VLDL. Only a small fraction of gut-derived triglyceride is taken up by the liver 
such that only 15% of liver triglyceride originates from dietary triglyceride while the majority 
originates from adipose-derived NEFA [81]. In the fasted state, triglycerides found in the 
plasma are primarily remnant lipoproteins such as chylomicron remnants, VLDL remnants, 
and intermediate density lipoproteins (IDL) [44]. Triglyceride content of remnant molecules 
differs between healthy and insulin resistant states because hepatic uptake is a direct function 
of the level of dietary fat intake, rate of hepatic secretion of VLDL, and the activity of 
adipose lipoprotein lipases. It was shown that high triglyceride content of remnants in insulin 
resistant subjects increased VLDL synthesis and secretion in both human and cultured liver 
cells compared to healthy controls. However, remnants were not found to stimulate VLDL 
secretion from the liver as much as free fatty acids. 

These experimental findings are highly relevant to clinical practice. While it may be 
intuitive to recommend a low fat diet to patients with NAFLD, the benefit of this is primarily 
in reducing total caloric intake and potentially reducing cardiovascular risks. Moreover, 
simple sugars have the ability to stimulate lipogenesis [81,88]. Ingested carbohydrates are a 
major stimulus for hepatic DNL and are thus more likely to directly contribute to NAFLD 
than dietary fat intake. Additionally, regulation of the changes in hepatic lipogenesis from 
fasting state to fed state is disturbed. 

Moreover, an area of ongoing research is how total caloric intake and the composition of 
diet affect the development of NAFLD. Studies in alcohol-fed rats showed that 
polyunsaturated fats are harmful and saturated fats are protective in the liver [102,103]. In 
contrast, a recently performed study demonstrated that not only polyunsaturated fatty acids, 
but also saturated fatty acids such as palmitic acid induced hepatocyte apoptosis and injury in 
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rats [92,104]. Additionally, a low-calorie and very low-fat diet used in one study may have 
worsened liver inflammation [105]. This observation might be explained by the harmful 
effect of rapid weight loss or very low fat content of the formula [105,106]. Increased serum 
concentrations of free fatty acids, which could be due to obesity or rapid weight loss, were 
also found to be correlated with the severity of fibrosis in patients with NASH [107]. 

 
 

Fates of Liver Fat 
 

Very-low-density Lipoprotein (VLDL) Synthesis and Secretion 
VLDL is a lipoprotein complex of apoB 100, triglycerides, cholesteryl esters and 

phospholipids synthesized only in the liver [44,108-111]. Synthesis occurs in the 
endoplasmic reticulum and VLDL is exported by vesicular transport from the liver into the 
plasma. Lipoprotein lipases in the vascular endothelium progressively remove triglyceride 
from circulating VLDL to produce ILD and smaller VLDL particles. Such delipidated 
products can be taken up by the liver but constitute a relatively minor pathway of fat uptake 
in the liver. The relative contributions of fatty acids derived from adipose tissue, diet, and 
DNL to the triglyceride content of VLDL in fasted and fed states were 60.4% and 27.9% for 
adipose, respectively; 12.1% and 19.1% for diet, respectively; and 22.2% and 20.4% for 
DNL, respectively in patients with NAFLD [81]. The similarity between VLDL-triglycerides 
and hepatic-triglycerides regarding contributions of fatty acid sources was also demonstrated 
(see above) [81]. The plasma NEFA pool contribution derived from adipose tissue comprised 
the largest fraction in both fed and fasted states.  

Inhibition of VLDL assembly or secretion due to any reason leads to hepatic steatosis. 
The factors regulating apoB 100 synthesis within the hepatocytes are not completely 
understood and conflicting data have been reported. ApoB 100 is synthesized and secreted 
proportional to the amount of available triglyceride in the liver [112,113]. Its synthesis in the 
endoplasmic reticulum is a rate-determining step for VLDL formation and secretion. This 
process is facilitated by microsomal triglyceride transfer protein (MTTP) in the lumen of 
endoplasmic reticulum [114]. Abnormalities of MTTP also have been found to cause hepatic 
retention of fats and hepatic steatosis. For example, mutations in the promoter and coding 
regions of the MTTP gene are associated with severe hepatic steatosis and markedly 
decreased plasma triglyceride levels [115]. 

Three pathways have been identified for the degradation of this newly synthesized apoB 
100 in the liver, namely endoplasmic reticulum associated degradation of newly synthesized 
apoB 100, reuptake, and postendoplasmic reticulum presecretory proteolysis (PERPP) 
[110,111,116]. Even though apoB 100 synthesis is regulated, it is synthesized in excess and 
roughly 70% of newly synthesized apoB 100 is not secreted and undergoes intracellular 
degradation [117]. The availability of triglycerides for lipidation of apoB 100 is an important 
factor in preventing apoB 100 from being degraded via the proteasome [116]. PERPP 
degrades newly synthesized apoB 100, without any contribution of proteasome and 
lysosomes [116]. Both in vitro and in vivo studies demonstrated that PERPP regulates 
decreased apoB 100 secretion because of polyunsaturated fatty acids (PUFAs) and increased 
apoB 100 secretion because of saturated fatty acids [111]. 
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Insulin promotes apoB 100 degradation and decreases hepatic VLDL-triglyceride 
secretion under physiologic conditions [118]. However, chronic hyperinsulinemia is 
associated with increased apoB 100 synthesis and increased VLDL-triglyceride 
concentrations in the circulation, most probably due to resistance to normal insulin action 
[118-122]. ApoB 100 secretion is increased (40%) in obese and NAFLD subjects, but is 
significantly decreased (62%) in NASH subjects compared with both obese without NAFLD 
(body mass index- [BMI], gender-, and age- matched subjects) and lean without NAFLD 
(age- and sex- matched healthy controls) subjects [109]. Correlated with these findings, the 
mean metabolic clearance rate of apoB 100 was significantly lower in NASH subjects when 
compared with both obese without NAFLD and lean without NAFLD subjects. By 
comparison, the mean absolute synthesis rate of fibrinogen and albumin were not decreased, 
even significantly increased when compared with lean subjects and similar to that of obese 
subjects without NAFLD, in NASH in this same study.  

One mechanism of impaired VLDL secretion may be increased oxidative stress and lipid 
peroxidation induced by fatty acids in the liver [111]. Increased hepatic oxidative stress and 
lipid peroxidation stimulate PERPP to induce apoB 100 degradation and to decrease the 
secretion of apoB 100, and is associated with lower VLDL concentrations in the plasma 
[111]. Moreover, lipid peroxidation could achieve these results even in the absence of 
exogenous fatty acids. It was also reported that feeding rats with PUFAs, which are 
predisposed lipid peroxidation, led to decreased triglycerides in both the plasma and the liver 
while hepatic lipid peroxidation products (hepatic lipid hydroperoxides and thiobarbituric 
acid-reactive substances [TBARSs]) were increased and a lipid antioxidant, vitamin E, levels 
were decreased [123]. An antioxidant (an iron chelator or a lipid antioxidant) added to the 
medium decreased oxidative lipid peroxidation, improved apoB 100 concentrations, and 
increased VLDL-triglyceride secretion in both rat hepatoma and primary rodent hepatocytes 
[111]. PUFA infusion also increased hepatic lipid peroxidation and decreased hepatic VLDL 
secretion in mice [111]. These studies also pointed out a direct oxidative damage to apoB 100 
via enzymatic or non-enzymatic pathways. 

These abnormalities are correlated with the pathogenesis of NASH. Oxidative stress and 
-related hepatic lipid peroxidation are associated with the development of NASH in both 
animal models and humans. In addition to increased free fatty acid flux into the hepatocytes, 
increased oxidative stress and lipid peroxidation are associated with both increased 
degradation and decreased secretion of apoB 100 induce lipid retention and accumulation in 
the liver. Moreover, the finding of Charlton and colleagues of decreased apoB 100 synthesis 
in NASH patients (see above) [109] might be explained by the increased oxidative stress and 
lipid peroxidation, PERPP degradation, in patients with NASH. 

Polymorphisms of the apoB100 gene may also impair VLDL secretion. Several apoB 100 
gene mutations have been reported in patients with NAFLD that lead to the synthesis of 
truncated apoB 100 [124,125]. According to some investigators there are two types of apoB 
100 deficiency related with NAFLD, namely absolute deficient type (rare) and relative 
deficiency (ordinary type) [108,114]. 

In summary, apoB 100 synthesis and secretion is increased in fatty liver subjects but this 
process might still not enough for a normal VLDL assembly and triglyceride secretion. This 
causes the accumulation of triglycerides and eventually NAFLD. 
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Mitochondrial β-Oxidation 
Fatty acids have two major fates in the liver, namely esterification to form triglycerides 

that are secreted as VLDL and mitochondrial β-oxidation. Mitochondrial β-oxidation of 
short, medium, and long chain fatty acids involves multiple steps which include entry of long 
chain fatty acids into the mitochondria, a process dependent on carnitine shuttle enzymes 
CPT-I (carnitine palmitoyltransferase 1; an outer membrane enzyme) and CPT-II, and the β-
oxidation of fatty acids to form progressively shorter acyl-CoA moieties, acetyl-CoA [126]. 
Then, acetyl-CoA subunits are completely degraded by the tricarboxylic acid cycle to carbon 
dioxide. These oxidation processes are associated with the reduction of oxidized NAD+ and 
FAD to NADH and FADH2. Reoxidation of NADH and FADH2 to NAD+ and FAD produces 
electrons which transfer to the mitochondrial respiratory chain (MRC) [44,126-128]. Most of 
the electrons of NADH and FADH2 are safely transferred to oxygen to form water in a 
process that generates ATP through the MRC. Partially reduced oxygen molecules, termed 
reactive oxygen species or ROS, are constitutively generated during this process when the 
electrons of NADH and FADH2 directly react with oxygen and may contribute to oxidant 
stress if endogenous protective mechanisms are overwhelmed [126].  

In the fasting state of lean subjects, NEFA are released from adipose tissue, enter into the 
liver and are rapidly metabolized by mitochondrial β-oxidation as a source of energy. 
Necessary for this to occur is a state of low hepatic malonyl-CoA concentrations which is a 
common feature in fasting state. Malonyl-CoA is produced by acetyl-CoA carboxylase which 
is the first step in fatty acid synthesis. Under physiologic conditions, adipocytes of lean 
people store lipids after meals and release them during the fasting period [118]. In contrast, 
heavily lipid-laden adipocytes in obese people continue to release fatty acids in the 
immediate postprandial term. Consistent with the increased flux of NEFA to the liver in 
obese patients with NAFLD, mitochondrial β-oxidation of fatty acids in the liver is also 
increased and as such may contribute to increased generation of ROS and oxidant stress 
[126]. Although insulin and malonyl-CoA could decrease CPT-I activity in lean people, this 
effect might be impaired in obese people with insulin resistance. 

Excessive fatty acids might use alternative pathways other than mitochondrial β-
oxidation to be metabolized and cause mitochondrial injury. These include peroxisomal and 
cytochrome P450 (microsomal CYP) oxidation systems regulated by mainly fatty acids and 
insulin [44]. These alternative fatty acid oxidation systems produce more ROS and thus their 
utilization may be a source of oxidant stress. 

 
Peroxisomal Fatty acid β-Oxidation 

One relatively minor fate of fatty acids in the liver is their oxidation in peroxisomes. 
Peroxisomal oxidation of fatty acids is the normal route of metabolism of very long chain 
fatty acids (fatty acids with 20 or more carbons) and dicarboxylic acids [44,129]. It might 
also be involved in the oxidation of fatty acids when mitochondrial β-oxidation is impaired. 
Peroxisomal oxidation is a four-step pathway in which electrons from the FADH2 and NADH 
are transferred directly to oxygen. Although this increases the production of H2O2, 
peroxisomes are uniquely endowed with the enzyme catalase that eliminates this reactive 
oxygen molecule.  
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Cytochrome P450 Fatty Acid ω (Omega)-Oxidation 
Lastly, fatty acids can undergo oxidation by the CYP enzymes of the smooth 

endoplasmic reticulum which is a relatively minor pathway for the fate of free fatty acids. 
CYP2E1 and CYP4A isoforms, two such enzymes, are involved in fatty acid oxidation in 
conditions with substrate overload such as increased free fatty acid concentrations in obesity 
and increased ketone bodies in type 2 diabetes mellitus. CYP4A upregulation particularly 
occurs in conditions with decreased CYP2E1 activity. The expression of both CYP2E1 and 
CYP4A mRNA and their protein levels are increased in both obese and diabetic animal 
models and humans [130-145]. Their hepatic activity and expression were also reported to be 
increased in patients with NASH due to the increased substrates, mainly fatty acids and 
ketone bodies, irrespective of the underlying clinical condition, diabetes or obesity 
[139,142,143]. The distribution of CYP2E1 is in zone 3 (perivenular) hepatocytes which is 
the main site of maximal hepatocyte injury in NASH [146]. Nonetheless, the capacity of this 
enzyme system is very low to handle fatty acids [44,146-148]. Oxidation reactions by the 
CYP enzymes can be major producers of ROS because of a low degree of coupling between 
substrate binding and their weak affinity to molecular oxygen, leading to the release of 
species such as superoxide anion radical, hydroxyl radicals, and hydrogen peroxide. 

Peroxisome proliferator-activated receptor-α (PPAR-α), a member of nuclear receptor 
super family of transcription factors, regulates the genes encoding some mitochondrial and 
peroxisomal fatty acid β-oxidation enzymes, lipoprotein metabolism, and hepatic fatty acid 
transport [146,149]. Highly expressed PPAR-α is also involved in hepatocyte proliferation 
caused by peroxisome proliferators.  

 
Local and Generalized Inflammation in NAFLD 

In earlier studies, researchers showed that obesity is associated with low-grade chronic 
inflammation in both animal models and humans, and this chronic inflammation is a link 
between obesity and insulin resistance [61,76,150-153]. Insulin resistance is strongly 
associated with NAFLD. Indeed, several investigators consequently reported that obesity is 
strongly related with chronic macrophage accumulation within increased adipose tissue in 
obese mice with high-fat diet-induced or genetically-induced mice [153], and genetically-
induced obese mice and human subjects [76]. Xu and colleagues also showed that inflamed 
macrophages are active within white adipose tissue (WAT) and this activation occurs after 
increased adiposity and before insulin resistance. The origin of these macrophages might be 
from the circulation. Macrophages can secrete TNF-α, IL-1, IL-6, and MCP-1. As mentioned 
previously, these cytokines promote insulin resistance in adipose tissue and eventually 
increase adipose tissue lipolysis which causes insulin resistance in both muscle and the liver. 
Weisberg and colleagues also demonstrated that adipose tissue macrophages originating from 
bone marrow are the major reasons of increased TNF-α expression in adipose tissue, besides 
significant amount of iNOS and IL-6 expression in both mice and humans [76]. These 
cytokines and biologically active molecules promote insulin resistance (see above) [68,154-
156]. Moreover, the authors reported a positive correlation between adipocyte size and the 
content (%) of accumulated macrophages in adipose. Additionally, weight loss decreased 
adipocyte size and improved these metabolic abnormalities [76]. Lastly, Furukawa and 
colleagues demonstrated increased NADPH oxidase-induced oxidative stress in accumulated 
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fat of obese mice and humans which promoted dysregulated production of adipocytokines 
[157]. Increased fatty acids or accumulated macrophages might be the reason of this 
increased ROS production within adipose tissue. These data indicate localized inflammation 
and systemic consequences such as insulin resistance and increased circulating free fatty 
acids. Additional evidence that this chronic inflammation causes insulin resistance comes 
from the restoring insulin sensitivity by various anti-inflammatory agents such as high dose 
salicylates via IKK-β inhibiton (see above) or anti-TNF-α antibody infusion [45,63,65].  

Loria and colleagues investigated non-organ-specific autoantibodies in patients with 
NAFLD, and reported that autoantibodies were more prevalent in patients with NAFLD than 
in general population [158]. Moreover, C-reactive protein levels, as an acute phase protein 
and inflammation marker, were reported to be elevated in patients with NAFLD and insulin 
resistant states [159,160]. Lastly, Albano and colleagues investigated circulating IgG 
antibodies against lipid peroxidation products in 167 patients with NAFLD (79 patients with 
simple steatosis, 74 with NASH, and 14 with NASH-associated cirrhosis) and compared with 
59 age- and sex-matched control subjects [161]. The IgG antibodies were significantly higher 
in patients with NAFLD than in controls. Additionally, the level and frequency of these 
antibodies were significantly increased in subjects with advanced fibrosis or cirrhosis, but not 
increased in patients with steatosis alone or NASH with mild fibrosis. This recent evidence 
indicates that NAFLD could be the result of generalized inflammation due to oxidative stress 
and related lipid peroxidation. 

 
 

NASH: THE PATHOGENESIS OF  
HEPATOCELLULAR INJURY IN NAFLD 

 
Although much is known about how fat accumulates in the liver, much remains unknown 

about how this causes sustained hepatocellular injury and the consequences of injury 
recognized as NASH and fibrosis (Figure 4). Insulin resistance and hyperinsulinemia may 
contribute to these pathological changes [26]. Chronically increased free fatty acid supply 
from the lipolytically active adipose tissue to the liver might also contribute to the 
development of NASH. The prevalence and the severity of NAFLD progressively increase 
with the number and severity of the features of the metabolic syndrome. Some have argued 
that the accumulation of fat in the liver is an adaptive change to insulin resistance because of 
correlates in animals that experience periods of prolonged fasting and intermittent feeding 
[162]. This argument is correlated with the findings of Listenberger and colleagues that 
triglyceride synthesis and their accumulation prevented fatty acid-induced lipotoxicity in 
cultured cells (see above, DNL, oleic acid and comments) [92]. 

However, the accumulation of fat within the hepatocytes sensitizes the liver to injury 
from a variety of causes and the regenerative capacity of a fatty liver is impaired [163,164]. 
These studies also showed that obese mice with fatty liver clear endotoxin less than nonobese 
controls [163]. This additional stressor is sometimes referred to as a “second hit” in a 
paradigm that identifies the accumulation of fat as the “first hit” [165]. Possible candidates 
for the second hit include increased oxidative stress, lipid peroxidation and release of toxic 
products such as malondialdehyde and 4-hydroxynonenal, decreased antioxidants, 
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adipocytokines, transforming growth factor-β (TGF-β), Fas ligand, mitochondrial 
dysfunction, fatty acid oxidation by CYPs (CYP 2E1, 4A10, and 4A14), and peroxisomes, 
excess iron, small intestinal bacterial overgrowth, and the generation of gut-derived toxins 
such as lipopolysaccharide and ethanol [1,97,165]. In addition, the regenerative capacity of 
the fatty liver may be compromised [164,166] and an interacting network of cytokines and 
adipokines that regulate inflammation is disrupted [167-172].  

 

 

Figure 4. Possible pathway from NAFLD to NASH, cirrhosis and hepatocellular carcinoma. Multiple 
factors, both within hepatocytes (left side) and extracellular (right side) may contribute to injury of fat-
laden hepatocytes, setting in motion the processes that lead to fibrosis, cirrhosis and hepatocellular 
carcinoma in some patients.  

Recently, it was reported that insulin resistance is an independent predictor of advanced 
fibrosis in patients with NASH [26]. These findings indicate that hypoadiponectinemia, 
insulin resistance, and high TNF-α concentrations are not only associated with fat 
accumulation but also contribute to the subsequent injury found in NASH. 

 
 

Role of Animal Models in Understanding the Pathogenesis of NASH 
 
Understanding the molecular underpinnings of diseases accelerates the development of 

effective treatment and preventive strategies. Such knowledge can often only be acquired by 
studies of animal models that recapitulate human disease. Animal models of NAFLD and 
NASH have been developed and each has its strengths and weaknesses.  
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The ob/ob Mouse 
The leptin-deficient, genetically determined, ob/ob mouse becomes both obese and 

diabetic, and develops NAFLD. This mouse strain exhibits phenotypic similarities to humans 
with NASH that include insulin resistance, hyperlipidemia, elevated serum TNF-α 
concentrations, and obesity. This model of murine liver steatosis does not progress to NASH 
without secondary insults such as lipopolysaccharide (LPS) treatment [173-175]. Deficiency 
of T-cell mediated immunity due to the lack of leptin might be the reason of these 
observations [176]. The ob/ob mouse shows up-regulated CYP4A and down-regulated 
CYP2E1 expression [140,177,178]. These observations are interesting because CYP4A 
upregulation was strongly correlated with the increased prooxidant production in a murine 
steatohepatitis model (CYP2E1 knockout mice fed MCD diet) (see below) [141]. 
Additionally, significant hepatic fibrosis may not develop in ob/ob mice because of the 
possible necessity of leptin for hepatic stellate cells (HSC) activation (see below). 
Furthermore, ob/ob mice are relatively protected from cirrhosis. Norepinephrine, a leptin-
inducible neurotransmitter, activates HSC appears to be one of the major intermediate signals 
for this action of leptin which acts via natural killer T (NKT) cells and their products such as 
IL-10, a profibrogenic cytokine [174,175]. Other genetically determined obese animal models 
are leptin resistant diabetic (db/db) mice and fatty (fa/fa) rats. 

 
The Methionine and Choline Deficient (MCD) Diet 

One of the animal models used in many studies to further understand the 
pathophysiology of human NASH, particularly the source of oxidative stress mediators, is 
rats fed the MCD diet for 4 weeks [138] and mice fed the MCD diet for 10 weeks [141]. The 
MCD formula includes corn-oil which is largely unsaturated (85%). This kind of fat is an 
important target of oxidative stress and lipid peroxidation. Although there is a strong 
histological similarity between this animal model of steatohepatitis and human NASH, MCD 
diet fed mice are not obese and do not show insulin resistance. On the contrary, MCD diet fed 
mice have increased insulin hypersensitivity and their serum insulin and glucose levels are 
lower than wild-type mice fed standard diets (chow fed) [179]. Moreover, these mice lost 
weight during the experiment despite a relatively higher food intake. However, this kind of 
nutritional deficiency (MCD) is not common in humans.  

MCD diet fed mice have increased total hepatic triglyceride content, steatohepatitis, 
increased hepatocyte proliferation, decreased circulating triglycerides, elevated liver enzyme 
levels, overexpression of hepatic CYP2E1 with no significant change in CYP4A isoforms, 
and increased lipid peroxides which is determined by the measurement of accumulated 
TBARSs in the liver (about 100-fold increase) [141,180]. Microsomal NADPH-dependent 
lipid oxidases may also be involved in lipid peroxidation. Mechanisms of injury that might 
include elevated hepatocellular lipid content which provides a large amount of substrate for 
lipid peroxidation, inhibition of fatty acid oxidation, induction of CYPs and induction of 
hepatic lipid peroxidation, could be involved in the development of steatohepatitis of MCD 
diet fed mice model. The role of TNF-α remains unclear in this murine model of 
steatohepatitis. There is also no sex hormone associated-effects [180]. PPAR-α deficiency, 
which causes both mitochondrial and peroxisomal fatty acid β-oxidation defects [180,181], 
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significantly aggravated pathologic features in the liver (steatosis and steatohepatitis) in 
MCD diet-fed mice model [180].  

 
Other Dietary Models 

Other animal models of steatosis with or without inflammation and fibrosis have been 
developed by feeding mice a diet with high fat or sucrose or both with or without high caloric 
intake [144,145,173]. However, the type and the amount of fat of these diets have been 
highly variable, making comparisons difficult. Moreover, variable amounts of daily caloric 
intake were allowed by the investigators. A recently described rat model of feeding high-fat 
liquid diet (71% of energy from fat which included corn, olive, and safflower oil) for 3 weeks 
was reported as resemble human NASH [144]. These Sprague-Dawley rats exhibited many of 
the features of human NASH that included obesity, insulin resistance, hyperinsulinemia, 
increased hepatic TNF-α mRNA expression, induced CYP2E1 and increased CYP2E1 
mRNA expression, morphologically abnormal mitochondria, increased both oxidative stress 
and lipid peroxidation, fatty liver, patchy inflammation, and increased collagen in the liver.  

Deng and colleagues recently reported a new murine steatohepatitis model by intragastric 
overfeeding of male C57BL/6 mice with high-fat liquid diet for 9 weeks [145]. This formula 
included 37% calories from fat (corn-oil). Of the 13 mice examined, 46% had NASH 
features. This model showed obesity, increased WAT, insulin resistance, increased serum 
glucose and leptin concentrations, increased transcription of hepatic lipogenic enzymes such 
as PPAR-γ, LXR-α (liver X receptor- α) and SREBP-1c, decreased expression of hepatic 
PPAR-α, induced hepatic CYP4A with down-regulated CYP2E1, increased cytochrome 
reductase activity, increased hepatic mRNA expressions of TNF-α, IL-1β, IL-6, and MIP-2. 
These studies also reported, in WAT, increased inflammation, increased expression of both 
TNF-α and leptin mRNA, and decreased expression of adiponectin mRNA.  

 
Transition from Simple Steatosis and NASH to NASH-Associated HCC: A new 
Murine NASH-Associated Hepatic Neoplasia Model 

Xu and colleagues, recently developed a murine NASH-associated hepatic neoplasia 
model with the somatic inactivation of the Nrf1 gene in the livers of adult mice [182]. The 
authors reported that liver specific Nrf1 gene deficient mice showed similar sequence of 
events and the progression to histological features of human NASH. Decreased expression of 
antioxidant response elements containing genes and upregulation of CYP4A genes were also 
demonstrated. This murine hepatic neoplasia model had evidence of increased oxidative 
stress with the proliferation of endoplasmic reticulum before the development of liver cancer. 
Sustained oxidative injury and its consequences with activated hepatocyte proliferation may 
increase the possibility of liver cancer development in these mutant livers. This and similar 
models may play an important role in the further understanding of the pathophysiology of 
NASH and its consequences. 
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Oxidative Stress and the Pathogenesis of NASH 
 
A logical and attractive hypothesis is that oxidative stress in triglyceride-loaded 

hepatocytes is the cause of sustained injury with consequent NASH, fibrosis and cirrhosis 
[1,165,183]. The imbalance between the increased ROS and decreased antioxidants leads to 
lipid peroxidation of PUFAs, cellular membranes, mitochondrial membranes, and DNA 
[21,146,184-187]. ROS have relatively short-lived and local effects while lipid peroxidation 
products have longer half-lives and the capability to reach extracellular targets. Lipid 
peroxidation produces cytotoxic aldehydes such as malondialdehyde and 4-hydroxynonenal. 
ROS and these aldehydes further contribute to oxidative stress, decreased ATP production, 
and increased proinflammatory cytokine release. These events promote hepatocyte injury, 
necroinflammation, hepatocytes apoptosis, and fibrosis. Hepatocyte ballooning and the 
development of megamitochondria with true crystalline inclusions (MMC) might be the 
result of this oxidative stress and lipid peroxidation as well. 

Despite the attractiveness of this hypothesis, supporting data has been sparse. Some 
studies have suggested a benefit of the antioxidant vitamin E [188-190], but effective 
antioxidants have not been rigorously tested in clinical trials. Most clinical studies only 
provide correlations between the presence of NASH and elevated indices of oxidant stress 
without establishing a causal relationship [21,146,184,187,191]. Additionally, the lipid 
peroxidation product 4-hydroxynonenal was found more in perivenular zone (zone 3) than 
periportal zone in patients with NASH, correlating with the histological lesions of NASH that 
are predominantly in zone 3 [187]. Moreover, more evidence of lipid peroxidation and 
oxidative DNA damage has been found in NASH than in simple steatosis. Lipid peroxidation 
was greater in patients with NASH than in patients with simple steatosis. The same study also 
showed that increased 4-hydroxynonenal strongly correlated with both the grade of 
necroinflammation and the stage of NASH, but not with the grade of steatosis while 
increased evidence of oxidant damage to DNA as measured by 8-hydroxydeoxyguanosine 
only correlated with the grade of necroinflammation in patients with NASH. This being said, 
oxidant stress could play a central role in causing NASH and our clinically available 
antioxidants may simply be ineffective at preventing the disease to prove the point. A number 
of sources of increased ROS production have been established in NASH that include 
proinflammatory cytokines such as TNF-α, iron overload, overburdened and dysfunctional 
mitochondria, CYPs, and peroxisomes.  

 
Mitochondria as a Source of Oxidant Stress 

The hepatocyte mitochondria are the main site of β-oxidation of free fatty acids. The 
electrons removed from free fatty acids during β-oxidation are shuttled through the 
mitochondrial electron transport chain (MRC), eventually leading to ATP synthesis and the 
generation of carbon dioxide and water (see above). Inherent in this process is the 
dissociation of partially reduced molecular oxygen in the form of superoxide, hydrogen 
peroxide and the hydroxyl radical, species collectively termed reactive oxygen species, or 
ROS. About 1%-5% of oxygen consumed during cellular respiration is not fully reduced to 
water during this process under physiologic conditions [192] and the production of these 
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ROS is further increased in dysfunctional mitochondria. Thus, mitochondria have been 
proposed to play a central role in the pathogenesis of NASH [126]. 

Mitochondria also increase their oxidation capacity for the increased fatty acid flux as 
observed in obesity and insulin resistant states in humans and in animals fed high-fat diet. 
However, this increase has its limits and excess free fatty acids are metabolized at other sites 
in hepatocytes such as peroxisomes (β-oxidation) and the smooth endoplasmic reticulum (ω-
oxidation). Acyl-CoA oxidase (AOX) catalyzes the initial reaction of fatty acid oxidation in 
peroxisomes, a process that generates hydrogen peroxide and thus may contribute to oxidant 
stress. 

 
P450 as a Source of Oxidant Stress 

Fatty acids not oxidized by mitochondria are mainly oxidized by CYP2E1, a process that 
further increases ROS production within the hepatocytes [146,193,194]. Other CYP isoforms 
that may generate oxidant stress include CYP4A family such as CYP4A10 and CYP4A14, 
which is less active than CYP2E1 and mainly active in the setting of low concentration or 
deficiency of CYP2E1 [141]. The major function of this enzyme system is to metabolize 
endogenous lipophilic substrates such as steroid hormones, lipophilic xenobiotics, drugs and 
other environmental toxins. Moreover, CYPs could metabolize and activate carcinogens. 
Increased endogenous substrate burden such as increased levels of free fatty acids (e.g., due 
to increased peripheral lipolysis in obesity) and ketone bodies (increased in diabetes) induce 
CYP2E1 expression in humans [139,142,143,195,196].  

In normal conditions, CYP2E1 oxidation produces oxygen radicals, but the balance 
between these ROS and the abundance of endogenous antioxidants determines the extent of 
resulting oxidant stress. Initial studies demonstrated increased CYP2E1 expression in diabetic 
or obese rats fed a high-fat diet [132,133,136,144,145,197,198] as well as in rats and mice 
fed a MCD diet [138,141]. Later evidence demonstrated increased hepatic CYP2E1 
expression by immunostaining of paraffin-embedded liver biopsy sections in patients with 
NASH [139]. In contrast, hepatic content of CYP3A was decreased in all liver sections from 
patients with NASH. The same study additionally showed that zone 3 steatosis, which is the 
typical acinar localization in NAFLD, was closely associated with increased CYP2E1 
expression and in some cases extending into zones 2 and 1. CYP2E1 activity was also found 
to be significantly higher in nondiabetic patients with NASH than healthy controls matched 
for sex, BMI, and age [142]. The authors assessed the hepatic CYP2E1 activity with oral 
clearance of chlorzoxazone, a potent skeletal muscle relaxant and in vivo CYP2E1 probe, in 
this study. Only nocturnal hypoxemia and β-OH butyrate were the independent predictors of 
increased hepatic CYP2E1 activity. In the same study, a significant increase in the 
lymphocyte CYP2E1 mRNA expression was demonstrated in the NASH cohort while there 
was no significant correlation between increased lymphocyte CYP2E1 mRNA expression and 
hepatic CYP2E1 activity [196]. Increased fasting insulin and insulin resistance were shown in 
a nondiabetic NASH cohort while fasting glucose levels did not significantly differ from the 
healthy controls (see below; insulin up-regulated the expression and the activity of hepatic 
CYP2E1 in primary cultured rat hepatocytes). Another study reported a positive correlation 
between the severity of hepatic steatosis and hepatic CYP2E1 activity by the oral clearance 
of chlorzoxazone in morbidly obese patients with NASH [143]. These studies also showed 
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that weight loss decreased hepatic CYP2E1 activity. In addition to the activation of CYP2E1, 
there are two other cytochrome P450s, namely CYP4A10 and 4A14, that have been 
suggested to play a role in animal studies (see above) [141]. CYP4A family is induced by 
PPARα that PPARα-deficient mice prevented the development of NASH. 

Several investigators previously reported that increased mitochondrial and peroxisomal 
β-oxidation of fatty acids provided a large amount of ketone bodies to hepatic cytochromes. 
This induces cytochrome P450 gene expression and increases their protein level in the liver. 
However, this issue remains controversial with some recent observations. Woodcroft and 
colleagues used primary cultured rat hepatocytes in the absence of insulin to evaluate the 
effect of increased ketone bodies on the regulation of CYP2E1 expression, and showed no 
effect or even decreased CYP2E1 mRNA levels [199]. Moreover, these studies demonstrated 
that insulin decreased CYP2E1 mRNA and its protein levels by both suppressing CYP2E1 
gene transcription and enhancing CYP2E1 mRNA degradation in an increased insulin 
concentration-dependent manner [199-201]. Similarly, De Waziers and colleagues previously 
had reported increased degradation of CYP2E1 mRNA by insulin in Fao rat hepatoma cells 
[202]. Additionally, Favreau and colleagues had demonstrated that administration of insulin 
reversed the increased expression of CYP2E1 in rats [132]. Wang and colleagues showed 
insulin supplementation in type 1 diabetics achieved close to normal CYP2E1 activities 
(similar to healthy controls) [196]. Furthermore, Woodcroft and colleagues reported that 
increased concentration of glucose in the medium might elevate CYP2E1 mRNA levels 
[199]. In parallel, Leclercq and colleagues previously had reported that dietary sugar 
restriction decreased CYP2E1 activity in human [203]. Lastly, Wang and colleagues showed 
an inverse relationship between chlorzoxazone area under the curve and fasting glucose 
levels [196]. These novel studies pointed out that insulin rather than ketone bodies, with or 
without glucose contribution, regulates the expression and activity of hepatic CYP2E1. With 
respect to the pathogenesis of NAFLD, insulin resistance and hyperglycemia are major 
metabolic hallmarks of NAFLD. These metabolic abnormalities increase hepatic CYP2E1 
activity and subsequent prooxidant production in patients with NAFLD.  

Moreover, Nieto and colleagues reported that CYP2E1-mediated oxidative stress induced 
collagen type 1 expression in rat HSC [204]. However, CYP2E1 expression was not 
demonstrated in human HSC [205]. It is also well-defined that CYPs both metabolize and 
activate carcinogens. It might be possible that increased production of activated carcinogens 
by CYPs might contribute to the development of liver cancer in patients with NASH. 

 
Iron, Oxidant Stress and NASH 

Iron can play a central role in promoting oxidant stress and this is proposed to be the 
mechanism of progressive liver disease in hemochromatosis. However, there is no convincing 
evidence for the role of iron in the pathogenesis of NASH [206-209]. Plasma and hepatic iron 
measurements, plasma ferritin levels, and genetic mutations of hemochromatosis gene (HFE) 
are the main parameters which have been used to investigate the contribution of iron in the 
pathogenesis of NASH. Recently, a large-population based study reported a correlation 
between elevated serum alanine aminotransferase levels and increased serum transferrin and 
iron concentrations [210]. Antioxidants were decreased as well. Another recent study 
evaluated 42 patients with carbohydrate-intolerance who had serum iron saturation lower 
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than 50% and no C282Y and H63D HFE mutations [211]. After initial measurements, 
investigators induced iron depletion to a level of near-iron deficiency by phlebotomies. 
Interestingly, they observed improvements in both insulin sensitivity and serum alanine 
aminotransferase activity in some of the patients, indicating that iron may play a role not only 
in oxidant stress but also in the initial predisposing factor of insulin resistance. A recent 
prospective cohort study evaluated 263 patients with NASH for both hepatic and peripheral 
iron burden and HFE mutations (C282Y and H63D) and the investigators found that iron 
burden and HFE mutations did not significantly correlate with the hepatic fibrosis of NASH 
[26]. 

 
 

Mitochondrial Dysfunction and ATP Depletion 
 
Mitochondria are the organelles primarily responsible for fatty acid β-oxidation and 

oxidative phosphorylation, the process responsible for the production of ATP. Mitochondria 
are also a source of a limited amount of ROS production under physiologic conditions (see 
above) [126,128]. Several observations including decreased mitochondrial enzyme activities 
and increased fat concentration of skeletal muscle cells in obese or diabetic patients have 
suggested mitochondrial dysfunction in these disorders. Such abnormalities may increase 
ROS production and promote both oxidative stress and lipid peroxidation within the 
hepatocyte. Mitochondrial dysfunction is frequently due to a combination of genetic 
abnormalities, physical inactivity, aging, lipotoxicity (free fatty acids), lipid peroxidation 
(mitochondrial DNA alterations), and TNF-α [118,126].  

The hepatocyte is a cell rich in mitochondria and some studies have suggested that each 
hepatocyte contains approximately 800 mitochondria, although other investigators have 
suggested that mitochondria form an interconnected network and are thus difficult to 
enumerate [127,128,162]. Mitochondria contain their own genomic DNA located in the 
matrix and this DNA encodes a limited number of components of the MRC. The majority of 
mitochondrial proteins are encoded by nuclear DNA. Hepatic mitochondrial abnormalities 
have been identified in NAFLD, suggesting that mitochondria may be the source or target of 
injury and that ineffective mitochondrial function resulting in cellular ATP depletion may be 
important pathophysiological processes in NAFLD and NASH [212] 

The presence of megamitochondria, or mitochondrial swelling, is a microscopically 
detectable structural abnormality of hepatocyte mitochondria found in a variety of liver 
diseases including NAFLD [21,213,214]. Crystalline inclusions within the mitochondrial 
matrix have been documented in patients with NASH by electron microscopy. The 
composition and function of these crystals remain to be established. The presence of 
megamitochondria might be related to MRC enzyme complex deficiencies or oxidative 
phosphorylation abnormalities of mitochondria. In one study, the presence of lipid 
peroxidation, demonstrated by 3-nitrotyrosine staining in liver specimens, was noted to a 
minor degree in normal livers and was marked in both fatty liver and NASH with 
significantly higher amount in NASH than in fatty liver [21]. The same study also showed 
that the abundance of megamitochondria with crystalline inclusions was increased in patients 
with NASH (nine of ten patients) compared to patients with steatosis alone (none of eight 
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patients), hepatitis C (one of ten patients), and controls (none of six potential donors). 
Marked differences in mitochondrial inclusions within the same liver and cell to cell 
variability for this feature in patients with NASH were also noted [21,213,215]. Despite the 
correlation of mitochondrial abnormalities with NASH, another study of NASH patients 
reported that there was no correlation between the abundance of megamitochondria and the 
stage of NASH (stages 1 and 2 vs stages 3 and 4), zones of NASH (zone 1 vs zone 3), 
severity of lipid peroxidation (low vs high), and ballooning hepatocytes (0-1 vs 2-3) [214]. 
These studies have also found that two patients with NASH-associated cirrhosis lose their 
mitochondrial inclusions as well as other histologic features of NASH by the time their 
disease has progressed to cirrhosis [10,214,216]. Why this occurs has not been established.  

Hepatic mitochondrial DNA levels and the protein products of the mitochondrial genes 
are also decreased in patients with NASH. Earlier studies reported normal activity of complex 
I and complex III in platelet-derived mitochondria of patients with NASH [213], although no 
defect in the MRC enzyme expression in the muscles of one NASH patient was reported [21]. 
However, later evidence showed that NASH was associated with decreased cytochrome c 
oxidase activity in the mitochondria. Finally, decreased hepatic activity of all MRC enzyme 
complexes by 30% to 50% of control activity (from complex 1 to complex 5) was reported in 
patients with NASH [217]. Impaired hepatic MRC function increases ROS production and if 
ROS production exceeds antioxidant capabilities, oxidative stress and injury, lipid 
peroxidation of macromolecules and cellular membranes, mitochondrial DNA damage, direct 
damage of several mitochondrial enzymes, and further MRC dysfunction with more 
prooxidant production are observed. A very recent study pointed out the relationship between 
long chain fatty acid oxidation abnormalities due to a mitochondrial trifunctional protein 
(MTP) defect and the development of both insulin resistance and hepatic steatosis in mice 
[218]. In addition to a MTP defect, aging was an important factor in the development of these 
disturbances. Mixed macro- and microvesicular steatosis due to β-oxidation defects in the 
mitochondria was the predominant type of steatosis in this study and CYP 2E1 expression 
was upregulated and levels of the antioxidant glutathione were decreased.  

TNF-α, a cytokine implicated in NASH, diminishes hepatocyte mitochondrial 
permeability, blocks MRC electron flow, and eventually causes increased ROS production 
[126,167,217, 219]. A study recently demonstrated a significant correlation between 
increased circulating TNF-α levels and mitochondrial dysfunction in patients with NASH 
[217]. 

Mitochondrial uncoupling protein 2 (UCP2) is a mitochondrial inner membrane protein. 
It might regulate proton leak across the mitochondrial inner membrane, promote ATP 
depletion, and inversely regulate ROS production. Depletion of the energy (ATP) stores 
increases the susceptibility of hepatocytes to various injury [164] while decreased ROS 
production limits the hepatocyte injury. Thus, whether UCP2 is harmful or protective in the 
liver remains unestablished. Several studies demonstrated up-regulation of hepatic UCP2 
expression in obese animals provided by genetically (ob/ob) or a high-fat diet [164,220-222]. 
UCP 2 might be responsible for hepatocellular injury in NAFLD, but a recent animal study, 
performed with UCP2 deficient mice, failed to show any protective or harmful effects of 
UCP2 in obesity induced fatty livers [223]. 
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Carnitine and two CPTs (CPT-I and CPT-II) are required to transfer long-chain free fatty 
acids into the mitochondria for β-oxidation. Some investigators reported the role of carnitine 
deficiency in NAFLD development [224,225] while others observed normal hepatic content 
of total and free carnitine in patients with NASH [217]. CPT activities were also observed to 
be normal in patients with NASH [217].  

 
 

Free Fatty Acid Toxicity 
 
In addition to insulin resistance and hyperinsulinemia, obesity and type 2 diabetes 

mellitus are strongly associated with increased concentration of free fatty acids in the 
circulation [64,226,227]. Similar observations have been made in patients with NAFLD [1]. 
Fatty acids are involved in many important cellular events such as synthesis of cellular 
membranes, energy storage, and intracellular signaling pathways. However, chronically 
elevated free fatty acids have the capability to disturb diverse metabolic pathways and induce 
insulin resistance in many organ systems (see above, cellular mechanisms of insulin 
resistance) [107,228-233]. Fatty acids also interact with glucose metabolism. In addition to 
their metabolic effects, fatty acids could induce cellular apoptosis, also called as lipotoxicity, 
in two ways: direct toxicity and an indirect effect. One proposed mechanism of fatty acid 
toxicity in hepatocytes is that fatty acids induce translocation of Bax (which is a 
mitochondrial protein and a member of Bcl-2 family) to lysosomes and cause lysosomal 
destabilization which promotes the release of cathepsin B (ctsb, a specific lysosomal 
enzyme), from lysosomes to cytosol. Subsequently, a cathepsin B dependent process induces 
NF-κB activation and TNF-α overexpression in the liver [219]. TNF-α might further increase 
lysosomal destabilization and cathepsin B dependent hepatocyte apoptosis [104,234,235]. 
Then, cytochrome c release from the mitochondria with mitochondrial dysfunction may 
occur. Mitochondrial dysfunction causes energy depletion which activates proteolytic 
caspases and induces DNA fragmentation and chromatin condensation. Moreover, activated 
caspases cleave the Bcl-2 family proteins and cause further mitochondrial damage while 
activating DNases that produce DNA breaks [236-238]. NF-κB is a transcriptional factor and 
has both apoptotic and anti-apoptotic effect. In healthy hepatocytes, activation of NF-κB by 
TNF-α induces Bcl-2 synthesis which prevents the release of cytochrome c from the 
mitochondria and subsequent apoptosis [104,239]. Feldstein and colleagues demonstrated 
that genetically cathepsin B deficient or pharmacologically cathepsin B inactivated mice did 
not exhibit the development of fatty liver, liver injury, and insulin resistance in a dietary 
murine model [219]. Moreover, while cathepsin B was demonstrated in hepatocyte lysosomes 
of healthy control subjects, the majority of hepatocytes in patients with NAFLD showed 
diffuse distribution of cathepsin B in the cytosol, with a positive correlation with the stage of 
NASH.  

Most recently, Ji and colleagues demonstrated hepatocyte apoptosis induced by the 
saturated fatty acid palmitic acid in rat hepatocytes [104]. The authors suggested that a 
mitochondria-mediated apoptosis pathway (intrinsic pathway), which includes two 
mitochondrial proteins such as Bax and Bcl-2, regulates this process. The authors observed a 
mild decrease in Bcl-2 levels and a marked increase in Bax levels. Bax induces and Bcl-2 
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inhibits hepatocyte apoptosis, and they work independently [104,240-242]. The Bcl-2/Bax 
ratio regulates the release of cytochrome c from the mitochondria and subsequent apoptosis. 
A significantly decreased Bcl-2/Bax ratio promoted apoptosis in HepG2 cells in these studies 
[104]. These studies also showed dose- and time-dependent inhibition of cellular growth in 
rat hepatocytes.  

In addition to these mechanisms, there are two other possibilities: ceramide, synthesized 
de novo from fatty acids and a lipid signaling molecule, might promote apoptosis and 
elevated free fatty acids may increase oxidative stress and subsequently promote apoptosis 
[243]. 

 
 

Endogenous Toxins: Endotoxin and Gut-Derived Ethanol 
 
The link between gut flora and liver disease was firmly established after the development 

of severe and sometimes fatal fatty liver disease in patients with morbid obesity following 
jejunoileal bypass operation [244]. Some of these patients required liver transplantation and 
some of the newly transplanted livers developed NASH. It was also observed that antibiotic 
administration, particularly metronidazole, or surgical removal of the blind loop improved 
hepatic abnormalities [245-247]. Subsequent observations also include a patient with jejunal 
diverticulosis and intestinal bacterial overgrowth that appeared to cause NASH [248].  

Additional information regarding this process was obtained by animal studies. 
Investigators showed that ob/ob leptin deficient mice produce increased levels of breath 
ethanol compared to control animals and administration of nonabsorbable antibiotics 
decreased breath ethanol levels, implicating gut flora as a source of absorbed ethanol in mice 
[249], a finding not confirmed in humans. A small pilot study performed with obese female 
patients with NAFLD showed increased breath ethanol concentrations [250]. A subsequent 
study evaluated the relationship between small intestinal bacterial overgrowth and NASH by 
measuring a combined 14C-D-xylose and lactulose breath test and correlating these with 
plasma TNF-α and endotoxin concentrations [251]. Additionally, intestinal permeability was 
assessed. This study found significantly increased blood TNF-α concentrations and small 
intestinal bacterial overgrowth in patients with NASH compared to sex and age matched 
controls. Intestinal permeability and serum endotoxin levels were not different between the 
groups. However, mean BMI and the prevalence of diabetes were higher in NASH group than 
controls in this study, suggesting an interplay between insulin resistance and gut-derived 
endotoxin to cause NASH. The same may be true for gut-derived ethanol as breath ethanol 
concentrations correlated with increased BMI in NASH patients [250]. The mechanisms 
underlying these interactions have not been established, but one explanation is increased 
ethanol and LPS production by bacteria in the small bowel disrupts mucosal integrity and 
increase intestinal permeability. Absorbed bacterial products may stimulate hepatocytes and 
Kupffer cells to produce ROS and inflammatory cytokines that contribute to insulin 
resistance, hepatocyte apoptosis, necroinflammation, and fibrosis. Limited clinical studies 
have tested this interaction and have found that antibiotics, probiotics, TNF-α receptor 
antagonism, and surgical elimination of blind loops improved some features of NASH in both 
animal models and humans [249,252-254].  
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Adipocytokines  
 
Adipocytokines, adipose tissue derived hormones and cytokines originating from adipose 

tissue, are often abnormally expressed in patients with NASH and these abnormalities may 
play a role in pathogenesis of NASH [255-257]. It is now recognized that adipose tissue is 
not only a storage site for excess metabolic energy in the form of fat, it has also important 
endocrine and immunologic functions [42,258,259]. Adipose tissue releases a variety of 
adipocytokines, signaling proteins, fatty acids, and other bioactive lipids that regulate 
inflammation and metabolism in the liver and elsewhere in the body. Some of the important 
adipocytokines are TNF-α, IL-6, adiponectin, leptin, and resistin. These adipose tissue 
products regulate both glucose and lipid metabolisms and insulin sensitivity of the insulin 
target cells. Additionally, receptors for proinflammatory cytokines such as TNF-α and IL-6 
are expressed on the surface of adipocytes indicating that adipocytes, like other insulin-
sensitive cells respond to signaling by these mediators. Some adipocytokines such as TNF-α 
and IL-6 are also the products of macrophages within adipose tissue, a recent finding that 
suggests an inflammatory state with adipose tissue may regulate metabolism in adipocytes 
and, by implication, also in downstream tissues such as the liver [76,153]. Furthermore, 
preadipocytes under some conditions could exhibit phagocytic properties.  

The anatomical location of adipose tissue plays an important role in provoking insulin 
resistance. Visceral, or intraabdominal, fat is lipolytically more active than subcutaneous fat 
and adipocytes of the former are less mature than those of the latter [260-264]. Visceral 
adipose tissue is a much more significant source for adipocytokines compared to 
subcutaneous fat, secreting more TNF-α and leptin while releasing more fatty acids than 
subcutaneous adipose tissue. In contrast, subcutaneous fat produces more adiponectin than 
visceral fat. Because of its anatomical location in the mesenteric circulation, visceral adipose 
tissue releases its adipocytokines and fatty acids directly to the liver via splanchics, a factor 
that may predispose to NAFLD and NASH. Indeed, removal of subcutaneous fat by 
liposuction did not improve metabolic abnormalities in one study [265]. 

 
Leptin  

Leptin is a 16-kDa polypeptide synthesized and secreted by mature adipocytes under the 
control of ob gene [43,266,267]. Skeletal muscle cells and culture-activated HSC might also 
synthesize leptin and its expression is regulated by IL-1, TNF-α, and insulin [268,269]. 
Leptin is an endogenous anti-obesity cytokine-type hormone that inhibits food intake and 
increases energy expenditure at a central level. It has both peripheral actions via the long 
form of the leptin receptor and central actions via the sympathetic nervous system. The 
hypothalamus is one of the important sites of leptin effects [270]. Leptin binds the 
transmembrane leptin receptor Ob-R and Ob-Rb, a long-form leptin receptor, can activate the 
Janus kinase (JAK)/STAT pathway and phosphorylates STAT proteins [271-274] to induce 
the transcription of TGF-β1 and procollagen genes. Similarly, leptin causes phosphorylation 
of STAT-3 in cultured hepatic stellate cells, the cells responsible for fibrogenesis and 
cirrhosis. However, there is currently no consensus regarding the contribution of leptin to the 
liver injury and fibrosis [26,168,269,274-280]. 
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As might be expected based on the biological effects of leptin, complete leptin deficient 
ob/ob mice exhibit hyperphagia, obesity, and diabetes caused by a natural homozygous 
mutation of the ob gene [270]. Exogenous leptin administration improved these abnormalities 
and reduced adipose tissue mass in ob/ob mice [43,281-283]. In fact, the beneficial effects of 
leptin on hyperglycemia and hyperinsulinemia were found with leptin doses which did not 
induce weight loss [43]. Although leptin may improve insulin sensitivity, the mechanism of 
this action is not clearly understood. Subjects with generalized lipodystrophy have decreased 
or absent adipose tissue and low plasma levels of its product, leptin. Loss of adipose tissue 
causes ectopic adipogenesis such as in the liver and induces insulin resistance in these organs 
by disturbing downstream insulin signaling. Exogenous leptin administration [284] or 
implantation of adipose tissue from wild-type mice to mice with generalized lipodystrophy 
[285] improved metabolic abnormalities such as insulin sensitivity. Improvements in the 
surgical group were observed after the enlargement and maturation of transplanted adipose 
tissue. 

Leptin also has the ability to regulate immunologic functions such as stimulation of 
monocytes and induction of TNF-α secretion [176,286-291]. Additionally, leptin might cause 
oxidative stress, and proinflammatory and profibrogenic processes in the liver. Antisteatotic 
effects of leptin have been demonstrated in rodents [168,292] while some investigators 
reported a positive correlation between plasma leptin levels and hepatic steatosis in NASH 
patients [168]. In contrast, no correlation between serum leptin levels and steatosis, 
inflammation, ballooning cells, and Mallory bodies was reported [280]. Most recently, Javor 
and colleagues showed that exogenous leptin administration had no effect on fibrosis stage of 
NASH patients with severe lipodystrophy. However, the biopsy interval may have been too 
short to identify differences in this study as the mean duration was only 6.6 months [293]. 

Patients with absolute leptin deficiency due to a mutation of leptin gene are reported 
rarely [294]. These patients are morbidly obese and show both insulin resistance and hepatic 
steatosis. Recombinant methionyl human leptin (r-metHuLeptin) replacement therapy 
improved NASH activity scores, hepatic steatosis, aminotransferase levels, high triglycerides, 
fasting glucose levels, insulin resistance, and normalized body weight in leptin deficient, 
lipodystrophic human subjects [291,293]. This benefit might be related with the inhibition of 
neuropeptide Y and agouti-related protein synthesis and secretion in the hypothalamus. Other 
possibilities might be the activation of fatty acid oxidation enzymes, inhibition of lipogenic 
enzymes, induction of hepatic and adipose tissue PPAR-γ coactivator 1α expression, and 
activation of PPARα and AMP-activated protein kinase. Leptin might also regulate 
mitochondrial functions. It was reported that leptin reduced fat content in adipocytes and 
increased the number of mitochondria while leptin deficiency caused increased fat 
accumulation in adipocytes and functional deficiencies in the mitochondria [293].  

Mutations and truncated leptin receptors have also been reported in humans [43,295]. 
These patients are obese due to the impaired leptin action. The presence of leptin resistance is 
also caused by abnormalities of intracellular signaling pathways of leptin. Most obese 
humans have increased plasma leptin levels which are correlated with adipose tissue mass 
[296-299]. Weight loss decreased both circulating leptin and inflammation markers 
[300,301]. 
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Adiponectin 
Adiponectin is a large 30 kDa polypeptide hormone (ACRP30) secreted by adipocytes. It 

has antilipogenic and anti-inflammatory effects [30,257,302-304]. Most evidence suggests 
that adiponectin is a necessary component of normal insulin action and improves insulin 
sensitivity by enhancing intracellular insulin signaling [169,305-307], although the 
adiponectin knockout mice may have normal insulin signaling and glucose tolerance [308]. 
An interesting relationship has emerged between TNF-α and adiponectin in which each 
down-regulates the expression and activity of the other [309-311].  

At the cellular level, adiponectin induces β-oxidation of fatty acids and decreases muscle 
steatosis. Adiponectin decreases fatty acid content of the liver and increases hepatic insulin 
sensitivity by decreasing both plasma free fatty acid uptake and de novo synthesis of fatty 
acids and by increasing both mitochondrial β-oxidation of fatty acids and triglyceride export 
[302,312,313]. These effects reduce triglyceride content and glucose output of the liver. 
Adiponectin also may activate AMP-activated protein kinase and directly stimulate glucose 
uptake in both adipocytes and muscle cells. In addition to these effects, adiponectin may have 
anti-inflammatory properties such as inhibition of both phagocytic activity and TNF-α 
production of macrophages [314,315]. 

There is an inverse relationship between adiponectin mRNA expression and adipose 
tissue mass in both mice and humans. Plasma levels of adiponectin were also found to be 
inversely related to the adipose tissue mass and degree of insulin resistance in human subjects 
[316-318]. A study performed in Pima Indians showed that increased plasma adiponectin 
levels strongly correlated with a decreased risk of developing type 2 diabetes mellitus, 
independent of the presence of obesity [319]. Plasma adiponectin levels are inversely 
correlated with hyperinsulinemia and insulin resistance. This inverse relationship is less 
marked with increased adipose tissue mass. In addition to an increase in inflammatory 
response, adiponectin knockout mice also have high plasma levels of TNF-α and severe 
insulin resistance [169,305]. As might be expected, lipoatrophic mice that lack normal 
adipose tissue show decreased plasma adiponectin levels, as well as leptin deficiency and 
insulin resistance. These abnormalities could be reversed with the adiponectin administration.  

Leptin-deficient ob/ob mice have reduced adiponectin concentrations and adiponectin 
treatment improved hepatomegaly and steatosis and decreased elevated serum 
aminotransferases and inflammation of the liver by inhibiting hepatic TNF-α production and 
fatty acid synthesis, and increasing fatty acid oxidation [170]. Adiponectin administration 
prevented hepatic fibrosis in wild-type mice treated with carbon tetrachloride. Moreover, the 
same study also demonstrated aggravated liver fibrosis in adiponectin knockout mice treated 
with carbon tetrachloride. Although patients with NASH have excess visceral fat, circulating 
adiponectin concentrations were found decreased independent of insulin resistance 
[171,320,321]. An association between reduced adiponectin levels and more extensive 
hepatic necroinflammation was also demonstrated [171]. Two adiponectin receptors, defined 
as AdipoR1 and AdipoR2, are expressed mainly in skeletal muscle and liver, respectively 
[302]. AdipoR1 has a high affinity for circulating globular adiponectin (gAd) while AdipoR2 
has an intermediate affinity for both forms of adiponectin, full-length ligand and gAd. The 
levels of hepatic AdipoR2 mRNA expression in patients with NASH is uncertain because of 
conflicting data [320,321]. Thus, it remains unclear whether decreased hepatic Adipo R2 is 
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an adaptive mechanism against decreased circulating adiponectin concentrations in patients 
with NASH. 

 
TNF-α 

TNF-α is a proinflammatory cytokine primarily synthesized and secreted by adipose 
tissue in the absence of malignancy or infection [30,43,322,323]. In addition to inflammation, 
TNF-α is involved in cell proliferation, differentiation, and apoptosis. Increased TNF-α 
production has been found in obesity with insulin resistance in both animal models and 
human subjects [154,322-328] while TNF-α levels decreased after weight lost [322,323]. 
Moreover, plasma TNF-α levels were reported to be elevated in both NAFLD and NASH 
patients [251,329] and TNF-α antibody infusions improved hepatic steatosis in ob/ob mice 
[254]. TNF-α is expressed as a cell surface transmembrane protein and can act in both 
autocrine and paracrine manners. TNF-α induces lipolysis and inhibits adipogenesis via TNF-
R1, the ERK 1/2 pathway, and inhibition of PPAR-γ and lipogenesis [330-332] and it plays a 
major role in the pathogenesis of insulin resistance in both rodents and humans 
[150,322,333]. Overexpression of adipose tissue TNF-α mRNA and increased plasma TNF-α 
levels correlate with increased adipose tissue mass [322,323,334]. At the level of adipose 
tissue, TNF-α may induce insulin resistance by accelerating peripheral lipolysis with 
increased release of fatty acids, reducing adiponectin synthesis, and down-regulating the 
membrane expression of the GLUT4 glucose transporter [45,46,335]. In addition, TNF-α may 
inhibit lipoprotein lipase activity, reduce the expression of free fatty acid transporters, and 
decrease the expression of lipogenic enzymes in adipose tissue [323]. TNF-α might induce 
apoptosis of both preadipocytes and adipocytes. 

It was also shown that treatment with insulin sensitizing agents decreased TNF-α 
concentrations and improved NASH features in both animal models and humans 
[215,329,336-339]. 

 
IL-6 

IL-6 is a circulating proinflammatory cytokine that plays a role in insulin resistance 
[43,304,340-342]. It is primarily secreted by visceral adipocytes and binds to transmembrane 
receptors to initiate a signal transduction cascade leading to impaired insulin signal 
transduction via induction of SOCS-3 [343]. Clinical studies have established that plasma IL-
6 levels are positively correlated with increased adipose tissue and insulin resistance 
[333,344,345]. Moreover, plasma and adipose tissue levels of IL-6 are decreased by weight 
loss [334]. Administration of IL-6 to healthy volunteers induces dose-dependent increases in 
blood glucose. IL-6 may also increase plasma free fatty acid levels due to its effects on 
increasing insulin resistance and decreasing adiponectin secretion. 

 
Resistin  

Resistin is an adipocytokine first identified in mice that is produced and released by 
mature adipocytes. In contrast, immune cells rather than adipocytes might be the major 
producer of resistin in humans [43,346,347]. Its expression is induced during adipocyte 
differentiation. Its role in insulin resistance is not clear in humans whereas it causes insulin 
resistance in mice. High resistin levels in the plasma were observed in both genetic (ob/ob 
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and db/db) and diet-induced animal models of obesity [348]. Administration of resistin 
diminished glucose tolerance and insulin action in normal mice and, after the blocking of 
resistin effects, plasma glucose and insulin levels were decreased in insulin resistant ob/ob 
mice [349]. Whether these finding will be confirmed in humans is not certain. 

 
Regulation of Hepatic Immunity and Increased Sensitivity to Hepatocellular 
Injury  

As regulation of inflammation has become increasing recognized as a central modulator 
insulin sensitivity, attention has focused on components of innate and cellular immunity 
[175,350-352]. NKT cells are an important source of proinflammatory cytokines and specific 
depletion of hepatic NKT cells with consequent proinflammatory cytokine polarization of 
liver cytokine production exacerbated endotoxin-induced hepatic injury in the leptin deficient 
ob/ob mice [350]. IL-15 administration significantly increased the number of total and liver 
specific NKT cells, despite persistent leptin deficiency [175]. Additionally, noradrenaline 
treated ob/ob mice showed near normal to normal numbers of hepatic NKT cells and 
improved the balance between hepatic Th-1 and Th-2 cytokine productions, despite persistent 
leptin deficiency. These improvements resulted in activation of fibrogenesis in the livers of 
ob/ob mice [175]. Similarly, liver selective NKT cell deficiency and cytokine polarization in 
the fatty livers of wild-type mice fed with high fat or high sucrose or both had the same effect 
[353]. In normal biology, NKT cells move to and accumulate in the liver from the thymus. 
These cells regulate hepatic Th-1 and Th-2 cytokine production (proinflammatory and anti-
inflammatory cytokines, respectively) by T cells, NKT cells, and other mononuclear cells in 
the liver. The selective depletion of hepatic NKT cells might be due to the increased NKT 
cell apoptosis; induction of fatty liver of dietary induced obese mice promotes hepatic Th-1 
cytokine polarization and increased production of both TNF-α and INF-γ, the latter also being 
increased in the serum [353]. Proposed mechanisms for specific NKT depletion in the liver 
are decreased rates of NKT recruitment to the liver, decreased hepatic development of NKT 
cells, increased loss of NKT, or emigration from the liver, and surface markers loss 
identifying cells as NKT, or any combination of these effects [354]. After endotoxin 
treatment, inflammation, necrosis, and the concentration of serum liver enzymes as liver 
inflammation markers were increased significantly [353].  

 
 

Hepatocyte Apoptosis in NAFLD 
 
Apoptosis, or programmed cell death, is a reflection of normal cell turnover [238]. In the 

liver, turnover is normally slow and apoptotic cells are relatively rare. Hepatocyte apoptosis 
was observed more frequently in NASH patients compared to subjects with steatosis alone or 
control [355]. Fas, which is a death receptor, a surface glycoprotein and a member of TNF 
receptor family, and caspase activation are two common mediators of hepatocyte apoptosis 
[238,355-357]. Increased caspase activation and strongly upregulated Fas expression were 
noted in patients with NASH [355]. Additionally, a positive relationship between the 
abundance of hepatocyte apoptosis, demonstrated by TUNEL-positive cells histologically, 
and both the grade and stage of NASH was found, suggesting that apoptosis is not entirely 
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silent with respect to inflammation, fibrogenesis, and even in the development of cirrhosis 
[238,355,357]. Oxidative stress is a contributor to hepatocyte apoptosis and ROS increase 
TNF-α and Fas ligand expression on hepatocytes [234,357,358]. Oxidative stress degrades 
IĸB which is the inhibitor of NF-κB. Activated NF-κB has the capability to induce or inhibit 
apoptotic events in the hepatocytes (see above). Indeed, NF-κB is a regulator of inflammatory 
cytokine expression, Bcl-2 family and caspase functions. Hepatic NF-κB expression is 
increased in patients with NASH [357]. Also, increased Fas expression on the surface of lipid 
laden mouse (fed a high caloric diet) hepatocytes has been shown [356]. In addition to 
increased TNF-α secretion, expression of TNF receptor 1 (TNF-R1), a death receptor, was 
upregulated in patients with NASH [355]. It was recently reported that hepatocyte injury and 
death in patients with NASH is also associated with increased TNF-R1 mediated apoptosis 
[238]  

It may be that hepatocytes in patients with NASH are more sensitized to death ligands 
(Fas and TNF-α) due to increased death receptor (Fas and TNF-R1) expression on the surface 
of these hepatocytes. This could promote apoptosis of hepatocytes via extrinsic stimuli in 
NASH (death receptor pathway or extrinsic pathway). These events eventually cause 
cytochrome c release from mitochondria, activation of caspases, mitochondrial dysfunction 
and other apoptotic events (see above). 

Fatty acids-induced hepatocyte apoptosis is discussed previously (see above; free fatty 
acid toxicity). 

 
 

HEPATIC FIBROGENESIS IN NASH 
 

Role of Stellate Cells and Cytokines in Hepatic Fibrogenesis 
 
HSC are the main collagen producing cells in the liver and are responsible for fibrosis 

[359-362]. After activation, HSC proliferate and transform into myofibroblast like cells that 
lose their retinoid droplets and express α-smooth muscle actin (αSMA). Activated HSC 
express myogenic markers such as c-myb and myocyte enhancer factor-2, exhibit 
proinflammatory and profibrogenic properties, migrate and secrete extracellular matrix 
components (ECM) such as collagen, and regulate the degradation of ECM. Activation of 
HSC is the crucial step in liver fibrogenesis in a process regulated by autocrine and paracrine 
factors.  

A study of NAFLD patients (16 patients with steatosis alone and 60 patients with NASH) 
demonstrated that activation of HSC was positive in almost all cases and markedly in two 
thirds of patients and it was correlated with the degree and location of hepatic fibrosis [359]. 
Interestingly, this study showed no relationship between the activation of HSC and the 
severity of necroinflammation and steatosis or stainable iron, but in general, both fibrosis and 
activated HSC were commonly observed in zone 3 which is also the most affected zone in 
NASH. HSC activation and upregulation of profibrogenic genes (e.g., collagen α1, and 
TIMP-1 and -2) were also observed in rats on a high-fat, MCD diet [363]. Additionally, lipid 
peroxidation associated inflammation and HSC activation with increased TGFβ1 mRNA 
expression in MCD steatohepatitis models were reported [186,363]. 
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Genetic and environmental factors may affect the development of liver fibrosis in 
NAFLD. While the genetic factors remain to be elucidated, age, severity of obesity, presence 
of diabetes, and hyperglycemia are the major non-genetic factors. Elevated plasma glucose, 
free fatty acids and adipocytokines, which are the important players of NAFLD pathogenesis, 
activate both Kupffer cells and HSC and eventually stimulate fibrogenesis. Paradis and 
colleagues investigated the relationship between metabolic factors (hyperglycemia and 
insulin resistance) and connective tissue growth factor (CTGF), a cytokine that plays a role in 
the development of liver fibrogenesis, both in vivo in both human NASH and diabetic and 
obese rats, and in vitro on HSC [364]. In these studies, hepatic CTGF mRNA was 
overexpressed in all NASH subjects while hepatic CTGF mRNA and its protein were 
upregulated in fa/fa rats (obese and diabetic) compared with their lean littermates. The same 
group also demonstrated upregulation of both CTGF mRNA and its protein in HSC after 
exposure to high concentrations of either glucose or insulin. These results correlate with 
clinical NASH studies and with the pathogenesis of NAFLD. A study demonstrated that 
insulin resistance is independently associated with the degree of fibrosis in patients with 
NASH [26] and another study of overweight patients reported that hyperglycemia is a 
negative prognostic factor in the evolution of NASH towards fibrosis [365]. These effects of 
glucose and insulin appeared to be independent of TGF-β.  

Oxidative stress may also participate in the activation of HSC and the development of 
fibrosis in NAFLD [186,363,366-368]. The intracellular NADPH oxidase pathway produces 
ROS and the disruption of NADPH oxidase protected mice from developing severe liver 
injury. Lipid peroxidation products and leptin also enhance the production of both TGF-β and 
collagen. 

The role of leptin in fibrogenesis remains to be determined despite many efforts to date 
[168,175,191,293,369]. Initial studies, performed with ob/ob, genetically leptin deficient 
mice, showed that leptin critically regulates liver fibrogenesis [274,277,370,371]. The most 
probable mechanism for leptin effects is activation of the PI3-K pathway [274]. A direct 
effect of leptin on HSC in culture has also been reported [372]. Administration of leptin 
stimulated HSC to upregulate α2 (I) collagen gene expression. Leptin interferes with the 
production of cytokines (Th-2) such as IL-10 [175] and the balance between proinflammatory 
Th-1 and profibrogenic Th-2 cytokines regulates fibrogenesis in the liver. Administration of 
leptin improved Th-2 cytokines and the fibrogenic response of liver in leptin deficient mice. 
This is an example of an indirect leptin effect on fibrogenesis. The same group also pointed 
out the relation between NKT cells, which regulate the production of liver cytokines, and 
leptin. Leptin administration increased the viability and reduced the increased apoptosis rates 
of NKT cells in leptin deficient ob/ob mice. Additionally, the same group showed that 
norepinephrine, which is a leptin inducible factor, promotes liver fibrosis (see above). A 
recently performed study of human NAFLD and leptin reported that increased leptin levels in 
NASH patients simply reflect both increased age and insulin concentrations in the plasma and 
are not related with the advanced stages of NASH [280]. 

Angiotensin II, a vasoactive cytokine, plays an important role in liver fibrogenesis 
[362,373]. Angiotensin II expression is upregulated in the chronically injured liver and 
induces both hepatic inflammation and fibrogenic actions. It was also shown that decreased 
renin-angiotensin system activation markedly improved experimentally developed liver 
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fibrosis. An angiotensin II receptor antagonist, losartan, has been used in hypertensive 
patients with NASH for 48 weeks and it decreased both plasma TGF-β1 and aminotransferase 
levels [374]. Additionally, the grade of hepatic necroinflammation, stage of fibrosis, and the 
amount of iron deposition in the liver were decreased in some subjects.  

 
 

Hepatocellular Carcinoma 
 
HCC is a late complication in the course of NAFLD that has progressed to cirrhosis 

[375-381]. Because epidemiologic data attributes the majority of cases of cryptogenic 
cirrhosis to prior NASH, the hepatocellular carcinoma found to occur in cryptogenic cirrhosis 
is now also associated with NASH as a predisposing risk [9,14,15,216,382,383]. For 
unexplained reasons, the characteristic histopathological features of NASH often disappear as 
the disease progresses to cirrhosis, resulting in an absence of diagnostic criteria in many 
patients with cryptogenic cirrhosis. The reported the incidence of NASH-associated HCC has 
been variably reported as 1.73% [9,216], 6.9% [15], 7.31% [378], 13% [382], and 27% [14] 
among the NASH patients with or without cirrhosis, with or without obesity. Diabetes 
increases the incidence of HCC by 1.3-2.4 -fold while viral hepatitis causes 13-19 fold 
increase in the risk of HCC [380]. Additionally, patients with NASH-associated HCC may be 
slightly older than patients with HCC due to other causes such as alcohol or viral hepatitis 
[14,15,380,384].  

As opposed to human NASH-associated HCC, animal models of HCC can occur in non-
cirrhotic livers [60]. It was also reported that increased TNF-α activity might be a necessary 
component for HCC development besides insulin resistance and fatty liver. Pten is a tumor 
suppresser gene which is decreased or is absent in some of the primary hepatoma patients. 
Investigators reported that hepatocytes of mice with hepatocyte specific Pten null mutation 
showed adipogenic-like transformation, and activated genes of both lipogenesis and fatty acid 
β-oxidation. The livers of these mice showed a similar histology to human NAFLD and 
NASH, and then progressed to liver cell adenoma and HCC over time [385]. However, in 
contrast to human NASH pathogenesis, insulin sensitivity of these mice was increased. 
Investigators concluded that Pten/PI3K pathways might be involved in the pathogenesis of 
the development of NASH-associated HCC [385]. An animal model study with hereditary 
fatty liver showed high incidence of spontaneous development of HCC in non-obese 
Shionogi mice after one year [386]. Male mice were affected more frequently and earlier than 
female mice in this study. These mice exhibited progression of disease from fatty liver to 
NASH, NASH-associated cirrhosis and eventually HCC. However, fld and jvs mice with 
hereditary fatty liver did not progress to HCC. Similarly, aromatase deficient mice did not 
develop HCC despite the severe fatty liver [387].  

Currently, proposed mechanisms for the transformation from NASH to NASH-associated 
HCC are severe and cumulative oxidative stress to the hepatocytes, production of damaged 
DNA, defective or inhibited DNA repair systems, chronic continued hepatocyte injury and 
inflammatory infiltration, impaired antioxidant systems, and increased cell cycle of 
hepatocytes. Animal and human studies have also indicated that a connection between age, 
gender and the disease might be possible. 
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PATHOPHYSIOLOGY OF THE  
PATHOLOGICAL FEATURES OF NASH 

 
NAFLD is a clinicopathologic diagnosis. We should bear in mind that the pathogenesis 

of NASH is accompanied with the histological changes of NASH (Table 3). As mentioned 
earlier, genetic tendencies and environmental factors cause obesity and insulin resistance. In 
this background, different mechanisms such as insulin resistance and hyperinsulinemia, 
increased free fatty acids in the circulation and their toxicity, disturbed production of 
adipocytokines, increased oxidative stress, iron overload, and mitochondrial dysfunctions 
induce the development of NAFLD and NASH. Hepatic steatosis is the most frequent and 
initially observed morphological feature of these processes. Steatosis, inflammation, 
glycogen nuclei, lipogranulomas, ballooning of hepatocytes, Mallory bodies, and fibrosis are 
the major features of NAFLD.  
 

Table 3. Histopathologic abnormalities in NASH. 
 

• Steatosis 
• Mixed lobular inflammation 
• Hepatocyte ballooning with or without Mallory’s hyaline 
• Variable perisinusoidal fibrosis 

 
 

Microvesicular and Macrovesicular Steatosis 
 
Increased accumulation of triglycerides as fat droplets within the cytoplasm of 

hepatocytes is the first step in the development of steatosis. Although two different types of 
lipid vacuoles as microvesicular and macrovesicular have been identified depending on the 
size of vacuoles (< 1 micron or vacuoles smaller than the hepatocyte nucleus and > 1 micron 
in diameter, respectively), the most frequent type found in NAFLD is macrovesicular [388-
393]. Mixed type lipid vacuoles are reported as well. Macrovesicular steatosis is typically 
characterized by a single fat droplet within the cytoplasm of the hepatocyte causing the 
displacement of the nucleus. In contrast, small lipid droplets and a centrally located nucleus 
characterize microvesicular steatosis. The observation of microvesicular fat alone is often 
indicative of causes other than typical NAFLD, particularly rapidly progressive diseases such 
as acute fatty liver of pregnancy and Reye’s syndrome [394]. 

There may be differences in the causative factors or the development mechanisms 
between these two types of steatosis. Compared to macrovesicular steatosis, microvesicular 
steatosis is frequently reported as a consequence of severe mitochondial injury or dysfunction 
[392,395,396]. This kind of pathology may be genetic such as MTP deficiency, or acquired 
due to toxins or drugs such as valproic acid and high doses of tetracycline. One possibility is 
that mitochondrial injury and dysfunction are not so severe in patients with NAFLD as to 
stimulate the development of microvesicular steatosis. However, as we mentioned earlier, the 
presence of mixed macro- and micro- steatosis in some NAFLD biopsies is not unusual. An 
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explanation for this observation might be that mitochondrial injury and dysfunction is 
substantial enough to stimulate microvesicular development in addition to macrovesicular 
development, but not so severe as to stimulate a microvesicular development alone. Another 
possibility is that microvesicular development might develop in a shorter time than that 
required for macrovesicular development. This idea is supported by the association of acute 
toxin exposure in the development of microvesicular steatosis. However, we have no 
information whether such small lipid vacuoles reflect newly synthesized fat droplets, or if the 
aggregation of micro lipid vacuoles produces macro sized lipid vacuoles over time. 

 
 

Inflammation 
 
Proinflammatory cytokines, oxidative stress and lipid peroxidation products appear to 

promote inflammatory infiltration in NASH [21,184, 187,191,397,398]. However, it remains 
unestablished whether inflammation is primary due to increased proinflammatory cytokines 
or secondary to the oxidative stress or both. Mixed lobular inflammation, which includes 
small numbers of polymorphonuclear leukocytes, lymphocytes, and macrophages, is a typical 
finding in NASH [392,396]. This type of inflammation is usually mild. In contrast, portal 
inflammation is usually not predominant in adult NASH patients whereas it can be seen in 
children [399]. 

 
 

Glycogen Nuclei 
 
Glycogen nuclei, or glycogenated hepatocyte nuclei, are complex carbohydrate deposits 

of the hepatocyte nuclei found in a variety of disorders including diabetes, Wilson’s disease 
and NAFLD [392,400]. They are one of the important pathological changes in diabetics or 
obese patients. The presence of glycogen nuclei is reported to be a reliable marker for 
distinguishing diabetics from non-diabetics. Although these are not specific findings or 
reliable markers for the etiology of NASH, they are commonly seen in diabetic NASH 
patients (up to 100%) [392,401].  

 
 

Lipogranulomas 
 
Lipogranulomas are common, seen in up to 82% of patients, but are not specific 

histologic findings of NASH patients [392,396]. Phagocytic consumption of lipid laden 
hepatocytes is the main reason of lipogranuloma development. As a consequence, small fat 
cysts can develop which promote inflammation and eventually lipogranuloma formation. A 
well-established lipogranuloma contains a central fat vacuole, macrophages, occasional giant 
cells, and sometimes lymphocytes and eosinophils. 
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Hepatocellular Ballooning 
 
Ballooned hepatocytes and Mallory bodies are two pathological features described as 

indicators of ongoing necroinflammation, and are used for grading necroinflammation and as 
predictors of further stages [402]. At the present time, we have no information whether they 
are adaptive (physiological), or degenerative (pathological) features of hepatocytes. Only one 
study carried out in patients with NAFLD has investigated the nature of ballooning 
hepatocytes to date [162]. This study reported the similarity between the lipid laden 
hepatocytes and adipose tissue cells. Additionally, few ballooned hepatocytes which had the 
evidence of hepatocyte degeneration, apoptosis, and necrosis were reported.  

 
 

Mallory Bodies and Stress Proteins 
 
Stress proteins such as protein p62, HSP 27, and HSP 70 bind other abnormal proteins 

and form intermediate misfolded proteins [403-405]. Under normal conditions, the ubiquitin-
proteasome pathway eliminates these harmful products. When this protective system fails, 
abnormal cytokeratins accumulate along with p62, HSP 27, HSP 70, ubiquitinated proteins 
and ropy structures recognized as Mallory bodies develop within ballooned hepatocytes. 
There are two possible ways for this pathway to fail: production rate of these misfolded 
proteins that exceeds the capacity of protective systems or inhibition of the protective 
pathways. The mechanisms of Mallory body formation in humans have not been fully 
understood yet. Misfolded proteins such as HSPs and other abnormal proteins are the 
response of hepatocytes to stressors and appear to be degenerative rather than adaptive.  

 
 

Genetic Susceptibility to NASH and the Basis of NASH-Pathophysiology 
 
In addition to environmental factors, some evidence discussed previously pointed out 

genetic susceptibility to both development and progression of NASH. For example, although 
the majority of patients with insulin resistance or metabolic syndrome develop steatosis alone 
(NAFLD), only a minor group of these subjects progress to advanced stages of NASH. The 
progression rate of fibrosis is also reported to be variable among NASH patients [17,406-
408]. Moreover, both obesity and type 2 diabetes mellitus which have well-established risks 
of inheritance [409] and are closely associated with NASH. NASH-associated cirrhosis and 
HCC were also more prevalent among the patients with type 2 diabetes mellitus with or 
without obesity [10,11,15,390]. Additionally, familial forms of NASH related with 
lipodystrophy have been reported [410]. Lastly, clustering of both cryptogenic cirrhosis and 
NASH were reported in kindreds of patients with NASH, besides the familial aggregation of 
insulin resistance in patients with NASH [411]. 

 
NASH Prevalence in Different Racial and Ethnic Groups 

A few recently performed epidemiologic studies provided important evidence regarding 
genetic risks for NASH [8,412-415]. Although two well-known major risk factors of NASH, 
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obesity and type 2 diabetes mellitus, are more prevalent among African Americans than in 
Caucasians and Hispanics, epidemiologic studies pointed out significant ethnic and racial 
variations in the prevalence of hepatic steatosis, NASH, and NASH-associated cirrhosis 
among these different racial and ethnic groups. Caldwell and colleagues evaluated patients 
with NASH (159 patients) or cyptogenic cirrhosis (206 patients) and demonstrated only one 
NASH case and only two cryptogenic cirrhosis cases among African Americans [412]. In 
contrast, the same study showed overrepresentation of both hepatitis C and hepatic 
sarcoidosis among African Americans. Browning and colleagues evaluated patients with 
cryptogenic cirrhosis and reported that cryptogenic cirrhosis-associated with obesity and 
diabetes is more prevalent among Hispanics and Caucasians, but rare among African 
Americans [413]. Browning and colleagues also evaluated the impact of ethnicity on the 
prevalence of hepatic steatosis in a separate study performed with a large, multi-ethnic, 
population-based sample [8]. Similar to the previously performed two studies [412,413], the 
authors reported the prevalence of hepatic steatosis to be significantly lower in African 
Americans than in both Hispanics and Caucasians. Weston and colleagues recently performed 
a cross-sectional study with newly diagnosed patients with chronic liver disease [414]. The 
authors reported overrepresentation of Hispanics with NAFLD. It appears that particularly 
Hispanics with NAFLD may progress to both NASH and cirrhosis more frequently than 
either blacks or whites. Lastly, Solga and colleagues prospectively evaluated 237 morbidly 
obese patients undergone bariatric surgery and compared hepatic histopathology features of 
African Americans with the hepatic histopathology of Caucasians [415]. The authors reported 
that NAFLD is more common and highly severe among Caucasians. In contrast, African 
Americans are less likely to have severe NAFLD histopathology. Moreover, Solga and 
colleagues proposed an African American race-related protection from obesity related liver 
disease. However, this race-related protection does not cover other chronic liver diseases, 
such as hepatitis C and hepatic sarcoidosis. Xanthakos and colleagues recently evaluated the 
prevalence of hepatic steatosis in a population-based cohort of young adult females (aged 24 
to 27 years) by magnetic resonance imaging [416]. Of the 281 patients, 56% were African 
Americans and 44% were white. Although African Americans were significantly more obese 
and had higher mean leptin and insulin levels and waist circumferences than whites, the 
prevalence of hepatic steatosis was lower in African Americans than whites. The same study 
also showed that significant hepatic steatosis was not very prevalent in young adult females 
despite 42% obesity, 34% central obesity, and 41% elevated fasting insulin in this cohort. 
These results might reflect differences in the genetic susceptibility of different racial and 
ethnic groups to both development and progression of NASH.  

 
NAFLD and Genes Associated with Lipid and Glucose Metabolism, Oxidant 
and Anti-Oxidant Systems, and Proinflammatory Cytokines  

Insulin resistance, increased oxidant mediators, decreased antioxidants, and increased 
production of proinflammatory cytokines are the hallmarks of the pathogenesis of NASH. 
Thus, investigators evaluated the genes involved in lipid and glucose metabolism, oxidant 
and antioxidant systems, and the regulation of proinflammatory cytokines [167,207,417-420].  

Sreekumar and colleagues investigated hepatic gene expression in patients with NASH-
associated cirrhosis, with a particular emphasis on genetic evidence of both insulin resistance 
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and mitochondrial dysfunction, and compared these results with those of healthy subjects and 
patients with cirrhosis due to hepatitis C or primary biliary cirrhosis [419]. The authors 
reported sixteen genes which were uniquely and differentially expressed in cirrhotic-NASH 
patients. Some of the under-expressed genes are important for free fatty acid metabolism 
(long chain acyl-CoA synthetase and mitochondrial 3-oxoacyl-Co A thiolase) or important 
for glucose metabolism (glucose-6-phosphatase and alcohol dehydrogenase). Other under-
expressed genes are important for maintaining the mitochondrial functions such as copper-
zinc superoxide dismutase, aldehyde oxidase and catalase (important for DNA repair and 
metabolism). Some of the overexpressed genes are involved in the diminished insulin 
sensitivity. Additionally, upregulated expression of insulin-like growth factor binding 
protein-1 and down-regulated expression of apoB 100 were reported while expression of 
superoxide dismutase-1 (SOD-1) which is involved in scavenging of ROS was found to be 
decreased in NASH patients. These observations also suggest that impaired repair and 
metabolism of DNA with increased oxidative mediators and decreased antioxidants might be 
the cause of mitochondrial DNA mutation and deletion in patients with NASH. Decreased 
synthesis of apoB 100 in NASH patients, reported previously by the same study group, 
correlated with the down-regulated expression of hepatic apoB 100. The authors also 
reported over-expression of some inflammation markers such as hepatocyte-derived 
fibrinogen-related protein 1, complement component C3, and α-1 antitrypsin in cirrhotic-
NASH patients. This evidence further suggests the possibility of a genetic predisposition to 
NASH. 

In another study, Younossi and colleagues studied 91 morbidly obese patients with 
NAFLD undergone bariatric surgery (27 patients had biopsy-proven NASH) and compared 
these patients with obese controls [420]. The authors demonstrated differential expression of 
several hepatic genes and proteins. Most importantly, the authors observed overall down-
regulation of phase 2 detoxification enzymes which are important components of the cellular 
defense system against oxidative stress, such as glutathione S-transferase and cytosolic 
sulfotransferase isoform 1A2 among three groups (steatosis alone, steatosis and non-specific 
inflammation, and NASH) and in patients with more advanced stages of NASH, respectively. 
Increased expression of genes associated with the activation of HSC and fibrogenesis was 
also reported. These findings were correlated with the proposed mechanisms for the 
pathophysiology of NASH. Several investigators have also pointed out polymorphisms of the 
gene sequences encoding the TNF-α promoter, MTP, MTTP, SOD-2, CYP2E1, and apoB 
100 may play a role in the pathogenesis of NAFLD [124,125,167,417,418,421].  

 
 

SUMMARY 
 
NAFLD describes a spectrum of liver abnormalities from benign steatosis to NASH 

which is characterized by chronic and progressive liver pathology. Although the progression 
rate of NASH is most likely slower than the other types of liver disease, the prevalence of 
NASH and its consequences such as cirrhosis and HCC are increasing throughout the world. 
Currently, our understanding regarding NASH is that adipocytes accumulate excess energy as 
fat droplets and respond with dysregulated production of adipocytokines. Increased free fatty 
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acids, predominantly due to peripheral lipolysis and proinflammatory cytokines, interfere 
with insulin signaling mechanisms to cause both local and peripheral insulin resistance. In 
addition to increased plasma free fatty acids that are taken up by the liver, insulin resistance, 
elevated plasma insulin, and elevated glucose levels activate de novo fatty acid and 
triglyceride synthesis but inhibit mitochondrial fatty acid β-oxidation and export of 
triglycerides from the liver. Hepatocyte injury and inflammation caused by a number of 
factors that may include mitochondrial dysfunction, ATP depletion, oxidative stress and lipid 
peroxidation lead to increased cytotoxic and proinflammatory cytokines and hepatocellular 
injury. Sustained liver injury leads to hepatic fibrosis, cirrhosis and possibly liver cancer over 
time. 
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ABSTRACT 
 
Paralleling the increasing prevalence of obesity, diabetes mellitus, and the metabolic 
syndrome in the general population, nonalcoholic fatty liver disease (NAFLD) has 
become the most common cause of chronic liver disease worldwide. The diagnosis of 
NAFLD is established based on evidence of fatty infiltration of the liver in the absence of 
excessive alcohol ingestion. NAFLD is often diagnosed in asymptomatic persons after 
the detection of raised aminotransferase during routine screening or evidence of steatosis 
on ultrasonography. The spectrum of liver injury is variable ranging from simple 
steatosis with benign prognosis, to nonalcoholic steatohepatitis (NASH) and cirrhosis, 
conferring an increase in liver-related morbidity and mortality. More advanced stages of 
NAFLD are associated with older age, higher body mass index, diabetes, hypertension, 
high triglycerides, and/or insulin resistance. No imaging modality can distinguish NASH 
from simple steatosis. Liver biopsy remains the only reliable means to determine 
prognosis based on the severity of fibrosis. The system for histological evaluation for 
NAFLD/NASH has been proposed by several groups based on a constellation of 
histologic features rather than any individual feature. The different semiquantitative 
scoring system for NAFLD/NASH has been used in clinical trials and natural history 
studies of NAFLD.  
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INTRODUCTION 
 
Nonalcoholic fatty liver disease (NAFLD) describes a clinicopathologic condition that is 

characterized by significant lipid deposition in the hepatocytes of the liver parenchyma in 
patients with no history of excessive alcohol consumption. NAFLD incorporates a wide 
spectrum of liver damage ranging from simple steatosis to steatosis plus inflammation and 
features of hepatocellular damage (nonalcoholic steatohepatitis or NASH) to advanced 
fibrosis and cirrhosis [1]. Prevalence estimates of NAFLD have used a variety of laboratory 
and imaging assessments and suggest that NAFLD may be the most common form of chronic 
liver disease in adults in the United States, Australia, Asia, and Europe, paralleling the 
epidemic of obesity in developed countries [2-6].  
 

Table1. Causes of Fatty Liver Disease. 
 

Cause Associations Steatosis type 
Primary 
 Acquired insulin 
resistance 

 
Features of the metabolic syndrome: obesity, 
diabetes mellitus, hyperlipidemia 

 
Macrovesicular 

Secondary 
 Nutritional 

Protein-calorie malnutrition, rapid weight loss, 
starvation, total parenteral nutrition, bariatric 
surgery 

Macrovesicular 

 Drugs Glucocoticoids, metrotrexate, isoniazid, 
allopurinol, synthetic estrogen, α-methyldopa  
Tamoxifen, valproic acid, tetracycline, aspirin, 
cocaine, zidovudine, didanosine, fialuridine, 
hypervitaminosis A 
Amiodarone, perihexilene 

Macrovesicular 
 
Microvesicular 
 
 
Phospholipidosis 

 Toxins Amanita phalloides, Lepiota,  
Bacillus cereus toxin, petrochemicals, phosphorus 

Macrovesicular 
Microvesicular 

 Metabolic/genetic Lipodystrophy, dysbetalipoproteinemia, Weber-
Christian disease, Wolman’s disease 
Acute fatty liver of pregnancy, Reye’s syndrome 

Macrovesicular 
 
Microvesicular 

 Others Inflammatory bowel disease, human 
immunodeficiency virus infection, small-bowel 
diverticulosis with bacterial overgrowth 

Macrovesicular 

 
Original histopathologic descriptions of NAFLD date back to 1958 when the disease was 

characterized by Westwater and Fainer [7] in a group of obese patients. Further insights into 
this disease were made by Peters et al [8] in 1975 and subsequently by Adler and Schaffner 
[9] in 1979. In 1980, Ludwig et al [9] described a series of patients who lacked a history of 
significant alcohol intake but in whom the liver histology resembled that of alcoholic liver 
disease. They first coined the term “nonalcoholic steatohepatitis” for this condition. Other 
synonyms have been used to described this entity include fatty liver hepatitis, non alcoholic 
Laënnec’s disease, diabetes hepatitis, alcoholic-like liver disease, and nonalcoholic fatty 
hepatitis. After much debate, the entity of NASH became accepted, but it is only in the last 
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10 years that NAFLD and NASH have been widely recognized and diagnosed in clinical 
practice. NAFLD is increasingly recognized as the hepatic manifestation of insulin resistance 
and the systemic complex known as metabolic syndrome [11-14]. NAFLD must be 
differentiated from the steatosis with or without hepatitis resulting from secondary causes 
such as nutritional conditions, drugs, hepatotoxins, gastrointestinal surgery and some 
metabolic/genetic conditions as shown in table 1. However, clinicians should consider 
NAFLD/NASH as a primary diagnosis based on its metabolic associations with obesity, 
insulin resistance and type II diabetes rather than simply as a disease of exclusion. In several 
epidemiologic studies, “presumed NAFLD” has been used as a presumptive diagnosis by 
using the results of abnormal liver enzyme levels, and radiographic studies consistent with 
fatty infiltration in the absence of other common causes of liver injury. In this chapter we 
focus on primary NAFLD and discuss the current knowledge of clinical and pathological 
aspects of NAFLD and NASH. 

 
 

CLINICAL ASPECT OF NAFLD 
 

Epidemiology  
 
In many developed countries, the prevalence of obesity, diabetes mellitus and the 

metabolic syndrome has reached epidemic proportions. For instances, in the United States the 
prevalence of obesity increased from 12% in 1991 to 30.6% in 2002, whereas the prevalence 
of diabetes mellitus increased from 5% in 1991 to 7.9% in 2001 [15-16]. Similarly, using 
data from the third National Health and Nutrition Examination Survey (NHANES III), it is 
estimated that 23.7% of the adult population in the United States suffers from the metabolic 
syndrome [17]. The dreadful increasing prevalence of obesity and diabetes mellitus as well as 
the metabolic syndrome in the general population explains why NAFLD has become an 
increasingly common condition affecting a substantial proportion of the general population. 
However, the true incidence and prevalence of NAFLD in the general population are 
unknown at this time. 

 
 

Incidence 
 
Recently, a historical cohort study [18] was conducted as part of routine health care for 

employees in a Japanese government office. Most of the employees work in sedentary 
positions or with only mild physical tasks related to government administration. The subjects 
were free of previous liver injury, alcohol consumption of more than 140 g/wk, hepatitis B or 
C infection. Insulin resistance-related features were sought yearly for up to 5 years. Elevated 
aminotransferases in nonalcoholics were used as a surrogate for NAFLD. The incidence of 
nonalcoholic hypertransaminasemia was 31 per 1,000 person-years. In comparison between 
different age groups, the cumulative incidence at 60 months was 14.7% (95% CI: 11.0%, 
18.8%) in the 20 to 39 age group and 8.1% (95% CI: 4.6%, 14.1%) in the 40 to 59 age group. 
To our knowledge, there is no report of the incidence of NAFLD in western countries. 
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Prevalence 
 
The estimates of the prevalence of NAFLD were obtained from studies that evaluated 

different patient populations using various methodologies. Because the diagnosis of NAFLD 
requires liver biopsy with its attendant risk, expense, and uncertain benefit to asymptomatic 
patients, it is not possible to have population-based estimates of NAFLD. Therefore, 
biochemical and radiographic surrogates have been used to determine the presence of 
NAFLD. Published studies of NAFLD can be separated into two general categories: selected 
population studies and general screening population studies as shown in table 2. Prevalence 
studies of selected patient samples generally have the advantage of histologic diagnoses of 
NAFLD but are subjected to both selection and ascertainment bias. The general population 
screening studies provide more representative prevalence rates, but have limitations due to 
their diagnostic techniques (liver biochemistries and hepatic imaging methods). 
 

Table 2. Prevalence of NAFLD and NASH. 
 

Prevalence (%) Population study 
NAFLD NASH 

Selected population studies 
 Liver biopsy [19-26]  

 
15 -84 

 
1.2-49 

 Postmortem analysis 
 Random deaths [28,29] 
 Hospitalized deaths [31] 
 -Lean 
 -Obese 

 
16-24 
24 
36 
72 

 
2.1-2.4 
 
2.7 
18.5 

 Surgical patients 
 Adult living liver donor [32] 
 Bariatric surgery [33-38] 

 
20 
56-86 

 
- 
21-39 

General population studies 
 Liver enzyme screening [4,6,40] 
 -Lean 
 -Obese 

 
3.1-23 
1 
6 

 
- 

 Ultrasound [41-47] 
 -Lean  
 -Obese  

13-22 
16 
76 

- 

 Magnetic resonance spectroscopy [48] 33.6 - 
 
 

Selected Population Studies 
 
In patients undergoing liver biopsy, the prevalence has ranged between 15% and 84% for 

NAFLD and between 1.2% and 49% for NASH [19-26]. This wide range is related to 
differences in case ascertainment. One study performed biopsies on patients found to have 
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fatty liver on ultrasound [27], while others performed biopsies only on patients with 
chronically elevated liver function tests [19,20,22,23]. 

Analyses of livers from individuals who died randomly from automobile [28] or airplane 
[29] crashed showed prevalence rates for NAFLD of 24% and 16%, respectively, while the 
prevalence of NASH was 2.4% and 2.1%. However, all these studies used selected 
populations and therefore these data do not reflect the true prevalence of either NAFLD or 
NASH in the general population [30]. 

The prevalence of fatty liver and NASH have been estimated from autopsy studies. In a 
postmortem series of 351 apparently nonalcoholic patients, steatosis was found in 36% of 
lean and 72% of obese persons and steatohepatitis in 2.7% of lean and 18.5% of obese 
individuals [31]. However, these results may have been influenced by preterminal events that 
could have led to a fatty liver. 

In healthy young adults being evaluated as donors for living-related orthotopic liver 
transplantation, fatty liver disease was found in 20%, despite normal ALT levels [32]. In 
morbidly obese patients undergoing bariatric surgery [33-38], NAFLD was present in 56-
78% of patients while NASH occurred in 21-39%. 

 
 

General Population Studies 
 
Liver function tests have been used in general population screening to diagnose 

presumed NAFLD. Liver enzymes are not considered to be sensitive or specific either for 
diagnosing NAFLD or evaluating the severity of disease. Liver enzymes may be in the 
normal range despite significant liver injury, including fibrosis and cirrhosis [39]. Serum 
alanine aminotransferase (ALT) has been most widely used to screen for NAFLD, although 
other enzymes such as aspartate aminotransferase (AST) and gamma glutamyl transferase 
(GGT) have been used in some studies. The NHANES III, a population survey conducted in 
the United States between 1988 and 1994 included over 12,000 adults from the general US 
population. The prevalence estimates of presumed NAFLD ranged from 3.1% using ALT 
alone [6], to 5.4% using ALT and AST [4], to as high as 23% using GGT as well as ALT and 
AST [40]. These studies also used different cutoff levels for both abnormal liver enzymes and 
excessive alcohol consumption. For ALT, lower cut-off levels for men (>30U/L) and women 
(>19U/L) were proposed recently [27]. Applying this cut-off to the HNANES III sample 
resulted in a prevalence of elevated ALT activity in men of 12.4% and in women of 13.9%, 
compared with prevalence of 4.8% in men and 1.7% in women using the cut-off level of the 
reference laboratory (>43U/L).  

An ultrasound screening study for fatty liver was conducted in the general Japanese 
population; the prevalence was 19% among adults [41]. This figure probably somewhat 
overestimates the prevalence of NAFLD because it included drinkers. In several subsequent 
ultrasound studies of Japanese workers, the prevalence was similar to that of the general 
population and ranged from 15% to 22% [42-44]. The Dionysos study in northern Italy 
[45,46], used ultrasound to identify fatty liver in order to determine the spectrum and 
prevalence of liver disease in the general population without evidence of liver disease, 
diabetes, hypertriglyceridemia and known medications. The result showed fatty liver in 16% 
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of lean nondrinkers and 76% of obese nondrinkers. Interestingly, elevated liver tests were 
found in 22% of otherwise normal, healthy controls. In a recent ultrasound study of Chinese 
administrative officers that excluded “regular drinkers” the prevalence of fatty liver was 13% 
[47]. The ultrasound screening studies of the prevalence of NAFLD have not been performed 
in the general US population. 

Localized proton magnetic resonance spectroscopy (1H MRS) is an alternative, 
noninvasive method to measures hepatic triglyceride content (HTGC) and diagnose hepatic 
steatosis but it has been used only in small research studies. Recently, MRS was used to 
analyze the distribution of HTGC in 2,349 participants from Dallas Heart Study (DHS) [48]. 
With using the 95th percentile of normal HTGC of 5.56% as a cutoff, the prevalence of 
hepatic steatosis in Dallas County was estimated to be 33.6%. Thus MRS provides a sensitive 
method to measure HTGC and, when applied to a large urban US population, revealed a 
strikingly high prevalence of hepatic steatosis. 

 
 

Demographics 
 
The entire histologic spectrum of NAFLD has been reported in all age groups, including 

children [49,50]. However, the prevalence increases with age, from 2.6% among children to 
26% among people 40–59 years old [41,51]. These finding are corroborated by elevated ALT 
activity screening studies among the general United States adult population (NHANES III), 
which found the highest prevalence among men in the fourth decade and women in the sixth 
decade, with the lowest prevalence in older age [52]. 

Earlier studies suggested a female predominance, range from 65% to 83% of patients 
[9,54-59], but more recent data suggest an equal to slight male predominance [60-62]. In one 
study of patients with NAFLD in the United States, men were affected in 68% of cases [52]. 
The reason for this male preponderance was explained by higher waist-hip ratio in men 
compared with women. However, females may have an increased tendency to progress to 
more advanced disease [63,64].  

The true prevalence of NAFLD among various racial and ethnic groups is also not fully 
characterized. A retrospective study looking at hepatology registries have found a lower 
incidence of NAFLD in African Americans (2% of cryptogenic cirrhosis and 0.6% of NASH) 
compared with their relative representation in the population [65]. Similarly, in another study, 
the prevalence of NAFLD was lower among African Americans (1.4%) compared with non-
Hispanic Caucasians (7%) [66]. In a small series of diabetic patients, the prevalence of 
NASH was higher in Mexican American women compared with Whites and African 
Americans [67]. Mexican Americans were also overrepresented in a small series of pediatric 
NASH patients [68]. However, such racial/ethnic differences, when found in patient series, 
may represent true variation or may reflect difference in disease recognition or referral bias. 
Then, general population survey should be done to avoid this bias. Data from the NHANES 
showed that the risk of abnormal ALT activity was highest among Mexican Americans in 
comparison to non-Hispanic, Caucasians and Blacks after adjusting for overall obesity, body 
fat distribution, and demographic and metabolic factors [52]. Recently, a cross-sectional trial 
of newly diagnosed cases of NAFLD in the Chronic Liver Disease Surveillance Study [69] 
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was studied to compare the demographic and clinical features of NAFLD in a racially diverse 
representative U.S. population. Of the 742 persons with newly diagnosed chronic liver 
disease, 21.4% had definite or probable NAFLD. The majority were nonwhite and included 
Hispanics (28%), Asians (18%), and African Americans (3%). African Americans with 
NAFLD were significantly older than other racial/ethnic groups, and in Asians, NAFLD was 
3.5 times more common in males than in females. Clinical correlates of NAFLD (obesity, 
hyperlipidemia, diabetes) were similar among racial and ethnic groups, except that BMI was 
lower in Asians compared with other groups. These racial and gender variations may reflect 
differences in genetic susceptibility to visceral adiposity, including hepatic involvement, and 
may have implications for the evaluation of persons with the metabolic syndrome. Clinicians 
need to be aware of the variable presentations of NAFLD in different racial and ethnic 
groups.  

 
 

Familial Clustering 
 
Both diabetes and obesity, the risk factors for NAFLD, show familial clustering 

suggesting that genetic factors may have an important role in the genesis of NAFLD [56,60]. 
One small study showed that out of eight families, 18 family members with NAFLD, 
including NASH with cirrhosis were discovered [70]. Another study found that 16 out of 90 
patients with NASH had a first-degree relative with the disease [71]. In addition, fatty liver 
disease has been described in rare familial disorders such as abetalipoproteinemia, and 
lipodystrophies [72,73]. It serves to illustrate that abnormalities in gene expression may play 
a role in the genesis of NAFLD. While no familial inheritance pattern emerged, this suggests 
that environmental as well as genetic factors are likely to have a role in this disease. 

 
 

RISK FACTORS 
 
The strong associations of NAFLD with obesity, various disorders that include insulin 

resistance and the metabolic syndrome are documented in a growing body of literature. A 
recent cohort study by Suzuki et al [18] clearly showed chronological ordering of 
development of risk factors of NAFLD and an association with elevation of 
aminotransferases levels (nonalcoholic hypertransaminasemia). Weight gain preceded high 
aminotransferases and other insulin resistance-related features, which appeared sequentially 
in order as low high-density lipoprotein cholesterol, hypertriglyceridemia, 
hypertransaminasemia, hypertension, and glucose intolerance. These conditions are very 
common in the United States, Australian, Asian, and European population and are rapidly 
increasing in prevalence. 
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Obesity 
 
The adipocyte is now recognized to be an endocrine tissue capable of secreting a number 

of adipokines and other substances that may induce insulin resistance [74,75], as part of the 
pathogenesis of NAFLD. Obesity, defined by a body mass index (BMI) > 30 kg/m2, is clearly 
associated with NAFLD [76]. However, NAFLD and NASH may develop in non obese 
patients. The median prevalence rate of obesity in NAFLD patients was 71%, ranging from 
57% to 93% [9,14,56-60,64,76,77]. Virtually all children with NAFLD are obese [53,78]. A 
number of studies [26,37,56] have established obesity as a risk factor for hepatic steatosis and 
liver fibrosis. Among Japanese population screening surveys, the prevalence of fatty liver on 
ultrasound was much higher in obese adults compared with non-obese persons among both 
men and women [41]. Among such severely obese individuals who underwent liver biopsy at 
the time of bariatric surgery, the prevalence of steatosis ranged from 74% to 97% 
[33,34,36,37, 79-83], the prevalence of NASH ranged from 25% to 69.5% [33,79]. Cirrhosis 
was found in as many as 8% [82,36]. In an autopsy series, three quarters of obese persons had 
steatosis, while the prevalence of NASH was 18% [31]. Based on these findings, NAFLD 
may occur in as many as three-quarters of obese people and approximately 20% may have 
NASH. 

It now appears that the distribution of body fat may be more important than the total fat 
mass. NAFLD patients, even in the presence of normal body weight, have increased visceral 
adiposity [11]. Visceral fat, rather than total fat mass, has been shown to be a predictor of 
hepatic steatosis [54,84-86] as well as hyperinsulinemia, decreased hepatic insulin extraction 
and peripheral insulin resistance [87]. Furthermore, lipolysis in visceral adipose tissue is 
more resistant to insulin [88], thereby providing a source of hepatotoxic fatty acids in 
hyperinsulinemic states. Decreasing visceral fat has also been shown to decrease hepatic 
insulin resistance [89,90].  

Recently, there is evidence that obesity has a significant long-term clinical impact on 
liver disease. In a population-based, cohort study of 11,465 United States adults followed for 
an average of 13 years, the risk of cirrhosis-related death or hospitalization was increased in 
overweight and obese persons compared with those of normal weight [91]. The relationship 
was particularly strong among persons who did not consume alcohol (four times the risk in 
obese compared with normal weight individuals), providing some indirect support for a 
causal relationship between obesity and clinically significant NAFLD. 

 
 

Type II Diabetes Mellitus  
 
After obesity, type II diabetes has been the factor most commonly associated with 

NAFLD and was reported in 10% to 55% of NAFLD patients [10,53-58,60,61]. There are 
few studies of the prevalence of NAFLD among patients with type II diabetes mellitus. In 
two radiographic studies of type II diabetes mellitus, fatty liver was seen approximately 25% 
[67,92]. The prevalence of steatohepatitis in an autopsy study was 12.2% in diabetics 
compared with 4.7% among non-diabetics [31]. The extent of steatosis was positively 
associated with the presence of diabetes [82] and correlated with the degree of impaired 
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glycemic status, independent of degree of obesity and demographics [83]. A number of 
studies have shown that hepatic fibrosis is more common in obese patients with diabetes, and 
that diabetes is an independent predictor for cirrhosis and liver related deaths [93]. 

 
 

Hyperlipidemia 
 
Although hyperlipidemia is frequently cited as a risk, it is unclear how many 

hyperlipidemic patients have NAFLD or NASH. Hypertriglyceridemia has been reported in 
20% to 81% of NAFLD patients [10,53-58,60,61]. Hypertriglyceridemia has also been 
identified as a predictor both of steatosis on ultrasound examination [48] and of more 
extensive fibrosis at biopsy in patients with NASH [25]. A high density lipoprotein [HDL] 
cholesterol level <35mg/dL also almost doubled the risk of NAFLD [40]. 

A recent study evaluated the dietary habit of NASH patients compared with age-, gender-
and BMI-match controls. The results showed that the patients with NASH ate diets higher in 
saturated fats with less polyunsaturated fatty acids, fiber and the antioxidant vitamins C and 
E. Interestingly; this study also showed that NASH patients had higher postprandial total 
triglyceride and very low density lipoprotein (VLDL) triglyceride levels when compared with 
controls. Also, the postprandial apolipoprotein B48 and B100 levels did not rise with 
elevated triglyceride levels in NASH patients, as they did in the control group, suggesting a 
possible defect in the generation of apolipoprotein in NASH patients [94]. 

 
 

Metabolic Syndrome 
 
NAFLD is mainly associated with obesity, diabetes, hyperlipemia, and insulin resistance, 

which are the main features of the recently characterized metabolic syndrome. The borders of 
the syndrome, previously known as the insulin-resistance syndrome, have long been 
unsettled. Recently, the Third Report of the National Cholesterol Education Expert Panel on 
Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment 
Panel III [ATPIII]) [95] provided a working definition of the metabolic syndrome in table 3, 
based on a combination of 5 categorical and discrete risk factors (central obesity, 
hypertension, hypertriglyceridemia, low levels of high-density lipoprotein [HDL]-cholesterol, 
and hyperglycemia), derived from the guidelines of the International Societies or the 
statements of the World Health Organization [96]. They can easily be measured in clinical 
practice, and are suitable for epidemiologic purposes.  

Data from the NHANES III showed that the prevalence of unexplained elevations of 
ALT level, which may signify the presence of NAFLD in adults with the metabolic 
syndrome, was 7% and was significantly higher than in those without the metabolic 
syndrome [97]. A study of 304 consecutive NAFLD patients without overt diabetes by 
Machesini et al showed that the prevalence of the metabolic syndrome increased with 
increasing BMI, from 18% in normal weight subjects to 67% in obese subjects [14]. The 
presence of the metabolic syndrome was significant associated with female gender and age 
after adjustment for BMI. Of the five criteria for metabolic syndrome, only hyperglycemia 
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and/or diabetes was significantly associated with NASH after correction for age, gender and 
obesity, but the simultaneous presence of three or more criteria was associated with different 
histopathological grading, including a higher prevalence and severity of fibrosis as well as of 
necroinflammatory activity without differences in the degree of fat infiltration. Logistical 
regression analysis showed that the presence of the metabolic syndrome was associated with 
high risk of NASH among NAFLD subjects. 

 
Table 3. Diagnostic criteria for the metabolic syndrome by ATP III proposal 2001. 

 
The metabolic syndrome is present if patient possess three or more of the following 
criteria: 

• High blood pressure: if patients systolic and/or diastolic blood pressures were 
≥130/85 mmHg or patients were receiving blood pressure lowering drugs 

• Hyperglycemia: fasting plasma glucose ≥6.1 mmol/L (110 mg/dL) or patients 
were receiving glucose lowering drugs 

• Hypertriglyceridemia: fasting plasma triglycerides ≥1.69 mmol/L (150 mg/dL) 
• Low HDL-cholesterol: fasting HDL-cholesterol <1.04 or 1.29 mmol (40 or 

50 mg/dL) in males and females, respectively 
• Central obesity: waist circumference >88 or 102 cm in females and males, 

respectively. However, the World Health Organization has recognized the 
disproportionate contribution of obesity to the development of cardiovascular risk 
factors in Asians and has provisionally lowered the classification of central 
obesity to ≥80 or ≥90 cm in females and males, respectively. 

 
 

Iron Overload 
 
The abnormal iron studies in NASH patients do not necessarily correlate with the 

presence of stainable iron in liver histology, and conversely siderosis can occur without HFE 
mutation. It has been postulated that insulin resistance itself may lead to iron loading, a 
phenomenon termed “insulin resistance-associated hepatic iron overload” [98]. This form of 
iron overload has been suggested recently to be up to 10 times more common than genetic 
haemochromatosis [99]. Mendler et al [98] found that patients with normal transferrin 
saturation, elevated serum ferritin and siderosis on liver biopsy almost always (94%) 
demonstrated the insulin resistance syndrome, although only 52% showed NAFLD on 
biopsy. In support of this, treatment of insulin resistance by strict dietary and antidiabetic 
control was shown to lead to a reduction in serum iron indices as well as hepatic iron stores 
in some patients [100], although this has not been confirmed [99]. 

The role of iron as a cofactor has been studied in NAFLD and NASH, but the results are 
not clear-cut. In two studies [H39,40], the presence of at least one copy of the C282Y allele 
was associated with increased hepatic iron and with more advanced hepatic fibrosis. George 
et al [62] showed that the effect was caused by increased hepatic iron concentration induced 
by the gene mutation. However, another study [101] found that although the presence of an 
HFE mutation was linked to increased fibrosis, there was no statistical association between 
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the iron concentration or histological iron score and fibrosis. Other groups have been unable 
to confirm the association of iron and fibrosis in NASH, and most of the studies addressing 
the role of iron have concluded that increased hepatic iron content shows no significant 
association with the degree of fibrosis in these patients [56,60,64,98,102,103].  

 
 

CLINICAL FEATURES 
 

Symptoms 
 
At the time of diagnosis, similarly to other types of chronic hepatitis, the majority of 

patients (48-100%) are asymptomatic [10,54,57,58,60] However, in a study by Sanyal et al 
[104], they found fatigue in 73% of patients. As with other chronic liver diseases, the degree 
of fatigue does not correlate with the severity or the histologic stage of the liver disease [60]. 
Some patients (48%) may also experience right upper quadrant pain or discomfort [104] 
secondary to fatty infiltration and stretching of Glisson’s capsule. This has been reported to 
be somewhat more common in children with NAFLD [50,105]. A small fraction of patients 
experience symptoms indicative of more serious liver disease and may develop pruritus, 
anorexia, and nausea. The development of jaundice, ascites, variceal hemorrhage, or 
symptoms of hepatic encephalopathy occurs late in advanced liver disease. 

Frequently, the disease is incidentally discovered during routine laboratory examination 
or work-up of features of the metabolic syndrome such as diabetes, hypertension or 
dyslipidemia when a hepatic panel is ordered to monitor patients treated with 
antihyperlipidemic drugs. In another subset of patients, fatty liver is detected when a liver 
imaging study is ordered for unrelated reason such as workup of suspected gallstone disease. 

 
 

Signs 
 
There is no pathonomonic sign of NAFLD. The majority of patients are overweight (BMI 

>25kg/m2) or obese, and likely to have an elevated waist: hip ratio, indicating abdominal 
adiposity. The most common finding of liver disease is hepatomegaly, which has been 
reported in up to 50% of subjects in different studies [10,60]. Clinical stigmata of chronic 
liver disease are rarely seen on initial presentation. Of the various stigmata known, the 
presence of spider nevi and palmar erythema are most common [55]. Hypertension is found 
in 15-68% of cases [10,63,106]. Occasionally, female patients may exhibit increased acne 
and hirsutism, suggesting the underlying endocrine abnormality of polycystic ovarian 
syndrome. Acanthosis nigricans, which is hyperpigmented and velvety plaques, most 
prominent along the flexor lines of the back of neck and axilla, has been reported in 36% to 
49% of pediatric patients [78,107]. It is likely to be a cutaneous marker of insulin resistance 
and frequently identified in patient with excessive weight gain [108]. 
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Laboratory Abnormalities 
 
Mildly to moderately elevated serum levels of aminotransferase are the most common 

and often the only laboratory abnormalities found in patients with NAFLD. The degree of 
enzyme elevation is usually between 1 to 4 times the upper limits of reference values. The 
ratio of AST to ALT is usually less than 1, but this ratio increases as fibrosis advances, 
leading to a loss of diagnostic accuracy in patients with cirrhotic NAFLD [56]. Serum ALT 
levels may be completely normal in patients with advanced grade of steatohepatitis or even 
cirrhosis [39]. It is also known that the degree of ALT elevation does not correlate well with 
the extent of hepatic damage [109].  

Serum alkaline phosphatase may also be variably elevated up to twice the upper limits of 
normal [10,53,60,61]. Gamma glutamyltransferase levels may be above the normal range in 
many patients, although their degree of elevation is less than that seen in alcoholic hepatitis 
[58,110]. Other abnormalities, including hypoalbuminemia, a prolonged prothrombin time 
and hyperbilirubinemia, may be found in patients with end stage liver disease. 

The true sensitivity and specificity of liver enzyme elevations for detection of NAFLD 
within the general population are unknown. However, the sensitivity and specificity of ALT 
values have been studied in morbidly obese individuals undergoing bariatric surgery. A cut-
off value of ALT level >40U/L diagnosed steatosis with sensitivity of 45% and specificity 
100% [79]. While diagnosing steatohepatitis, the sensitivity of the same ALT values 
remained the same but the specificity decreased to 64%. Using a definition based on an 
elevated ALT, alkaline phosphatase, or Gamma-glutamyltransferase only modestly increased 
the sensitivity to 55% and decreased the specificity to 75% for steatosis. For NASH, the 
sensitivity was 53% and specificity was 50%. Sensitivity in persons not morbidly obese is 
likely to remain unknown because it is unusual for patients without elevated enzyme 
activities to undergo biopsy. In one study 81 patients with presumed NAFLD and chronically 
elevated aminotransferase with other causes of chronic hepatitis excluded with diagnostic 
serology, underwent biopsy [23]. An elevated aminotransferase level had a positive 
predictive value of 90% for NAFLD. In another series of 354 patients with abnormal liver 
enzyme tests in the absence of diagnostic serology, the positive predictive value for NASH 
was 34% [22]. 

Hematologic parameters are usually normal unless cirrhosis and portal hypertension lead 
to hypersplenism.  

Ferritin has been reported elevated in 21-62% of patients [62,103,111], but does not 
usually indicate genetic haemochromatosis, and more likely reflects the hepatic inflammatory 
process rather than increased iron stored [111,112]. Further, the prevalence of C282Y and 
H63D mutations has been described as higher [101] or similar [111] to the general 
population. At the present, testing NAFLD patients for the haemochromatosis gene remains 
controversial. 

In several studies, 10-25% of NAFLD patients have been noted to have a positive 
antinuclear antibody (ANA), sometimes with a fluctuating pattern [10,113,114]. Furthermore, 
the overall prevalence of non-specific organ autoantibodies, such as ANA, smooth muscle 
antibodies (SMA) and anti-mitochondrial-antibodies (AMA) was 35.7% and high titer 
(>1:100) ANA but not SMA positivity appears to be associated with insulin resistance [115]. 
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A recent study [116] revealed that one quarter of patients with NAFLD had autoantibodies in 
serum which is significantly higher than the prevalence in the general population. ANA were 
present in 20% of patients, SMA in 3%, and both antibodies in 2%. Positive autoantibodies 
were associated with more severe liver histological damage, and higher levels of 
gammaglobulin. Furthermore, this study showed that 8.9% of presumed NAFLD patients 
with positive autoantibodies after liver biopsy have fulfilled diagnostic criteria for 
autoimmune hepatitis (AIH). This study suggested liver biopsy should be done to rule out 
AIH in most NAFLD patients with positive autoantibodies. 

A large body of evidence indicates that NAFLD may stem from a defect of insulin 
activity. The evaluation of insulin resistance should be part of the diagnostic work-up, unless 
overt diabetes is present. The euglycemic hyperinsulinemic clamp technique remains the gold 
standard for the quantitative measurement of insulin sensitivity. However, this method is 
cumbersome, requires special equipment and is not useful for widespread application. These 
limitations led to the development of alternative models for assessing insulin sensitivity. The 
Homeostatic Model Assessment formula, HOMA IR= fasting glucose (mmol/l) x insulin 
level (µU/mL)/22.5, is a simple way to evaluate insulin resistance [117]. Other methods, such 
as the quantitative insulin sensitivity check index: QUICKI= 1/ [log (Insulin0) + log 
(Glucose0)] [118], or a 120-minute oral glucose tolerance test (OGTT) with glucose and 
insulin determinations, can also be used. 

 
 

Imaging Studies 
 
The presence of fat in the liver can be diagnosed by using various imaging modalities 

such as ultrasonography, computerized tomography (CT) scan, and magnetic resonance 
imaging (MRI). However, none of these modalities can distinguish steatosis from 
steatohepatitis and are insensitive in detecting steatosis of less than 30% [119].  

Ultrasonography is a widely available and low-cost modality. The ultrasonographic 
findings of diffuse fatty change in the liver are a diffuse hyperechotexture (bright liver) 
compared with the kidneys, deep attenuation, and vascular blurring as shown in Figure 1 
[120]. These parameters allowed diagnosis of fatty liver (defined histologically by fat present 
in more than 30 % of each lobule) with a sensitivity of 82 to 94% and specificity greater than 
82% [92,121-123].  

Unenhanced CT remains the optimal technique for imaging hepatic fat; the diagnosis 
relies on attenuation differences between liver and spleen [124]. Liver fat content also can be 
semiquantitatively estimated by CT scans [125]. Normally, the attenuation of liver is 50 to 75 
Hounsfield units in noncontrast CT scan. With increasing hepatic steatosis, the liver 
attenuation values decrease by about 1.6 Hounsfield units for every milligram of triglyceride 
deposited per gram of liver tissue [126]. Thus, in those with a fatty liver, the hepatic 
attenuation is less than intrahepatic vasculature, giving the appearance of a contrast-
enhancement in a noncontrast-enhanced scan as shown in Figure 1 [127,128]. When 
intravenous contrast is used, the liver attenuation increases but is still lower than the spleen. 
By CT imaging, the distribution of the fat is unequal with lower attenuation values in the 
right lobe compared with the left [129]. The sensitivity and specificity of a contrast-enhanced 
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CT scan are time-and protocol-dependent. Using a cutoff of a liver-spleen differential of 20.5 
Hounsfield units 80 to 100 seconds after intravenous contrast injection, a fatty liver could be 
diagnosed with 86 % sensitivity and 87 % specificity [124]. At 100 to 120 seconds, a 
difference in hepatic and splenic attenuation of 18.8 Hounsfield units had a sensitivity and 
specificity of 93 % each [124].  

 

 

Figure 1. (A) The ultrasonographic findings of diffuse fatty change in the liver are a diffuse 
hyperechotexture (bright liver) compared with the kidney and vascular blurring. (B) Non-enhanced CT 
scan through the liver of a patient with fatty infiltration showing low attenuation of the hepatic 
parenchyma in comparison with the hepatic vasculature giving the appearance of a contrast-
enhancement in a noncontrast-enhanced scan. 

MRI has a less established role in imaging a fatty liver. The modified spin-echo 
technique MRI exploits the resonant frequency differences between fat and water. By this 
method, the fatty liver appears to have a lower signal intensity compared with surrounding 
muscle [130,131]. MRI for steatosis is more limited in evaluation of patients with iron 
overload [132]. Localized proton magnetic resonance spectroscopy (1H MRS) is an 
alternative, noninvasive method to assess hepatic triglyceride content and diagnose hepatic 
steatosis [40]. Because values given by 1H MRS correlate with liver biopsy results [133-135]. 
MRS also offers the futuristic prospect of measurement of metabolic parameters, including 
adenosine triphosphate (ATP) homeostasis in the liver [136,137] and possible lipid 
peroxidation [138]. 

In a direct comparison of CT scan with ultrasonography [139], ultrasonography was 
found to be more sensitive in detecting fatty change. However, CT scan or MRI is superior to 
ultrasonography when fatty change is focal [140]. In addition, in morbidly obese individuals, 
the ultrasonographic visualization of the liver may be difficult and poor quality images are 
obtained. 
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DIAGNOSIS 
 
The diagnosis of NAFLD can be established only in patients who do not consume 

significant amounts of alcohol and also requires the exclusion of other liver diseases that may 
present with steatosis such as viral, autoimmune and metabolic/hereditary liver disease. There 
is also controversy regarding the precise cutoffs in terms of alcohol consumption in the 
diagnosis of NAFLD. Confounding this issue is a recent study describing endogenous alcohol 
production in NASH patients related to the degree of obesity [141], as well as the protective 
effect of moderate alcohol intake in the prevention of diabetes [33]. In addition, there has 
been skepticism about the validity of self-reporting as a measure of alcohol consumption. 
Although there is no consensus regarding the definition of “non-alcoholic” in NAFLD 
patients, it seems reasonable to exclude patients from this diagnosis if current or within 5 
years alcohol intake has exceeded more than 20 g/day in women and 30 g/day in men (12 oz 
of beer, 5 oz of wine, or 1.5 oz of hard liquor each contain 20 g of alcohol) [142-144].  

Several surrogate markers of excessive alcohol consumption over a period of time have 
been evaluated; there is, however, no perfect test to identify alcohol use, particularly in the 
context of underlying liver disease. The AST/ALT ratio is usually <1 in patients with 
NAFLD and may be used to differentiate it from alcoholic liver disease [145]. However, in 
an ambulatory care setting, alcoholic liver disease has also been found to be associated with a 
similar AST/ALT ratio [58]. Gamma-glutamyl transpeptidase tends to be higher in alcoholics, 
at least in hospitalized patients [58]. The mean red cell corpuscular volume is likely to be 
more discriminative: nearly always elevated in patients with alcoholic liver disease whilst 
almost never above 98µ3 in patients with NAFLD [26,112]. Other biochemical markers, 
specifically partially desialylated transferrin (dTf) and the mitochondrial isoenzyme of AST 
(mAST), have been advocated as tests for active alcohol use in patients with liver disease. In 
one study [127], the dTf to total Tf (dTf/Tf) ratio of 1.3% or greater was a reliable indicator 
of excessive chronic alcohol consumption, with a sensitivity of 81% and specificity of 98%. 
Recently, Stadheim et al [146] demonstrated that alcoholic liver disease is not perfectly 
established by carbohydrate-deficient transferrin (CDT) analysis, although a high total CDT 
value favors alcoholic liver disease over NASH. Yet, many markers have high accuracy for 
diagnosing alcohol abuse but low sensitivity for smaller amounts of alcohol [I10].  

Histological lesions that have been found to be significantly more common in NASH 
compared with alcoholic hepatitis are steatosis and periportal glycogenated nuclei [O23], but 
sclerosing hyaline necrosis, cholestasis and foamy liver degeneration are distinctive 
histological findings more frequently observed in alcoholic hepatitis than in NASH [O]. 
These data indicate that distinction between NAFLD and alcoholic liver disease may not 
always be easy, particularly in those who consume modest amounts of alcohol. 

 
 

LIVER BIOPSY 
 
The decision of when to perform a liver biopsy in patients with NAFLD sometimes is 

quite difficult and continues to be an ongoing debate. The aims of liver biopsy for persons 
suspected to have NAFLD are 1) to confirm the histological diagnosis of fatty liver disease 
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and exclude other disorders, 2) to distinguish between simple steatosis and steatohepatitis, 3) 
to determine the risk of progression to more advanced liver disease, and 4) liver biopsy is the 
best specific means of determining the effect of medical treatment given the uncertain 
correlation between improvement of liver tests or imaging studies with histologic damage. 
Recent studies have looked at the utility of performing a liver biopsy in asymptomatic 
patients with chronically elevated aminotransferase. In a study from the Mayo Clinic 
prospectively looking at liver biopsies in 36 asymptomatic individuals with elevated 
transaminase, the presumptive prebiopsy diagnosis was altered in 14% of cases, of which a 
majority was in those with NASH, and influenced the frequency of subsequent monitoring in 
36% [149]. This study was corroborated by a similar study in 81 patients who had no 
serological evidence of liver disease that showed NAFLD in 51% and NASH in 32% of the 
biopsy specimens [23]. Recent data suggest that at the time of initial biopsy up to 30-40% of 
NASH patients will have advanced fibrosis [54,60], and cirrhosis may be found in 10-15% of 
cases [10,54,55,60]. At the present non-invasive imaging techniques are unable to distinguish 
steatosis from steatohepatitis, thus a liver biopsy is the only way to establish the diagnosis 
and stage of NAFLD/NASH. However, some authors suggest that because there is an absence 
of proven specific pharmacologic treatment for NAFLD, a biopsy is not needed, whereas 
others believe biopsy provides a sound basis for a conservative approach in many patients 
with NAFLD. Therefore, the performance of a potentially life threatening procedure requires 
careful consideration of risk-benefit ratio. Moreover, both the decision to perform a liver 
biopsy in a patient with suspected NAFLD and the timing of the biopsy must be 
individualized and should include the patient in the decision making process [13]. 
 

Table 4. Predictors of Fibrosis in NASH patients. 
 

Author N Mean 
BMI 

Mean 
age 

Predictors of fibrosis 

Angulo et al (1999) [56] 144 31.2 50.5 Age >45 yr, obesity, DM, 
AST/ALT ratio >1 

Marceau et al (1999) [34] 551 47 36 DM, steatosis, age 
Garcia-Monzon et al 
(2000) [79] 

46 50.5 41 Obesity, older age, grade of 
intrahepatic inflammation 

Ratziu et al (2000) [26] 93 29.1 49 Age >50, BMI >28 kg/m2, 
triglyceride >1.7mmol/L, ALT >2 
times of normal value 

Dixon et al (2001) [33] 26 47.2 44 Hypertension, ALT >40 U/L, 
insulin resistance index >5.0 

Chitturi et al (2002) [64] 93 32 49 Female, DM, severe liver 
inflammation 

Harrison et al (2002) [63] 102 33.9 51.3 Female, DM, higher AST & 
AST/ALT ratio 

ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index;  
DM, diabetes mellitus. 
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Given this debate over whether or not to perform liver biopsies in patients presenting 
with high clinical suspicion of NAFLD, several studies have established clinical parameter to 
determine independent predictors of advanced fibrosis to guide the clinician to define groups 
that may benefit from a liver biopsy. The clinicopathological studies outlined in table 4 
demonstrate the independent predictors of fibrosis found in NAFLD patients. Angulo et al 
[56] identified independent predictors of liver fibrosis composed of age >45 years, the 
presence of obesity or type II diabetes, and an AST/ALT ratio >1. Recent data confirm that 
patients with NAFLD and type II diabetes develop cirrhosis more often with higher mortality 
[93]. A clinicobiological score combining BMI, age, ALT and triglycerides (BAAT score) 
has been proposed to improve obese patient selection for liver biopsy [26]. The BAAT score 
is calculated as the sum of categorical variables: BMI, age, ALT, and serum triglycerides 
(each variable score 0-1), ranging from 0 to 4. A score of 0 or 1 would suggest patients 
without septal fibrosis, thus sparing liver biopsy. Dixon et al demonstrated that any two out 
of the three clinical findings of hypertension, ALT elevation, and a raised insulin resistance 
index that make up the HAIR index are associated with histological NASH in morbidly obese 
patients [33]. In this study, portal inflammation and fibrosis were disregarded in diagnosing 
and staging NASH, but when analyzed separately, they were found to be associated only with 
hypertension. 

 
 

HISTOLOGICAL ASPECTS OF NAFLD 
 
The histologic spectrum of NAFLD ranges from pure macrovesicular steatosis to 

steatohepatitis. Steatohepatitis is a morphological pattern of liver injury, which in 
nonalcoholic patients may represent a form of chronic liver disease currently known as 
NASH. The distinctive morphological features of steatohepatitis, regardless of the clinical 
background, include some “alcoholic hepatitis-like” findings: steatosis, lobular inflammation, 
which includes polymorphonuclear leukocytes, and perisinusoidal fibrosis in the centrilobular 
area. Other common features are hepatocellular ballooning, poorly formed Mallory’s hyaline, 
and glycogenated nuclei [10,53,54,110,150]. NASH can progress to cirrhosis and is 
increasingly being recognized as a cause for cryptogenic cirrhosis. 

Whereas laboratory test abnormalities and radiographic finding may be suggestive of 
fatty liver, histological evaluation remains the only means of accurately assessing the degree 
of steatosis, the distinct necroinflammatory lesions and fibrosis of NASH, and distinguishing 
NASH from “simple” steatosis, or steatosis with inflammation [151]. 

 
 

THE HISTOLOGICAL SPECTRUM OF NAFLD 
 

Steatosis 
 
In NAFLD, the steatosis is macrovesicular droplets that displace the nucleus to the 

periphery of the cell (Figure 2.); a lesser amount of microvesicular fat may be seen as large 
numbers of small droplets surrounding a central nucleus. Macrovesicular steatosis results 
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from complex abnormalities in the delivery, metabolism, synthesis and export of lipids, 
which result in intracellular triglyceride accumulation. Microvesicular steatosis, considered to 
be indicative of more severe liver disease, characterizes disease with defective β-oxidation of 
fatty acids [148]. Then, when the steatosis is entirely microvesicular in type, other etiologies 
including alcohol and drugs and, where appropriate, acute fatty liver of pregnancy should be 
considered. An early autopsy study suggested that steatosis in “small” amounts may be 
present in otherwise normal healthy hepatic parenchyma, and the finding increased with age 
[28]. The commonly accepted normal value liver steatosis of 5% is based on lipid content 
measurement [152]. 

 

 

Figure 2. Hepatocytes contain a large vacuole of fat that displace the nucleus to the periphery of the 
cell. 

 
Steatohepatitis 

 
This is a term that implies the presence of both fatty change and hepatocyte injury 

accompanied by inflammation. Hepatic injury can be in the form of ballooning degeneration 
that is reversible, or hepatocyte necrosis or apoptosis that is irreversible. 

Hepatocyte ballooning is a structural manifestation of microtubular disruption and severe 
cell injury [152] and is not unique to alcoholic or nonalcoholic steatohepatitis but is likely a 
representation of cells undergoing lytic necrosis [153]. Hepatocyte ballooning is 
characterized by enlargement of the hepatocytes along with rarefaction of the cytoplasm. 
Ballooned hepatocytes are located most often in centrilobular parenchyma, interspersed with, 
or adjacent to, regions of steatosis. Hepatocyte ballooning has been identified in studies as a 
marker for progress in patients with NASH [57]. 

Apoptotic hepatocytes, seen as shrunken eosinophilic cells with pyknotic nuclei, can be 
seen in NASH but are never as prominent as in viral hepatitis. Necrotic hepatocytes are not 
usually prominent, but a mixed inflammatory infiltrate comprising neutrophils, lymphocytes 
and ceroid-laden Kupffer cells can be seen at the sites where necrotic hepatocytes have 
disappeared [154]. 
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Mallory’s hyaline is defined as a ropy eosinophilic inclusion within hepatocytes that 
usually is seen in the perinuclear cytoplasm of ballooned hepatocytes located in pericentral 
parenchyma (Figure 3). It develops as a result of impaired proteosomal degradation of 
cytoplasmic proteins, predominantly intermediate filaments that bind to ubiquitin [155,156]. 
The formation of Mallory’s hyaline may be the result of defective hepatocellular degradative 
mechanisms and may play a protective role in the liver [157]. Mallory’s hyaline is usually 
associated with a florid histologic picture of steatohepatitis that includes hepatocyte 
ballooning, inflammation and pericellular fibrosis [57]. Other causes of Mallory’s hyaline are 
identified without the associated features of NASH such as chronic cholestatic liver disease, 
copper toxicity, and certain drugs (phospholipidosis associated with amiodarone toxicity), 
focal nodular hyperplasia, and hepatocellular carcinoma [152,158].  

The hallmark of the lobular inflammation in steatohepatitis is the presence of mixed 
inflammation including small numbers of polymorphonuclear leukocytes within sinusoids 
and close to ballooned hepatocytes. Mallory’s hyaline is chemotactic, and thus affected 
hepatocytes may be rimmed by neutrophils, this lesion is referred to as “satellitosis”. Mild 
mononuclear cell infiltration may be observed in the lobules or in portal tracts in 
steatohepatitis in the active or resolving phases [159]. However, when the mononuclear cell 
infiltration is marked, it may represent concurrent inflammation of another origin such as 
chronic viral hepatitis C infection. Interestingly, the most common histologic findings of 
NASH in children are steatosis and lobular mononuclear cell infiltration [70,78,105]. 

The characteristic pattern of fibrosis that distinguishes steatohepatitis from other forms of 
chronic liver disease is the initial deposition of collagen in perisinusoidal spaces in the 
centrilobular and perivenular regions, but it may not be prominent in the earliest stages. In the 
most prominent cases, individual hepatocytes appear to be outlined by a rim of collagen, 
giving the liver a chicken wire appearance [148]. 
 

 

Figure 3. Mallory’s hyaline, a ropy eosinophilic inclusion within hepatocytes (↓), usually is seen in the 
perinuclear cytoplasm of ballooned hepatocytes (←).The lobular inflammation is the presence of 
leukocytes within sinusoids and close to ballooned hepatocytes. 

 



Phunchai Charatcharoenwitthaya, Keith D. Lindor 90 

Other Lesions of Steatohepatitis 
 
Lipogranulomas consist of chronic inflammatory cells, Kupffer cells and occasionally 

eosinophils surrounding steatotic hepatocytes. They may be localized near terminal hepatic 
venules, scattered throughout the acinus, or confined to portal tracts [154]. 

Mitochondrial abnormalities are seen in subjects with NASH by electron-microscopy 
including megamitochondria, development of multi-lamellar mitochondria, loss of cristae, 
and presence of intramitochondrial paracrystalline inclusion bodies. Megamitochondria can 
be recognized by light microscopy as eosinophilic rounded or cigar-shaped intracytoplasmic 
inclusions in H&E-stained section. Megamitochondria are more commonly associated with 
chronic alcohol abuse, but may be observed in NASH. Recent studies in NASH indicate that 
megamitochondria may be more common in periportal hepatocytes and may be indicative of 
adaptation [160]. 

The presence of glycogenated nuclei, pseudo-inclusions of glycogen in hepatocyte 
nuclei, is non-specific, but they are frequently seen in pediatric liver tissue as well as 
Wilson’s disease, diabetes, and NASH [161]. 

 
 
HISTOLOGICAL SCORING SYSTEM FOR NAFLD/NASH 
 
It is now accepted that not all of histologic features of NAFLD are present in each case. 

Hepatic steatosis, although present in all studies of early stage disease, often decreases and 
may disappear after the development of cirrhosis [162,163]. This data supports clinical 
studies relating “cryptogenic cirrhosis” to underlying clinical conditions for NASH 
[162,163]. Hepatocyte ballooning, Mallory’s hyaline, lobular inflammation and pericellular 
fibrosis also are not present in every patients. This phenotypic variability of the disease has 
confounded attempts to develop universally accepted criteria for the diagnosis of 
steatohepatitis. 

Matteoni et al [57] proposed the term “nonalcoholic fatty liver disease (NAFLD)” to 
cover a broad spectrum of liver injury, which they divided into four categories. This study 
showed that cirrhosis developed in 21% to 28% of patients whose index biopsies had shown 
the combination of lesions of steatosis, inflammation, ballooning, and Mallory’s hyaline or 
fibrosis (NAFLD type 3 and 4), whereas only 4% of patients with simple steatosis (NAFLD 
type1) and none of the patients with steatosis and inflammation alone (NAFLD type2) had 
evidence of cirrhosis during the 10 years of follow-up. Until the natural history of subjects 
with this histologic pattern of NAFLD has been defined prospectively, this will remain a 
matter of debate. 

A system for semiquantitative evaluation of the unique lesions recognized in NASH was 
proposed by Brunt et al in 1999 [164]. This system was developed to parallel the concepts 
and terminology used in chronic hepatitis for semiquantitative evaluation, commonly referred 
to as “grading” and “staging” [165]. The proposed system was based on the concept that the 
histological diagnosis of NASH rests on a constellation of features rather than any individual 
feature. The system is summarized in table 5. However, it was developed for NASH and was 
not developed to encompass the entire spectrum of NAFLD. A different semiquantitative 
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feature-based scoring system for NAFLD has been developed and used in a recently 
published treatment trial of this disease [166]. Neither of these systems was designed to 
evaluate pediatric NAFLD, which may show different histological features than adult NASH 
[167]. 
 

Table 5. Grading and staging of Histopathological Lesions of NAFLD.* 
 

Grading for steatosis 
Grade 1: <33% of hepatocytes affected. 
Grade 2: 33 to 66% of hepatocytes affected 
Grade 3: >66% of hepatocytes affected 
Grading for steatohepatitis 
Grade 1, Mild: 
Steatosis: predominantly macrovesicular, involves<33% or up to 66% of the lobules 
Ballooning: occasionally observed; zone 3 hepatocytes 
Lobular inflammation: scattered and mild acute (polymorphs) and chronic (mononuclear 
cells) inflammation 
Portal inflammation: none or mild 
Grade 2, Moderate: 
Steatosis: any degree and usually mixed macrovesicular and microvesicular 
Ballooning: present in zone 3  
Lobular inflammation: polymorphs may be noted associated with ballooned hepatocytes, 
pericellular fibrosis; mild chronic inflammation may seen 
Portal inflammation: mild to moderate 
Grade 3, Severe: 
Steatosis: typically > 66% (panacinar): commonly mixed steatosis 
Ballooning: predominantly zone 3; marked 
Lobular inflammation: scattered acute and chronic inflammation; polymorphs may appear 
concentrated in zone 3 areas of ballooning and perisinusoidal fibrosis 
Portal inflammation: mild to moderate 
Staging for fibrosis 
Staging (Fibrosis) 
Stage 1: zone 3 perivenular perisinusoidal/pericellular fibrosis, focal or extensive 
Stage 2: as above plus focal or extensive periportal fibrosis 
Stage 3: bridging fibrosis, focal or extensive 
Stage 4: cirrhosis 

* Modified from Brunt EM [168].  
 
Recently, the Pathology Committee of the NASH Clinical Research Network [169] 

designed and validated a histological feature scoring system that addresses the full spectrum 
of lesions of NAFLD and proposed a NAFLD activity score (NAS) with reasonable inter-
rater reproducibility that should be useful for studies of both adults and children with any 
degree of NAFLD. The scoring system comprised 14 histological features, 4 of which were 
evaluated semi-quantitatively: steatosis (0-3), lobular inflammation (0-2), hepatocellular 



Phunchai Charatcharoenwitthaya, Keith D. Lindor 92 

ballooning (0-2), and fibrosis (0-4). Another nine features were recorded as present or absent. 
This system is simple and requires only routine histochemical stains (H&E and Masson 
trichrome stains). Based on both the agreement data and the multiple regression analysis, the 
proposed NAS specifically includes only features of active injury that are potentially 
reversible in the short term. The score is defined as the unweighted sum of the scores for 
steatosis (0-3), lobular inflammation (0-3), and ballooning (0-2); thus ranging from 0 to 8. 
Fibrosis, which is both less reversible and generally thought to be a result of disease activity, 
is not included as a component of the activity score. Cases with NAS of 0 to 2 were largely 
considered not diagnostic of steatohepatitis; on the other hand, most cases with scores of 5 
were diagnosed as steatohepatitis. Multiple regression analysis of the scores with respect to 
the diagnosis of NASH confirmed previous observations that the diagnosis of steatohepatitis 
is not dependent on a single histological feature, but rather involves assessment of multiple 
independent features. One concern for any new scoring system is how it applies in actual 
clinical trials. 

 
 
SAMPLING VARIABILITY OF LIVER BIOPSY IN NAFLD 

 
The basic assumption in liver biopsy is that the small fragment collected through 

percutaneous liver biopsy is representative of overall hepatic involvement. However, multiple 
studies have shown considerable sampling variability for most histologic features including 
cirrhosis when more than 1 sample is analyzed [170-176]. This sampling variability has the 
potential to alter significantly the diagnosis and staging of NAFLD. Janiec et al reported 10 
morbidly obese patients who underwent simultaneous liver biopsies from the right and left 
hepatic lobes during an open examination preceding Roux-en-Y gastric bypass surgery. Liver 
biopsy samples taken from the right and left hepatic lobes showed similar grades of disease 
activity, but differed in histopathologic staging in 30% of the NAFLD patients. Obtaining an 
adequately sized biopsy (>1.0 cm in length with >10 portal tracts) greatly reduces sampling 
error [177]. However, in patients with NAFLD, liver biopsy is performed in most cases via an 
intercostal route for both diagnostic purposes and therapeutic trials. Thus, percutaneous liver 
biopsy studies may be a better reflection of this issue that can be encountered in clinical 
practice. Recently, Ratziu et al [178] revealed that histologic lesions of 2 liver samples of 
patients with NASH assessed by percutaneous liver biopsy in the right lobe of liver through 
the same intercostal route using ultrasound guidance are unevenly distributed throughout the 
liver parenchyma. Agreement between the 2 biopsy specimens was only moderate for most 
features, including hepatocyte ballooning and perisinusoidal fibrosis, whereas, for some 
others, such as acidophilic bodies, lobular inflammation, or Mallory’s hyaline, the agreement 
was poor. Only steatosis grade and interface hepatitis displayed substantial agreement 
between the 2 biopsies, whereas there was no high agreement observed for any of the 
histologic features that were under study. Therefore, sampling error of liver biopsy can result 
in substantial misdiagnosis and staging inaccuracies that might carry significant implications 
for clinical management in an era when pharmacologic therapies for NASH are slowly 
emerging. 
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NATURAL HISTORY OF NAFLD 
 
Despite being common and potentially serious, the natural history of NAFLD remains 

poorly defined. Based on epidemiology studies, the prevalence of NAFLD in the United 
States may be as high as 30%. This, together with an accumulating body of evidence that 
some patients with NAFLD can progress to cirrhosis, liver failure, and hepatocellular cancer 
(HCC) has emphasized the need for detailed information on the natural history of NAFLD 
both to guide patient management and to enable rational public health care planning. Natural 
history studies reported to date can be divided into 2 main categories; 1) serial biopsy studies 
looking for evidence of histological progression in patients with different stages of NAFLD 
and 2) cohort studies examining the clinical outcomes of patients with NAFLD diagnosed 
histologically or ultrasonographically. The principal limitation of the majority of these 
studies have been their relatively short-term follow-up, and for the serial biopsy studies in 
particular, a high degree of selection bias in patients undergoing repeat biopsy [179]. 
 

Table 6. Fibrosis progression in NAFLD: studies with serial biopsies. 
  

Author No. Average 
F/U 
(years) 

Worsened 
(%) 

No 
change 
(%) 

Improved 
(%) 

Basal factors 
associated with 
fibrosis progression 

Lee (1989) [54] 13 3.5 38 62 - No factors 
Powell (1990) 
[60] 

13 4.5 46 46 8 NA 

Bacon (1994) [55] 2 5 50 50 - NA 
Ratzui (2002) [26] 14 5 14 57 29 NA 
Evans (2002) 
[180] 

7 8.2 57 43 - NA 

Harrison (2003) 
[181] 

22 5.7 32 50 18 Higher serum ALT 

Fassio (2004) 
[182] 

22 4.3 32 68 - Obesity 

Adams (2005) 
[183] 

103 3.2 37 34 29 DM, higher BMI, low 
initial fibrosis stage 

NA, not assessed; ALT, alanine aminotransferase; DM, diabetes mellitus; BMI, body mass index. 
 
NAFLD may progress to steatohepatitis and cirrhosis with its complications. It is 

uncertain what proportion of patients has progressive disease and it remains unclear whether 
some factors predict higher rates of progression. Fibrosis stage is recognized as the most 
objective indicator of liver damage and is the best prognostic marker for morbidity and 
mortality in liver disease of various etiologies. Several studies have investigated the natural 
history of NAFLD by examining fibrosis stage among patients with paired liver biopsies as 
shown in table 6. The earlier published results of repeat liver biopsies come from 78 patients 
with NASH but no cirrhosis (included in seven different studies) [26,54,55,60,180-182]. The 
second biopsies were performed 1.2 to 15.7 years after the first and showed fibrosis 
progression in 37.2% of patients [26,54,55,60,180-182]. The first four studies were clinical 
series examining NASH in which only a minority of patients underwent a repeat biopsy 
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[26,54,55,60], whereas the last three studies were specially designed to evaluate histological 
changes [26,180-182]. These studies examining fibrosis change over time have been limited 
by small numbers. In addition, patients have generally undergone sequential biopsies due to 
clinical indications, potentially biasing results towards patients with more severe or atypical 
disease. Recently, Adams et al [183] reported 103 patients with NAFLD that in the majority 
underwent a biopsy at a predetermined interval as part of a clinical protocol, therefore, 
limiting this type of selection bias. Fibrosis stage apparently progressed in 37%, remained 
stable in 34% and regressed in 29%. Severity of steatosis, inflammation, hepatocyte 
ballooning and Mallory's hyaline improved significantly. Aminotransferases decreased 
significantly between biopsies, paralleling improvement in steatosis and inflammatory 
features but not fibrosis stage. The rate of fibrosis change ranged from −2.05 to 1.7 stages per 
year. By multivariate analysis, diabetes and low initial fibrosis stage were associated with 
higher rate of fibrosis progression, as was higher BMI when cirrhotics were excluded. 

From these series, it is estimated that approximately one-third of patients had worsening 
histology: as many as 20% developed worsening fibrosis and up to 20% progressed to 
cirrhosis over approximately 5-7 years. Risk factors for progression remain unclear although 
a number of studies have examined predictors of more advanced fibrosis on the baseline 
biopsy. However, it should be emphasized that all of the predictive factors in predicting more 
severe histology on the baseline diagnostic biopsy may be used to predict a higher rate of 
fibrosis progression on the histological course of NASH unless patient undergoes repeat 
biopsy.  
 

Table 7. Cohort studies of clinical outcomes of different stages of NAFLD. 
  

Author Population No. Average 
F/U 
 (years) 

Cirrhosis 
prevalence 
(%) 

Liver-related 
deaths 
(%) 

Overall 
deaths  
(%) 

Teli (1995) [61] Simple steatosis 40 9.6 0 0 35 
Dam-Larsen (2004) [184] Simple steatosis 109 16.7 1 0.9 24.8 
Lee (1989) [54] NASH 39 3.8 16.3 2.6 26 
Powell (1990) [55] NASH 42 4.5 7 2.4 4.8 
Evans (2002) [21] NASH 26 8.7 3.8 0 8.7 
Fassio (2004) [182] NASH 22 4.3 0 0 0 
Hui (2003) [185] NASH-cirrhosis 23 5.0 100 21.7 26 
Matteoni (1999) [57] NAFLD(NASH) 98(73) 8.3 20(25) 9(11) 49(40) 
Adams (2005) [186] NAFLD(NASH) 420(49) 7.6 5(NA) 1.7(8) 12.6(35) 

 
The clinical outcomes of NAFLD based on the initial histologic classification from 

cohort studies can be summarized (table 7) as follows: contrary to previous dogma, simple 
steatosis can progress to steatohepatitis, fibrosis, cirrhosis, and even liver-related death but 
progression occurs in less than 5% of patients over a 8–17 year follow-up with no impact on 
overall mortality [57,61,184]. The lack of impact on mortality of simple steatosis, initially 
observed in a Danish study, has recently been confirmed by 10-year follow-up data from the 
Dionysos Study in Northern Italy [187]. Patients with NASH, with or without fibrosis, can 
progress to cirrhosis assessed histologically or clinically over a 3–8 year follow-up, with 
proportions ranging from 0% in the least selected follow-up studies [182] to 25% in the 
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largest clinical follow-up study performed to date [57], although this study may have 
included patients with NASH and cirrhosis in the “NASH” group [188]. Why some patients 
with NAFLD progress to fibrosis and cirrhosis and others generally have a benign course 
without progressive clinical and histological sequelae is unclear. Based on similar age at 
presentation and the long-term stability of NAFLD type 1-2 compared to the risk of 
progression in NAFLD type 3-4, it is likely that these two entities originate separately and 
probably become different early [57]. Once cirrhosis develops in patients with NAFLD the 
prognosis appears to be poor with two studies reporting that up to one-third of patients 
develop liver-related morbidity or mortality over a relatively short follow-up period 
[185,189] with one reporting a high rate (27%) of HCC [189], consistent with a several other 
reports of HCC developing in patients with NASH cirrhosis [190]. This high liver-associated 
death rate in NASH cirrhosis presumably accounts for the 10% liver-related death rate 
reported in the only NASH follow-up study [57].  

Recently, a large cohort study of community-based patients from the Mayo Clinic is the 
first to describe the natural history of NAFLD [191]. The mean length of follow-up was 7.6 
years. Mortality was significantly increased among patients with NAFLD compared with the 
expected mortality of the general population of same age and sex and was predicted by 
presence of impaired fasting glucose /diabetes, cirrhosis, and older age. Death occurred in 
12.6% of patients and was most commonly due to malignancy and ischemic heart disease, 
which are also the two most common causes of death in the Minnesota general population. 
Liver disease was also an important contributor of death among patients with NAFLD, being 
the third most common cause and accounting for 13% of all deaths (as compared with the 
13th leading cause of death among the Minnesota general population, accounting for <1% of 
all deaths). This implies that the increased overall mortality rate among NAFLD patients 
compared with the general population is at least partly due to complications of NAFLD. 
Nevertheless, the incidence of liver-related death was low (1.7%) as was the occurrence of 
cirrhosis (5%) and cirrhosis-related complications (3.1%). Liver histology was adequate for 
accurate staging in 61 patients, with 49 fulfilling the histological criteria for NASH, 10 
having simple steatosis, and 8 having established cirrhosis. Patients undergoing liver biopsy 
were more likely to have symptoms, diabetes, and clinical evidence of advanced liver disease 
and also had a significantly lower survival than those who did not undergo liver biopsy (10-
year survival 55% versus 90%). None of the 10 patients with histologically proven, simple, 
(“bland”) steatosis developed clinical evidence of cirrhosis or died from a liver-related cause, 
confirming the relatively benign natural history of the mildest form of NAFLD demonstrated 
in previous studies. The 8% liver-related mortality in the 49 patients with histologically 
proven NASH is similar to the 10% reported in the only equivalent study reported to date 
[162]. In addition, the outcome in patients either with biopsy-confirmed cirrhosis at entry or 
developing clinical cirrhosis during follow-up, confirms the poor prognosis of patients with 
NASH cirrhosis, with 33% dying from a liver-related cause and one patient developing HCC, 
consistent with the previous studies examining the natural history of NASH-related cirrhosis 
[180].  

Therefore, from both categories, it would appear that the natural history of NAFLD 
depends critically on disease stage as shown in Figure 4. Patients with simple steatosis have a 
relatively benign “liver” prognosis with a risk of developing clinical evidence of cirrhosis 
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over 15–20 years on the order of 1%–2%. Patients with NASH and fibrosis can progress to 
cirrhosis, defined histologically or clinically, with the risk varying from 0% at 5 years to 12% 
over 8 years [57,182]. Once cirrhosis develops, patients are at high risk of developing hepatic 
decompensation and of dying from a liver-related cause including HCC. Despite the high 
prevalence of obesity, diabetes, and the metabolic syndrome there is, as yet, no evidence that 
patients with NAFLD have an increased risk of death from either malignancy or 
cardiovascular disease. The lack of increased death rate from malignancy may simply be due 
to the still relatively small studies that have not examined cause-specific standardized 
mortality ratio, while the lack of increased mortality from cardiovascular disease may be 
attributable to the putative “cardioprotective” effects of chronic liver disease including 
reduced arterial pressure, an improved lipid profile or prolonged coagulation parameters 
[192]. Clearly, what is required are larger and longer follow-up studies in patients with 
histologically defined NAFLD, ideally comprised of both serial biopsies and clinical 
observations to include a detailed examination of the incidence/prevalence of malignancy and 
cardiovascular disease. We will then be able to provide patients with accurate prognostic 
information, initiate treatment trials on a more rational basis and predict the likely burden of 
NAFLD-related end-stage liver disease on health care systems [179].  
 

 

Figure 4. The outcome of NAFLD based on initial histological classification. 

 
SUMMARY 

 
NAFLD describes a clinicopathologic condition that is characterized by significant lipid 

deposition in the hepatocyte of the liver parenchyma in patients with no history of excessive 



Nonalcoholic Fatty Liver Disease and NASH: Clinical and Histological Aspects 97

alcohol consumption. NAFLD is increasingly recognized as the hepatic manifestation of 
insulin resistance and the systemic complex known as metabolic syndrome. NASH, the most 
severe form of NAFLD, is emerging as a common, clinically important type of chronic liver 
disease in industrialized countries, and rate are increasing in many developing countries. The 
prevalence rate of NAFLD and NASH are expected to increase worldwide, concurrent with 
the epidemic of obesity and type II diabetes. They are now estimated to be in the range 3.1-
33.6% for NAFLD and 1.2-49% for NASH. The majority of patients with NASH are 
asymptomatic. When present, clinical features such as fatigue, hepatomegaly and hepatic 
discomfort are non-specific. Despite recent advances in technology, physicians must still rely 
on the liver biopsy for diagnosing and particularly for staging liver disease. Recently, the 
Pathology Committee of the NASH Clinical Research Network designed and validated a 
histological feature scoring system that addresses the full spectrum of lesions of NAFLD and 
proposed a NAFLD activity score (NAS) that should be useful for studies of both adults and 
children with any degree of NAFLD. The long term prognosis for patients with NAFLD 
appears to depend on the initial histology. NAFLD type 1 and 2 are relatively stable 
conditions. NAFLD type 3 and 4 (NASH) is potentially progressive, with approximately 20% 
of patients having increased fibrosis and up to 20% progression to cirrhosis over 5-7 years. 
Once cirrhosis develops, patients are at high risk of developing hepatic decompensation and 
of dying from a liver-related cause including HCC. 
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ABSTRACT 
 

Non-alcoholic fatty liver disease (NAFLD) is a common phenomenon being the 
hepatic manifestation of the metabolic syndrome. It may be associated with significant 
morbidity and mortality. At present liver biopsy is required in order to differentiate 
benign disease from progressive disease. The majority of evidence supports weight loss 
and lifestyle changes as the major treatment intervention. Other treatments including 
bariatric surgery, insulin-senstizing agents including metformin and 
thiazolidinediones,lipid lowering agents, anti-oxidants and ursodeoxycholic acid have 
alos been investigated. In this review the evidence is reviewed and a proposal for 
treatment presented. 

Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases 
in the United States and Europe (1). It was first noted by Ludwig et al in 1980 to describe 
a cohort of obese female patients with non-insulin-dependent diabetes in whom the 
hepatic histology was suggestive of alcoholic hepatitis but there was no history of 
alcohol abuse (2). It is now clear that there is a strong connection to obesity and insulin 
resistance. NAFLD is now regarded as the hepatic manifestation of the metabolic 
syndrome. 
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INTRODUCTION 
 
The exact prevalence of NAFLD is uncertain, ranging from 16-23% in liver biopsy 

studies to 15-39% in ultrasound studies (1). Although there has been a surge of interest in 
NAFLD in recent years, there are no clear recommendations regarding the most effective 
treatment. 

In general, medical treatment for a specific disease is best given when several criteria are 
fully addressed:  

 
1. The natural history of the disease is well defined 
2. It is possible to reliably identify patients who require treatment 
3. The treatment will halt the natural progression of the disease, or cause a regression in 

the disease and improve the quality and/or the length of the life of the patient 
4. The side-effects of the treatment are tolerable in comparison to the morbidity of the 

illness and the treatment is cost effective. 
 
NAFLD is a recently recognized condition and its prevalence is increasing concomitant 

to the epidemic of obesity affecting the developed countries. This has resulted in the situation 
where a common disease that can cause significant morbidity and mortality exists and there is 
still a lack of reliable data on which to base diagnostic and therapeutic decisions. 

The purpose of this review is to examine the available evidence regarding the treatment 
of NAFLD. 

 
 

NATURAL HISTORY OF NAFLD 
 
The natural history of the disease is not well defined, partly because of different 

exclusion criteria for alcohol and partly because of different criteria for diagnosis- such as 
imaging studies or histological criteria. Although NAFLD was initially believed to be a 
benign, non-progressive disease it is now clear that a subset of patients can develop cirrhosis, 
end-stage liver disease and hepatocellular carcinoma. Recent data show that NAFLD is a 
common cause of cryptogenic cirrhosis [1]. However, more than 40% of an octogenarian 
population were found to have ultrasound evidence of NAFLD, implying that its presence 
does not necessarily impact on longevity [3]. Thus NAFLD is a common disease that can 
result in cirrhosis in some, but not all patients, and whose natural history is unclear. 

 
 

IDENTIFICATION OF PATIENTS WITH  
NAFLD WHO REQUIRE TREATMENT 

 
It is thought that patients with NASH are at risk for progression to fibrosis and cirrhosis, 

whereas patients with steatosis alone tend to have a relatively benign course [4]. Although 
NAFLD may be identified by imaging techniques such as ultrasound or CT scan, there is no 
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accurate or reliable method of identifying the patients with steatohepatitis or fibrosis from 
those with just steatosis, except for liver biopsy [1]. In addition it appears that there may be 
marked variability in the pathology within the liver, hampering interpretation of studies 
performed on single biopsies [5]. There are no consensus recommendations available but 
many people would perform a biopsy if there is marked ALT elevation (> x 2 above the 
upper limit of normal), AST>ALT, or failure of liver enzymes to decrease after initial 
lifestyle and dietary modifications [1].  

Thus one of the problems in trying to assess the utility of treatment for NAFLD is 
assessing the pre-treatment severity of disease. 

 
 

Weight Loss and Non-Pharmacological Treatments 
 
There is a strong association between the metabolic syndrome and NAFLD. Since 

lifestyle changes including weight loss and increased physical activity have a positive effect 
on many of the parameters of the metabolic syndrome, it is reasonable to expect a favorable 
effect of a similar program on NAFLD. For example, in a group of 3234 nondiabetic patients 
with impaired glucose tolerance, a lifestyle modification program consisting of a mean of 7% 
decrease in weight and 150 minutes of physical activity per week resulted in a reduction in 
the development of diabetes of 58% [6]. It has recently been shown that in obese patients, 
weight loss of as little as 8 kg can lead to reduced fat content in the liver (assessed by 1H 
magnetic resonance spectroscopy) , improve insulin sensitivity and return fasting blood 
glucose to normal [7]. There are a total of 6 studies in the literature regarding lifestyle 
changes and the effect on NAFLD [8-13]. These studies are summarized in Table 1. 
 

Table 1. Peer reviewed published trials of lifestyle changes in NAFLD. 
 

Name Type Evidence 
level 

Treatment Control Number Time 
(m) 

Biopsy 

Andersen Case 
series 

2b Diet x 41 4-23  variable 

Vajro Case 
series 

2b Diet, 
exercise 

x 9 30 Improved 

Ueno Open 
label 

2b Diet, 
exercise 

No Rx 25 3 Improved 

Franzese Case 
series 

2b Diet, 
exercise 

x 42 6 nd 

Hickman Case 
series 

2b Diet, 
exercise 

x 10 15 Improved 

Huang Case 
series 

2b Diet x 16 12 ns 

 
Andersen et al [8] reported a case series of 41 obese patients with NAFLD entering a 

weight-reducing program. A median weight loss of 34 kg in a 4-23 month period was 
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achieved resulting in a significant decrease in the amount of fatty infiltration of the liver and 
in a significant improvement of liver enzyme tests.  

Vajro et al [9] reported the results of a study including nine obese children with chronic 
(up to 49 months) elevation of serum transaminases. Following a hypocaloric diet there was a 
decrease in the serum transaminases and in the brightness of the liver on ultrasound. Ueno et 
al [10] treated 15 obese NAFLD patients with a program of restricted diet (25 kcal/kg of ideal 
body weight) and exercise for 3 months. The exercise regimen was intense, consisting of 
3000 steps of walking per day which was increased by 500 steps every 4th day up to 10,000 
steps followed by jogging twenty minutes twice per day. This resulted in an average decrease 
of BMI of 3 kg/m2 and a decrease in serum aminotransferases, cholesterol and glucose. On 
repeat liver biopsy a decrease in steatosis was found although there was no change in the 
necroinflammatory score. There was no clinical or histological change in a control group of 
10 patients who were not on the program. However, this regimen is probably unlikely to be 
achieved and maintained in most populations. Franzese et al [11] reported 42 obese Italian 
children with either elevated liver enzymes or an ultrasonographic picture of fatty liver who 
were evaluated by serial examination of serum enzyme levels and ultrasonography of the 
liver one, three and six months after starting a hypocaloric diet. All patients who lost at least 
10% of their ideal body weight in the 3-6 months follow up had either normalization or 
improvement of the ultrasonographic findings.  

Even moderate weight loss may have a beneficial effect. Hickman et al have reported 
their experience with 27 patients with hepatitis C virus (HCV) infection and hepatic steatosis 
and 16 patients with non-HCV associated hepatic steatosis (10 out of 16 of these patients had 
clinical and histological diagnosis of NAFLD). The patients had an initial 3 month period of 
weight reduction followed by a 12 month program of weight maintenance and 150 minutes of 
aerobic exercise per week. The mean weight loss was 4%. There was a decrease in ALT 
levels and fasting insulin levels in those who lost weight and maintained the weight loss. In 
addition there was an improvement in the health related quality of life. However, since the 
results were presented for the whole group, it is not possible to ascertain the exact effect of 
the intervention in the unequivocally NAFLD group.  

Recently, the results of a study on 16 patients with biopsy-proven NASH who completed 
12 months of dietary intervention and in whom 15 had repeat biopsies was reported [13]. The 
diet chosen was based on 40-45% of daily calories from carbohydrates, 35-40% from fat 
especially mono and polyunsaturated fats and 15-20% protein. This intervention resulted in a 
non-significant decrease in weight, waist circumference, visceral fat, fasting glucose, insulin 
resistance, triglycerides, AST, ALT and histological score (modified Brunt system). 
Interestingly, the nine patients who had a histological response to therapy had a significantly 
greater reduction in weight and waist circumference. 

Another recent study reported at Digestive Disease Week of 5 patients with NASH on 
liver biopsy who were given a very low carbohydrate diet (25 g/day) for 6 months. At the end 
of the study there was an improvement in ALT levels and hepatic steatosis and histological 
grade [15], although it was not possible to distinguish between the effects of a low 
carbohydrate diet and generalized weight loss. 
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Bariatric Surgery 
 
Rapid weight loss after bariatric surgery has been associated with transient worsening of 

inflammation and fibrosis.  
Weight loss is notoriously difficult to achieve and maintain and recently bariatric surgery 

has been gaining acceptance as a treatment for morbid obesity. Many of these patients have 
NAFLD as well.  

Ranlov et al [16] reported on 15 patients who were reexamined 1 year after bariatric 
surgery -gastric bypass (7 patients) or gastroplasty (8 patients). The incidence of steatosis had 
decreased from 73% to 40% but there was no fibrosis present in the biopsy samples.  

Luyckx et al [17] treated 528 patients with gastroplasty, of whom 69 with a marked 
weight loss were evaluated before and after a mean of 27+15 months including repeat liver 
biopsy. Forty-five percents of the biopsies were considered as normal (vs 13% before, P < 
0.001) while pure steatosis was still observed in 38% of the patients (vs 83% before, P = 
0.001). Although the severity of the steatosis was significantly reduced there was an increase 
of hepatitis (26% vs 14% before, P < 0.05) 

Dixon et al [18] reported their experience of 36 patients who underwent laparoscopic 
adjustable gastric band placement. These patients had paired liver biopsies, at the time of 
laparoscopic placement of the adjustable gastric band and the second after weight loss, at a 
mean of 25.6+10 months after band placement. The mean weight loss was 34.0+17 kg. The 
second biopsy demonstrated improvement of lobular steatosis, necroinflammatory changes 
and fibrosis, although portal abnormalities remained unchanged (Figure 2). There were 23 
patients who had the metabolic syndrome before surgery and they tended to have more 
extensive changes before surgery and greater improvement after weight loss.  

Kral et al [19] reported on 689 obese patients who underwent biliopancreatic diversion of 
whom 104 underwent routine biopsy at reoperation. Severe fibrosis (grade 3-5) decreased in 
28 patients but mild fibrosis (grade 1-2) appeared in 42 patients. Overall fibrosis and 
inflammation decreased over time (P<.01). The 11 patients who had cirrhosis exhibited 
decreased fibrosis from a mean grade 5 to grade 3, as well as reduced inflammation, Mallory 
bodies, and glycogenated nuclei. Seven patients had disappearance and 2 regression of 
nodules and fibrous bridging. Despite these favorable results, too rapid weight loss may be 
deleterious. There are reports of hepatic decompensation in some patients with NAFLD and 
exacerbation of steatohepatitis in others following bariatric surgery [20-22]. This is thought 
to be due to massive fatty acid mobilization from visceral stores, reaching the liver through 
the portal vein. 

Andersson Friis-Liby and colleagues [23] studied the early changes in liver tests and in 
intrahepatic fat (by computed tomography) during rapid weight loss (overall weight loss was 
about 28 kg) in 40 patients with NAFLD. An initial increase of fatty infiltration in the liver 
was seen, in parallel to an increase in ALT levels. Thereafter, weight reduction induced 
normalization of liver fat and improved serum ALT and insulin sensitivity.  

Recently, three reports were presented at the Digestive Disease Week meeting. Kaushik 
and colleagues [24] assessed the effects of Roux-en-Y gastric bypass surgery on liver 
histology in 31 obese patients with NAFLD. Mean BMI decreased from 51 kg/m2 to 34 
kg/m2. All patients had steatosis on initial biopsy, but only 39% had steatosis on follow-up; 
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68% of subjects showed improvement in NASH grades and 23% had no inflammation 
following Roux-en-Y gastric bypass. 

Barker and colleagues [25] also reported that weight loss, achieved through Roux-en-Y 
gastric bypass, improved histopathology in 149 obese patients with biopsy-proven NASH. At 
the time of surgery, 23% of patients had histopathologic evidence of NASH. After an average 
of 642 days, histopathologic criteria for NASH were no longer found in 84% of patients. 
Surgery also improved hepatic steatosis and the resulting inflammation in 732 subjects 
evaluated by Keshishian [26]. No detrimental effects on hepatic function were noticed. Thus, 
in obese patients with NAFLD, gradual and substantial weight loss achieved by Roux-en-Y 
gastric bypass decreases hepatic fat content, inflammation, and fibrosis. 

There has recently been shown to be a connection between sleep-apnea syndrome and 
NASH [27]. Although treatment was not studied in this paper, it raises the intriguing 
possibility that there may be an improvement in NAFLD secondary to treating sleep-apnea 
syndrome. 

In summary, weight loss and physical exercise if maintained can result in an 
improvement in the parameters of the metabolic syndrome and an improvement in hepatic 
histology. 

 
Orlistat  

Orlisat, a lipase inhibitor, designed for the long-term management of obesity, decreases 
fat absorption, increases the excretion of the unabsorbed triglycerides and cholesterol in the 
stools. Together with a low-fat diet 38% of patients treated with orlistat for one year were 
able to lose at least 5-10% of their baseline body weight [28]. A case series of three patients 
with biopsy-proven NASH who were treated with orlistat for 6-12 months and who lost 
between 10-19 kg, showed a decrease in liver enzymes and also a decrease in steatosis, 
inflammation and necrosis on follow-up biopsy [29]. 

Recently, a study was reported from Israel of weight loss based on a 25 kcal/kg ideal 
body weight /day low-fat low sugar diet for 6 months [30]. 21 of these patients also received 
orlistat 120 mg tid. Repeat liver biopsies were performed on 23 patients at the end of the 
study. This treatment resulted in a decrease of liver enzymes, hepatic steatosis (from 60 to 
30%) and fibrosis. However, no added benefit from the use of orlistat was noted. 

 
 

Insulin-Sensitizing Agents 
 
A prominent component of the metabolic syndrome is insulin resistance and 

pharmacological attempts to improve insulin-sensitivity have been examined in an effort to 
treat NAFLD. Work in mouse models has shown a benefit for both metformin and 
thiazolidinediones (glitazones) in improvement of both insulin resistance and NAFLD 
[31,32]. 

Metformin is a biguanide that down regulates hepatic glucose production and diverts 
fatty acids from triglyceride production to mitochondrial beta oxidation. In addition to 
improving insulin sensitivity and hyperinsulinemia in both animals and humans [33], 
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metformin also inhibits hepatic-TNFα and several TNF-inducible responses which are likely 
to promote hepatic steatosis and necrosis.  

In a model of insulin resistance in ob/ob mice, Lin et al [31] showed that metformin 
significantly reduced hepatomegaly and hepatic steatosis. Marchesini et al [34] treated 14 
NAFLD patients with metformin in an open label pilot study, comparing them to 6 patients 
who refused treatment. In addition the patients received nutritional counseling and 
pretreatment evaluation of insulin resistance by means of the euglycemic clamp technique 
and ultrasound assessment of liver volume. Treatment with metformin resulted in a 
significant reduction in liver volume, an improvement in insulin sensitivity and a 
normalization of serum aminotransferase levels in 50% of the patients. Furthermore, 
treatment withdrawal was associated with a return of aminotransferases to the pretreatment 
level. 

A smaller study of 15 patients with NAFLD, proven on liver-biopsy, were treated with 
metformin 20 mg/kg for 1 year [35]. Although after 3 months there was a decrease in serum 
aminotransferases and an improvement in insulin sensitivity, there was subsequently a rise 
back to pre-treatment levels. A total of 10 patients had a post-treament liver biopsy and three 
showed an improvement in steatosis, two a decrease in the inflammation score and one an 
improvement in fibrosis. 

More recently, the effects of metformin 850 mg bid plus dietary counseling have been 
compared to those of a lipid and calorie-restricted diet in an open-label study for 6 months 
[36]. The group given metformin (n=16) had a greater decrease in the mean serum 
aminotransferases levels, as well as a greater decrease in both CRP levels and insulin levels. 
Fifty-nine percent of the patients treated with metformin normalized serum transaminases 
compared to 37% in the control group (n=16). In addition there was a decrease in the index of 
insulin resistance as determined by the homeostasis model assessment. However, there was 
only a non-significant decrease in necroinflammatory activity on repeat liver biopsy at the 
end of treatment and no change in the fibrosis score. 

There have been occasional reports of lactic acidosis following treatment with 
metformin. This is, however, a rare complication with an incidence rate of 9 per 100,000 
patient-years according to data from 22,296 person-years of exposure [37]. In addition, a 
review of reports of metformin-associated lactic acidosis, found that all cases reported were 
associated with other contributory factors [38]. 

In an open-label trial, 55 non-diabetic NAFLD patients treated with 2 grams of 
metformin day were compared to 28 patients receiving 800IU of vitamin E per day and 27 
patients treated by a prescriptive weight-reducing diet [39]. Metformin treatment was 
associated with higher rates of aminotransferase normalization, after correction for age, 
gender, basal aminotransferases, and change in body mass index compared to both control 
groups. In addition, in seventeen metformin-treated cases that had a rebiopsy done, there was 
a significant improvement in liver fat, inflammation and fibrosis (figure 1). 

Recently, Blaszyk and colleagues [40] treated 10 patients with biopsy-proven NASH 
with a 48-week course of metformin (2 g/day). Metformin improved hepatic 
necroinflammation but did not improve hepatic fibrosis. 
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Figure 1. The effect of metformin on histological parameters of NAFLD. 55 patients with NAFLD were 
treated with 2 grams of metformin per day for 12 months. There was a significant decrease in both the 
degree of steatohepatitis and fibrosis in the 17 patients who had a follow up biopsy (Bugianesi E et al 
[39]). 

In summary, there may be a benefit of metformin in the treatment of patients with 
NAFLD although the evidence is inconsistent. This needs to be resolved by further 
randomized controlled trials. 

 
Thiazolidinediones 

This novel class of drugs improve insulin sensitivity by acting as ligands for the 
peroxisomal proliferators activated receptor (PPAR) γ class of nuclear transcription factors 
[41]. Caldwell et al [42] treated ten patients with the first clinically available medication in 
this class troglitazone for up to 6 months. Seven of the ten patients in the study achieved a 
normalization of serum aminotransferases but there was no histological response. 
Subsequently, trogliazone was withdrawn from the market due to idiosyncratic and severe 
hepatotoxicity [43].  

There are now second-generation thiazolidinediones on the market- pioglitazone and 
rosiglitazone. They appear to have a safer hepatic profile than troglitazone. 

Rosiglitazone has been tested on 30 patients with NASH, 8 of whom had diabetes, in a 
open-label study. The treatment was for 48 weeks in a dose of 4 mg bid but the interim 
results were published after 24 weeks [44]. At 24 weeks there was no improvement in insulin 
sensitivity although there was reduced liver fat content (estimated by CT scanning). There 
was a mean weight gain of 3.5%. The data from the longer term follow up have confirmed the 
previous data and included data on posttreatment biopsies in 26 patients. There was a 
significant improvement in mean global necroinflammatory score, hepatocellular ballooning 
and zone 3 fibrosis. Ten patients (45%) no longer met the criteria for NASH. Disturbingly, 
the weight gain continued to increase and following 48 weeks of treatment there was a mean 
increase of 7.3% [45] (Figure 3). 
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Figure 2. Weight reduction with bariatric surgery. Repeat biopsy after a mean of 25.6+11.0 months 
(n=36). There is a decrease in the alanine aminotransferase level (alt) as well as improvement in 
steatohepatitis (nash) and fibrosis scores (Dixon et al [18]). 
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Figure 3. Effect of treatment with thiazolidinediones. Two randomized placebo-controlled trials on 
patients with NASH. Rosiglitazone – 4mg bid for 48 weeks (n=30) [45]; Pioglitazone – 30 mg per day 
for 48 weeks (n=18) [46]. 

Pioglitazone in a dose of 30 mg daily has been examined in a pilot study of 18 non-
diabetic patients, without a control group, from the NIH [46]. After 48 weeks of treatment, 
serum alanine aminotransferase levels fell to normal in 72% (figure 3). In addition, there was 
a decrease in hepatic fat content and size as assessed by magnetic resonance imaging, as well 
as a reduction of fasting glucose, insulin and free fatty acids, indicating improved insulin 
sensitivity. In this study there was a significant improvement in steatosis, cellular injury, 
parenchymal inflammation, Mallory bodies and fibrosis. There was however, a side effect of 
weight gain (average of 4%) and an increase in total body adiposity (Figure 2). Despite these 
favorable results, the long-term effect of pioglitazone remains to be determined. It is possible 
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that continued therapy might result in continued weight gain, which may reverse any 
potential beneficial effects. The same group has recently reported in abstract form, the results 
of follow-up of 21 patients who discontinued pioglitazone. In these patients, a return of 
insulin resistance, increase in serum ALT levels, and a worsening of hepatic steatosis and 
inflammation was noted [47]. 

Harrison and colleagues [48] performed a randomized, double-blind, placebo-controlled 
trial to examine the efficacy of pioglitazone (45 mg daily for 6 months), in 22 patients with 
biopsy-proven NASH. Treatment with pioglitazone resulted in an approximately 2.5-fold 
increase in plasma adiponectin, reduced ALT levels, and a 25% reduction in hepatic fat 
content by magnetic resonance imaging. A significant improvement in ballooning 
degeneration, steatosis, and fibrosis was only seen with pioglitazone treatment.  

Sanyal et al [49] recently reported a randomized controlled prospective study comparing 
30 mg of pioglitazone and 400 IU of vitamin E to 400 IU of vitamin E alone for 6 months. 
There were ten patients in each arm. The combination treatment produced a decrease in 
steatosis, cytologic ballooning, Mallory's hyaline and pericellular fibrosis compared to the 
vitamin E monotherapy arm. 

A potential concern is subclinical cardiac failure [50], which is a risk in hypertensive 
patients with the metabolic syndrome. In addition there have already appeared in the 
literature post-marketing case reports of rosiglitazone- and pioglitazone-induced liver injury, 
as well as cholestatic jaundice [51].  

 
 

Lipid-Lowering Agents 
 
One of the central elements of the metabolic syndrome is hyperlipidemia, with high 

levels of cholesterol, triglycerides and LDL-cholesterol and low levels of HDL-cholesterol. 
This is the basis for the use of lipid-lowering agents as treatment for NASH.  

Two small studies have evaluated the effects of fibrates in NAFLD. Clofibrate in an open 
label pilot study at a dose of 2 grams per day for one year did not produce any significant 
change from baseline in either enzyme levels or histology [52]. Gemfibrozil, however, was 
shown to be more effective than diet in reducing aminotransferase levels, irrespective of 
baseline triglyceride levels [53). This open label study lasted however for only 4 weeks. 

In a report of only 2 patients treated with tamoxifen, bezafibrate prevented the 
histological progression of NASH, although this was secondary NASH [54]. 

There are only a few reports on the use of statins for treatment of NASH. There has been 
reluctance to administer statins to patients with any preexisting liver disease, but a recent 
review of the literature has not found strong evidence for liver damage [55]. In addition the 
levels of transaminases in a group of patients with NAFLD decreased with a treatment 
program including statins [56].  

In one study 20 mg of pravastatin was administered to five patients with NASH for 6 
months and the hepatic histology was reexamined in 4 patients [57]. The serum transaminases 
were normalized in all 5 patients and there was an improvement in both steatosis and hepatic 
inflammation. In another study, atorvastatin was administered to seven patients and the 
hepatic histology rechecked after a mean period of 21+2 months [58]. There was no 
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significant increase in liver enzymes although in some cases, an improvement of hepatic 
histology was noted. Kiyici et al administered 10 mg per day of atorvastatin for 6 months to 
27 patients with biopsy-confirmed NASH. Liver density, assessed by CT scan, was found to 
decrease presumably due to a decrease in fat content [59].  

Thus at present there is not conclusive evidence for a beneficial effect of statins in 
NAFLD and further evidence in the form of randomized controlled trials are required. 

 
Probucol 

Probucol is a lipid-lowering agent with anti-oxidant properties. Thirty cases of biopsy-
proven NASH were randomly allocated to 500 mg of procubol daily for 6 months (n=20) or 
placebo (n=10). There was a significant decrease in the serum transaminases in the treatment 
group compared to the placebo group and nine patents in the treatment group normalized 
their transaminases, compared to none in the control group [60]. 

 
Anti-Oxidants 

Vitamin E is an antioxidant [61] and this has prompted examination of its effect on 
NAFLD. In an uncontrolled trial of eleven children with NASH, supplementation with 
vitamin E in a dose of 400 to 1200 IU daily was found to produce a decrease in serum 
transaminases, which was reversible on cessation of the therapy. There was no change in liver 
echogenicity on ultrasound and histology was not examined in this study [62].  

A randomized, placebo-controlled trial of 45 patients included 22 patients treated with 
both vitamin C (1,000 mg) and vitamin E (1,000 IU) for 6 months [63]. In this study there 
was a significant improvement in fibrosis scores in the NASH patients receiving the vitamins 
compared to baseline but there was no change in the necroinflammatory score or ALT. 
However, the histological improvement was not significantly different from the improvement 
seen in the placebo group. 

Vitamin E supplementation was found to offer no benefit over lifestyle modifications in a 
study involving 16 patients [64]. The lifestyle modifications consisted of a step 1 American 
Heart Association diet plus aerobic exercise with or without the addition of 800 units of 
vitamin E per day. The end-point was a decrease in serum transaminases. 

The efficacy of pioglitazone plus vitamin E was compared in a pilot study of ten patients 
receiving 400 IU of vitamin E per day and 10 patients receiving 400 IU of vitamin E and 30 
mg of pioglitazone per day for 6 months [65]. Treatment with vitamin E alone resulted in a 
significant decrease in steatosis, whereas the combination therapy resulted in a decrease in 
steatosis, cytologic ballooning, Mallory's hyaline and pericellular fibrosis. 

A recent study of the effect of metformin in an open-label randomized trial of non-
diabetic patients with NAFLD compared the effect to a control group of a prescriptive 
weight-reducing diet and another group of 28 patients given 800 IU of vitamin E alone. There 
was no significant effect of vitamin E in terms of ALT levels and metabolic parameters [39]. 

Betaine is a naturally occurring metabolite of choline and raises S-adenosyl methionine 
levels that may play a role in decreasing hepatic steatosis. In a pilot study [66] of ten adult 
patients, 7 of whom completed a year of therapy with betaine, there was an improvement in 
serum transaminases and also an improvement in the degree of steatosis, necroinflammaory 
grade and stage of fibrosis. A larger randomized trial (191 patients) compared treatment with 
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betaine and diethanolamine gluconate and nicotinamide ascorbate to placebo. There was a 
significant decrease of 25% in hepatic steatosis and 6% in hepatomegaly [67]. 

 
Ursodeoxycholic Acid (UDCA) 

This hydrophilic bile acid has hepatoprotective properties and is the treatment of choice 
for primary biliary cirrhosis [68]. A pilot study of 24 patients who received 12 months of 
UDCA in a dose of 13-15 mg/kg/day showed a decrease in liver enzymes and hepatic 
steatosis on biopsy [52]. An improvement in liver enzymes was also found in a study in 17 
normolipidemic NASH patients [69]. 

However, a randomized, placebo-controlled trial (level 1c evidence) of 13-15 mg/kg/day 
of UDCA for 2 years in a total of 126 patients found no difference in either liver 
biochemistries or histology compared to controls [70]. The possible reasons for the negative 
result have been elegantly stated in an accompanying editorial [71], including statistical 
underpowering, heterogeneity of biopsy, variability of liver enzymes and regression to the 
mean.  

A subsequent double-blind placebo-controlled trial of 14 women with a BMI of greater 
than 27 kg/m2 who were treated with a 12000 kcal/day diet and 1200 mg of ursodeoxycholic 
acid and compared to 13 women with a similar BMI who were treated with just the 1200 
kcal/day diet, showed a similar reduction in BMI, serum transaminases and hepatic steatosis 
index determined by ultrasound [72]. 

Another randomized, placebo-controlled double-blind study of urodeoxycholic acid (10 
mg/kg/day) for 3 months in the absence of weight loss resulted in a decrease in serum 
transaminases but no change in hepatic fat content as assessed by CT [73]. 

Recently, the combination of UDCA and 800 IU of vitamin E per day has been shown to 
produce a significant decrease in both liver transaminases and steatosis, activity index and 
fibrosis compared to both placebo and UDCA alone. This paper has been reported in abstract 
form only [74]. 

 
Angiotensin II Receptor Antagonists 

Angiotensin II has been shown to play a role in hepatic fibrosis and in rats an angiotensin 
II type 1 receptor antagonist has been shown to decrease hepatic fibrosis [75]. A pilot study 
of 50 mg of losartan per day in seven patients with both NASH and hypertension has been 
shown to decrease serum aminotransferases, decrease hepatic necroinflammation (5/7) and 
reduce hepatic fibrosis (in four out of seven patients) [76]. There was no change in the degree 
of lobular steatosis. 

 
Pentoxifyline 

Tumor necrosis factor-alpha (TNF-α) is thought to play a role in the development of 
insulin resistance central to the metabolic syndrome and also to have a role in the progression 
of NAFLD through both inflammatory, apoptotic and fibrotic mechanisms [77].  

An open-label trial of 20 patients with biopsy-proven NASH given pentoxifyline 400 mg 
qid for 12 months resulted in a significant decline in serum transaminases but not alkaline 
phosphatase or bilirubin. Of the 20 patients 9 withdrew due to nausea [78]. In another study, 
18 patients with biopsy-proven NASH were treated with pentoxifyline 400 mg tid for 6 
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months [79]. There was some improvement in metabolic parameters despite the fact that there 
was no weight loss. In addition the serum transaminases decreased and were normal in 60% 
after 6 months of treatment. In addition there was a significant decrease in fatigue.  

 
Phlebotomy 

There is some evidence linking NASH to elevated serum ferritin and iron concentration 
[80]. Hyperferritinemia is, however, a marker of systemic inflammation rather than a marker 
of increased iron body content [81]. It is possible that increased hepatic iron and excessive fat 
accumulation may be involved in the second hit necessary for steatohepatitis and fibrosis 
[82]. In addition iron accumulation may induce insulin resistance [83] and iron removal by 
venesection may reduce this insulin resistance [84]. 

Facchini et al [85] caused iron depletion in 42 carbohydrate-intolerant patients who were 
free of the 2 common hemochromatosis mutations –C282Y and H63D, and who had a serum 
iron saturation lower than 50%. In 17 of these patients who had NAFLD, there were normal 
levels of body iron, but following iron depletion there was an improvement in both fasting 
and glucose-stimulated plasma insulin concentrations and a decrease in serum ALT levels. 

More recently, a study on 25 patients with NASH found no hepatic parenchymal iron 
overload on Prussian blue staining. The authors suggest that iron overload may be a result of 
hemochromatosis gene mutations and that their results may be due to the lower frequency of 
the HFE mutations in Turkey [86]. A similar lack of an association between hepatic iron 
accumulation and NASH has been reported by another group from Turkey [87] and Brazil 
[88]. 

 
Leptin 

Leptin deficiency or resistance results in steatosis [89] Lipodystrophy is a rare condition 
associated with an absence of adipose tissue and resultant leptin deficiency. The liver acts as 
a major storage site for triglycerides in such patients and may develop NASH [90]. In a study 
of eight patients with lipodystrophy and two patients with Dunnigan's partial lipodystrophy, 
eight had histological criteria for NASH on a baseline liver biopsy [91]. Treatment with 
recombinant methionyl human leptin (r-metHuLeptin), was given for a mean duration 6.6 
months and repeat histological examinations showed significant improvements in steatosis 
and ballooning injury together, with a reduction of mean NASH activity by 60%. There was 
no change in the fibrosis score. In addition there was also a significant decrease in both serum 
transaminases, triglycerides and liver volume. It is unclear what impact leptin may have in 
other patient groups with NASH but use of leptin in obese patients to date has been 
disappointing. 

 
Probiotics 

It has been suggested that gut-derived endotoxemia may contribute to the evolution of 
both alcoholic and nonalcoholic steatosis, fibrosis and portal hypertension [77]. Oral 
antibiotics that are poorly absorbed or administration of lactobacilli have been shown to 
inhibit the progression of steatosis to steatohepatitis in animals with obesity or animlas fed 
alcohol and also to improve the hemodynamics of portal circulation in patients with portal 
hypertension [92-4]. Loguercio et al have recently reported a open label pilot study of the use 
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of the probiotic VSL#3 in 22 patients with biopsy-proven NAFLD for 3 months. This 
preparation contains 450 billion bacteria of different strains and has improved fatty liver in 
experimental animals [93]. There was a decrease in serum aminotransferases, increase in 
albumin and a decrease in the markers of lipid peroxidation malondialdehyde and 4-
hydroxynoneal [95]. This pilot study is of a very short duration and there is a limited amount 
of data available. Further investigation in the form of a randomized controlled trial is 
necessary. 

 
 

Liver Transplantation 
 
A subgroup of patients with advanced NASH develop end-stage liver disease and require 

liver transplantation. This is often complicated by the presence of comorbid conditions 
related to diabetes, obesity and hyperlipidemia. In addition receurrence of the NASH in the 
transplanted liver has been reported [96-9]. 

 
 
SIDE-EFFECTS OF TREATMENT AND COST EFFECTIVENESS 
 
There is a lack of level 1 data from randomized controlled trials with end-points such as 

mortality or quality of life on which to base therapeutic decisions. Indeed the natural history 
of NAFLD is only just becoming apparent [100]. A report from the Mayo Clinic of a survey 
of community-diagnosed NAFLD patients in a population-based cohort from Olmstead 
County with a mean follow-up of 7.6 years found an increase in mortality associated with 
age, impaired fasting glucose and cirrhosis. Liver disease was the third leading cause of 
death. In this study, 71% were obese, 26% had diabetes and 68% hypertriglyceridemia. This 
demonstrates that lifestyle changes will be relevant for the vast majority of NAFLD patients. 

 
Table 2. Summary of trials with thiazolidinediones. 

 
Name number Level of 

evidence 
time Parameters examined biopsy 

Caldwell et al. 10 2b 6 months Transaminases 
decrease 

no 
improvement 

Neuschwander
-Tetri et al. 

30 2b 48 weeks Transaminases 
decrease 
Liver fat decreased on 
CT 

improvement 

Shadid et al. 3 2b 18 weeks Decreased 
transaminases 

nd 

Promrat et al. 18 2b 48 weeks Decreased 
transaminases 
Decreased hepatic fat 
on MRI 

improvement 
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Elevated liver enzymes Fatty liver on imaging 
studies

Consider need for biopsy
Discuss risk /benefits with 

patient

Steatohepatitis and/or 
fibrosis steatosisBiopsy not performed

Treat metabolic syndrome
Decrease BMI to < 25

Treat DM
Treat hyperlipidemia
Treat hypertension

Physical activity

Enroll in randomized 
controlled trial if available 
Consider metformin off-

label

Not successful Successful

Treat metabolic syndrome
Decrease BMI to < 25

Treat DM
Treat hyperlipidemia
Treat hypertension

Physical activity

Consider metformin TZDs

 

Figure 4. Suggested therapeutic approach to patients with NAFLD. 
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CONCLUSION 
 
In this chapter we have reviewed the current literature regarding the treatment of 

NAFLD. In order to conclude we will examine the 4 principles of treatment noted in the 
beginning.  

 
1. The natural history of the disease is becoming clearer and it is apparent that there is a 

significant morbidity and mortality associated with NAFLD. 
2. At present liver biopsy is required in order to differentiate those patients with a 

benign disease from those in whom there is going to be progression. The indications 
for liver biopsy and the role of non-invasive tests fro fibrosis and inflammation are 
still unclear. 

3. The majority of evidence available, showing positive results including improvement 
of the surrogate end-point of histology, are derived from studies that evaluated 
weight loss and lifestyle changes. Since such an intervention is cheap and also 
clearly effective in reducing cardiovascular risk factors, this is the treatment of 
choice. The exact role for bariatric surgery needs to be defined. Medical therapy for 
NAFLD is still evolving and there is a need for large randomized controlled trials. 

4. The only proven cost-effective treatment at this stage is weight loss. The benefit-risk 
ratio of other treatments needs to be established. 

 
In the absence of such information, our current recommendation is to adequately address 

the components of the metabolic syndrome that are the main risk factors. The treatment needs 
to be individualized for each particular patient. The approach for a 75 year old is not going to 
be the same as for a 25 year old. Our recommendation is shown in figure 4. 

There is evidence to suggest a histological improvement in NAFLD following weight 
loss. In addition the overall benefits of losing weight, increasing physical activity, controlling 
hypertension, hyperlipidemia and diabetes mellitus are well described [101]. 

The challenge for clinical hepatologists is to perform well-designed clinical trials with a 
high power to detect clinically relevant end-points on which future therapeutic interventions 
can be based. 
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ABSTRACT 
 
Chronic hepatitis C virus (HCV) infection is a multifaceted disease with extra hepatic 
manifestations. The link between HCV and type 2 diabetes mellitus (DM) was described 
more than a decade ago but only recently its importance has been recognized. Several 
studies provided compelling evidences that chronic HCV is specifically and frequently 
associated with diabetes, regardless of the presence of liver cirrhosis. Diabetes and 
glucose intolerance occur in more than a third of HCV patients and the underlying 
mechanism is insulin resistance which occurs early in the course of the disease. The two 
major types of risk factors for developing HCV associated DM relate either to a more 
severe hepatic histology or to the presence of 'traditional' risk factors for type 2 DM such 
as age, obesity and positive family history of diabetes. The mechanisms by which HCV 
leads to insulin resistance are still elusive. We and others provide intriguing data 
suggesting that activation of tumor necrosis factor (TNF)-α has a pivotal role in the 
HCV-DM association. However other direct and indirect effects of HCV on the insulin 
signaling cascade can not be ruled out. The implications of this extra hepatic involvement 
are immense and relate both to the complications of diabetes as well as to an unfavorable 
course of the hepatic disease with poor response to antiviral therapy, observed in HCV 
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patients with insulin resistance. Future studies are needed to evaluate the role of antiviral 
treatments as well as insulin sensitizing agents in improving both glucose tolerance and 
the course of the liver disease.  
 
 

HEPATITIS C 
 
Since its discovery in 1989 [1], hepatitis C virus (HCV) and chronic hepatitis C have 

been established as a health problem of worldwide distribution and immense proportions. It is 
estimated that about 170 to 200 million people are chronically infected with the virus. In the 
USA, 1.8% of a random sample of the population test positive for anti-HCV, while in parts of 
Eastern Europe and Africa prevalence rates may approach 15% in some countries [2,3]. HCV 
is an RNA virus which is transmitted predominantly through infected blood and although the 
acute infection is hardly ever felt - it becomes chronic in 85-90% of infected individuals. All 
patients develop features of chronic hepatitis which is characteristically indolent for a few 
decades and may be barely symptomatic, often without even raised serum aminotransferase 
levels. Nevertheless, cirrhosis develops in as many as 1 in 5 patients and hepatocellular 
carcinoma (HCC) is another dreaded outcome [3,4]. Combination treatment with pegylated 
interferon alpha and ribavirin over 48 weeks is currently the best option for chronic hepatitis 
C patients [5]. However, treatment is costly, may be poorly tolerated and sustained 
virological response can be attained by less than half of treated patients. 

 
 

'EXTRA-HEPATIC' MANIFESTATIONS 
 
Chronic HCV infection is often associated with varied extra-hepatic manifestations 

which have been well studied. The presence in the serum of immunoglobulins that precipitate 
below body core temperature ("cryoglobulins") can be detected in over 50% of HCV-infected 
individuals and diverse autoantibodies or monoclonal gammopathies can also be frequently 
found [6-8]. These are mostly asymptomatic however. Overt clinical syndromes are less 
common. They include mixed cryoglobulinemia – a systemic vasculitis secondary to 
circulating immune complex deposition in small vessels which occurs in about 5% [8]; 
immune thrombocytopenia [9]; thyroid disorders; membranoproliferative glomerulonephritis; 
porphyria cutanea tarda; lichen planus; Sjogren's syndrome; Mooren's corneal ulcers; 
polyarthritis; anti-LKM-positive autoimmune hepatitis and the development of B-cell 
malignant lymphomas. The exact mechanism responsible for these varied associated 
disorders remains elusive, but HCV is a lymphotropic as well as hepatotropic virus and 
expansion of autoantibody-producing B-cells in chronic HCV infection appears central to the 
pathogenesis of these disorders which are all immune-mediated [10]. 
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DIABETES AND HCV: FIRST OBSERVATIONS  
 
Can diabetes be the most common disease associated with chronic hepatitis C? 

Surprisingly, the link was hardly noticed at first, despite the extensive research on HCV and 
the large number of patients affected. A higher incidence of diabetes in liver transplant 
recipients with hepatitis C was noted by us at the Mount Sinai Medical Center, New York 
and reported to the American Diabetes Association (ADA) meeting in 1993 [11]. Post 
transplantation diabetes mellitus (PTDM) occurred in as many as 8/13 (62%) of patients 
whose liver failure was HCV-related, vs. 3/34 patients (9%) with other causes of liver failure 
(P<0.001) [12]. Thus, in addition to the known hyperglycemic effects of immunosuppressive 
drugs, chronic hepatitis C was suggested as an independent risk factor for the development of 
PTDM [13,14]. Allison et al. from Cambridge conducted in 1994 a retrospective study of 
diabetes among adult patients with cirrhosis who underwent liver transplantation. Fifty 
percent (17/34) of patients with chronic HCV infection had diabetes vs. none of the patients 
who had alcoholic cirrhosis or hepatitis B virus (HBV)-related liver disease [15]. These 
initial reports involved special groups of patients who were prone to altered glucose 
metabolism due to liver cirrhosis [16] or transplantation. However, the suggested link 
between HCV and diabetes was further supported by brief reports from Italy and Turkey. 
Taliani at al. found the prevalence of diabetes mellitus (DM) to be 18.7% among patients 
with chronic HCV infection [17] and this observation was confirmed in 1996 and shown to 
be significantly different compared to HBV infection [18-20]. Conversely, when diabetic 
patients were evaluated, an increased prevalence of anti-HCV antibodies was found [21], 
especially if the diabetic patients had abnormal liver function tests [22,23]. A later study 
found no significant difference for HBsAg seropositivity between type 2 diabetic patients and 
controls. In contrast, 7.5% of 692 diabetics were anti-HCV positive vs. 0.1% only of over a 
thousand healthy blood donors [24]. These initial observations set the stage for further 
research that firmly established the association between chronic hepatitis C and diabetes and 
later moved on to try and elucidate its mechanism. 

 
 

DIABETES MELLITUS IN CHRONIC HEPATITIS C  
 
Liver cirrhosis is strongly associated with glucose intolerance. As many as 70-80% of 

patients with cirrhosis have impaired glucose tolerance and 10-20% of cirrhotic patients are 
known to have diabetes [25-27]. In one recent study, diabetes was present in 32.3% of 247 
patients with cirrhosis [28]. Therefore, the finding that 21-50% (median 26%) of 956 HCV-
infected patients studied had diabetes [15,19,20,29,30] – significantly more than the 
prevalence of diabetes in other chronic liver diseases including hepatitis B, needed to be 
reaffirmed by analyzing patients who were definitely without liver cirrhosis.  

We have studied 45 consecutive patients with chronic hepatitis C in whom cirrhosis was 
excluded by clinical, laboratory, technetium 99 liver-spleen scintigraphy and liver biopsy. 
Other possible etiologies of liver disease (such as alcohol consumption) were exclusion 
criteria and additional patients with chronic HBV infection (n=88) and healthy individuals 
(n=90) were studied as control groups. We found that as many as 15/45 HCV patients were 
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diabetic (33%), as compared to 12% in the HBV group and 5.6% of the healthy matched 
controls [31]. The diagnosis of HCV preceded the diagnosis of diabetes in 11/15 patients and 
the diabetes required insulin treatment in 1/15 patients only. Comparing the groups of HCV 
patients with and without diabetes (Table 1) we found that a family history of diabetes was 
common in the HCV/DM patients (P<0.001). Comparing the patients' biochemical and 
histological parameters, we found that the diabetic HCV patients had a trend for higher liver 
enzymes and importantly, they had significantly higher inflammatory activity, more fibrosis 
and more steatosis in their liver biopsies compared to patients with chronic hepatitis C who 
had no diabetes (Table 2).  

 
Table 1. Clinical characteristics of 45 chronic hepatitis C patients, with and without 

diabetes (mean values + SD). 
 

 Nondiabetic 
(n=30) 

Diabetic 
(n=15) 

P 
 

Age, years 51.3+10 54+14 NS 
Male/female 12/18 5/10 NS 
Duration of HCV (months) 54+26 56+31 NS   
BMI (kg/m2) 26+3 27+5 NS  
Family history of diabetes 2/30 (7%) 10/15 (67%) p<0.0001  
HCV genotype:#    
1b 10 (53%) 9 (90%) p < 0.05 
1a 4 -   
2 4 1  
3 1 -   
Interferon treatment, % 80 87 NS 

# 29 patients were studied; NS = Non significant; BMI= Body mass index. 
 
Two notable large cohort studies strongly support our findings. First, the large ongoing 

National Health and Nutrition Examination Survey (NHANES III) evaluated 9841 
community-living subjects of whom 8.4% had type 2 DM and 2.1% were anti-HCV positive. 
Analysis showed that persons 40 years of age or older who were anti-HCV positive, had an 
adjusted odds ratio of 3.77 (95% CI, 1.80-7.87) for type 2 DM [32]. As previously noted, this 
finding was adjusted for possible confounding factors such as sex, body mass index (BMI), 
ethnicity, poverty index, and previous drug or alcohol use and was not found in hepatitis B 
infection. The HCV positive group had no clinical stigma of chronic liver disease, although 
no liver biopsies data were available [33]. Second, more recently, in a large cohort of 
consecutive patients with chronic hepatitis C in Spain, a threefold increase in the prevalence 
of glucose abnormalities was observed compared with HCV-negative subjects [34]. In fact, 
32% of 380 patients had either diabetes or impaired fasting glucose (IFG) (about 1:1 ratio). 
Moreover, multivariate analysis of patients with chronic hepatitis without cirrhosis, found 
HCV infection to be an independent predictor of glucose abnormalities with an odds ratio of 
4.26 (95%CI 2.03-8.93). This study is notable, since it clearly demonstrates a) that for every 
patient with chronic hepatitis C and diabetes, another patient already has impaired fasting 
glucose (fasting blood glucose between 110 and 125 mg/dl); and b) that standard 2-hr 75g 
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oral glucose tolerance test (OGTT) in HCV patients with chronic hepatitis who have no 
diabetes may reveal either impaired glucose tolerance or diagnose unsuspected diabetes in a 
substantial number of patients (15/50 and 9/50, respectively) [34]. Essentially similar results 
in non-cirrhotic HCV-positive patients have been reported in 2005 from Italy [35] and also 
from the Mayo Clinic [36]. The prevalence of diabetes mellitus and IFG were significantly 
higher among patients with chronic hepatitis C than controls and patients with advanced vs. 
early liver histology were at a greater risk of diabetes [36], supporting our own observations  
[31]. Thus, chronic hepatitis C is specifically and frequently associated with diabetes, 
regardless of the presence of liver cirrhosis. In many additional patients who do not fulfill the 
ADA criteria for diabetes, impaired glucose tolerance is already present indicating possible 
prediabetes. 
 

Table 2. Biochemical and histological parameters of 45 chronic hepatitis C patients, 
with and without diabetes (mean values + SD). 

 
 Nondiabetic 

(n=30) 
Diabetic 
(n=15) 

P 

Laboratory values:    
AST (max), U/L-1 87+54 129+135 NS 
ALT (max), U/L-1 124+74 196+219 NS  
 γGT (max), U/L-1 70+71 101+89 NS  
Albumin, g/L-1 45+0.3 44+0.4 NS 
Liver biopsy findings:    
Hepatitis activity index* 8.6+3.6 11.6+3.9 p<0.02  
Fibrosis (%)* 1.0+0.8 2.0+1.0 p<0.001  
Steatosis (%)** 7.2+11.0 20.3+15.4 p<0.002 

* Inflammation and fibrosis graded according to Knodell score (Knodell RG, Ishak KG, Black WC, et 
al. Formulation and application of a numerical scoring system for assessing histological activity in 
asymptomatic chronic active hepatitis. Hepatology 1981; 5:431-5). 

** Steatosis (percentage of cells with fatty changes) may be secondary to diabetes. 
NS = Non significant; AST= Aspartate aminotransferase;  
ALT= Alanine aminotransferase; γGT= γ-Glutamyltransferase 

 
 

RISK FACTORS FOR THE HCV-DM ASSOCIATION 
 
The association identified between HCV infection and diabetes was considered 

intriguing and important, as evidenced by the many editorials that were devoted to it since 
1996 [37-42]. This led to increasing research efforts by several groups, yielding ever more 
data for analysis. As a result, several risk factors for the HCV-DM association have emerged, 
and other variables were not found to affect the risk of developing diabetes. A careful study 
of relevant risk factors may be an indicator of the mechanism of the association and thus it 
may be of considerable importance.  

In the Atherosclerosis Risk in Communities (ARIC) Study, a 9-year follow-up showed 
that antecedent HCV infection was a significant risk factor for developing diabetes in patients 
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with advanced age or high BMI, with a remarkable relative hazard of 11.58 (95 CI, 1.39-
96.6) [43]. Other risk factors for developing diabetes in HCV patients include positive family 
history of diabetes and black race, but not the presence in serum of autoantibodies 
characteristic of type 1 DM [30-32]. Thus, HCV leads to type 2 DM particularly in 
susceptible hosts. How is this susceptibility acquired? Additional risk factors have been 
recently investigated and this may prove important in deciphering the pathogenesis. 
 

Table 3. Factors affecting risk of diabetes mellitus in 
patients with chronic hepatitis C virus infection*. 

 
Associated with an increased risk of diabetes 

@ Age ≥ 40 [19, 30, 32, 51, 56, 57] 
@ BMI, increased [32, 51, 52] 
@ Family history of diabetes [31, 36, 51] 
@ Black ethnicity [58] 
@ Liver enzyme, higher levels 
 (serum aminotransferases) 

[31, 50, 54] 

@ Hepatic histology, more adverse [36]  
 Inflammation (HAI) [31, 52, 54] 
 Fibrosis [31, 49, 51, 54] 
 Steatosis [31, 51, 57, 59, 60] 
@ Cirrhosis, relative to no cirrhosis 
 Child-Pugh score, increased 

[56, 28]  

@ Serum ferritin, increased levels [61] 
@ TNF-alpha system, activation [55] 

Not associated with increased risk of type 2 diabetes** 
# Autoantibodies to insulin or islet cells [30, 31, 46, 47] 
# Interleukin-6 [55] 
# Interferon treatment*** [48] 

May ameliorate the risk of diabetes in chronic hepatitis C 
• 'Traditional' lifestyle modification Under investigation 
• Insulin sensitizing agents Under investigation 
• Interferon therapy? [50, 52, 62] 
• Anti-TNF agents Under investigation 

* Chronic hepatitis B does not confer a similarly increased risk (see text). 
** Results concerning the effect of male gender [30,32], liver iron deposition and viral load [51,62- 64] 

remain controversial. High HCV core titer was reported to increase risk of diabetes [65]. 
Conflicting results have also been reported regarding the possible effect of HCV genotype 
[30,31,34,51,52,63] and it is hard to determine at present whether the genotype of the virus alters 
susceptibility to diabetes or not. 

*** Rarely diabetes type 1 may develop [48]. 
 
Interferon treatment may often be associated with the development or exacerbation of 

autoimmunity in animal models and humans [44], including in patients with chronic hepatitis 
C [45] who may be more susceptible than others [10]. Indeed, interferon therapy is often 
implicated in the literature as having a role in the development of diabetes in HCV patients. 
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However, this association is rare. The vast majority of HCV patients treated with interferon, 
do not exhibit increased frequency of clinical or latent autoimmune diseases [46,47] and the 
few reported cases of DM developing during interferon therapy, had developed type 1 DM 
[48] unlike the diabetes reported in most patients with HCV infection. Konrad et al. of 
Frankfurt who studied glucose tolerance and insulin sensitivity in HCV patients before and 
after therapy with interferon-alpha, found no evidence of interferon-related impairment of 
glucose homeostasis [49,50]. 

Thus, no evidence of β-cell-directed autoimmunity was found in HCV/DM patients 
[30,31,47]. In contrast, there is substantial evidence to establish that patients with chronic 
hepatitis C and diabetes are insulin resistant and that insulin resistance (IR) develops early in 
the course of the infection [51-53]. Petit et al. of Dijon, France conducted an elegant study of 
123 consecutive untreated chronic hepatitis C patients, 13% of whom were diabetic. In 
addition to showing that older age, obesity and family history of diabetes increase the risk of 
diabetes in HCV, their study also reveals the central importance of liver fibrosis [51]. 
Moreover, when insulin resistance assessed by the homeostasis model assessment (HOMA-
IR) was determined for 81 of the 107 non-diabetic patients, a higher grading of fibrosis was 
independently related to insulin resistance, strongly supporting liver fibrosis as an important 
risk factor for the HCV-DM association and also establishing that IR already occurs at an 
early stage in the course of HCV infection, long before the appearance of cirrhosis. This 
relationship between severity of the hepatitis and impaired glucose tolerance in noncirrhotic 
patients was observed by us in 1999 [31] and confirmed by Konrad et al. [49,54], Zein et al., 
[36] as well as by our own group in our next study [55]. It may be concluded that HCV 
patients who develop diabetes have a more severe liver disease according to both their liver 
enzymes and biopsy findings [31,51,54]. Furthermore, insulin sensitivity in nondiabetic HCV 
patients is significantly correlated with serum aspartate aminotranferase, histological activity 
index and the degree of fibrosis [54]. A recent study of 260 HCV-infected patients confirmed 
that insulin resistance was an independent predictor of the degree of fibrosis [52]. The studies 
on the various risk factors for diabetes in HCV infection are summarized in Table 3 which 
also shows factors that were examined and found not to affect diabetes risk in HCV or those 
that may possibly ameliorate this risk [56-65]. As the Table reveals, the two major types of 
risk factors for developing diabetes in HCV relate either to a more severe hepatic 
inflammation and worse histology or to the presence of 'traditional' risk factors for type 2 
DM. The more factors present – the higher the patient's risk. The effects of obesity and 
ageing for example, on insulin sensitivity are well known and not unique of course, to 
chronic HCV infection. The question remains however, how can aggravated HCV-induced 
liver inflammation and fibrosis be linked to insulin resistance? 

 
 

PATHOGENESIS OF THE HEPATITIS C ASSOCIATED DIABETES 
 
As discussed in previous sections, the HCV-associated diabetes has the characteristics of 

type 2 DM. Insulin resistance (IR), is known to have a pivotal role in the pathogenesis of type 
2 DM, and most studies evaluating insulin action in HCV patients found evidences for IR in 
HCV patients and this phenomenon is manifested even in the early stages of the disease [52]. 
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Nevertheless, most studies found a correlation between IR /type 2 DM and the degree of liver 
disease. Our early observation that HCV patients who developed type 2 DM had higher grade 
of inflammation and fibrosis, compared with nondiabetic HCV patients [31] was later 
explained by several studies which showed that inflammation and fibrosis are significantly 
related to insulin resistance (Table 4). In an early small study, a significant negative 
correlation was found between insulin sensitivity and both fibrosis and histological activity 
index [54]. A similar correlation between insulin levels (a marker for IR) and fibrosis was 
found in overweight, but not lean, HCV patients [65]. In an elegant large study of 260 
subjects with HCV and different stages of fibrosis, insulin sensitivity was evaluated by the 
HOMA-IR [52]. 121 patients had only stage 0 or 1 of hepatic fibrosis, and this sub-group had 
already significant higher level of insulin C-peptide and HOMA-IR compared with 137 
healthy volunteers. Predictors of HOMA-IR in the whole group were: body-mass index, 
previous treatment, viral genotype and portal and periportal inflammation. Notably, although 
IR was evident even in subjects without fibrosis or only with minimal degree, IR increased 
with the progression of fibrosis [52]. In another large study of patients with various liver 
diseases, high insulin levels were found only in HCV patients, and in this group a gradual 
increase in fasting insulin levels with increasing fibrosis was noted [66]. Notably, insulin 
levels were only high in patients with detectable serum levels of HCV core. In a study of 56 
non-diabetic and non-cirrhotic patients, HOMA-IR and insulin levels increased in parallel 
with the progression of fibrosis [67]. Interestingly, in patients with all degrees of fibrosis, 
HOMA-IR correlated with tumor necrosis factor (TNF-α) levels. Two other recent studies, 
confirmed the correlation between HOMA-IR and fibrosis [68,69], while in another study, a 
significant correlation between HOMA-IR and fibrosis was found in genotype 1 HCV 
patients in a univariate but not in a multivariate analysis [57].  

A topic which has gained a lot of interest in recent years is liver steatosis. The overall 
prevalence of steatosis in HCV is about 50% and it is even more prevalent in subjects with 
HCV genotype 3 [71]. A recent study showed that in patients with genotype 1, steatosis 
correlated with HOMA-IR while in patients with genotype 3, steatosis correlated with viral 
load [57]. 

The sequence of events is still debated: Is HCV-induced IR the primary event leading 
subsequently to fibrosis? Another possibility raised is that steatosis is the primary event 
leading both to fibrosis and to insulin resistance. There are several data supporting the notion 
that IR is the primary event in non-3 genotype. Firstly, the findings that IR was evident even 
in HCV subjects without fibrosis or only with minimal degree [52]. Secondly, insulin 
sensitivity increased significantly after 4 months of interferon therapy in responders [49]. 
Thirdly, in a model of transgenic mice that specifically expressed the HCV core protein in the 
liver, the animals developed IR as early as 1 month old while hepatic statosis developed only 
after 3 months [72]. Fourthly, in genotype 3 despite extensive hepatic steatosis, there is a low 
incidence of IR [71]. All of these suggest that HCV infection leads to insulin resistance as a 
primary event in non-3 genotype HCV. Compensatory hyperinsulinemia that occurs in IR can 
lead to fibrogenesis. In hepatic stellate cells, incubation with insulin led to increased 
connective tissue growth factor mRNA, a key factor in the progression of fibrosis [73]. 
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Table 4. The association between insulin resistance  
and liver inflammation and fibrosis in HCV. 

 
Author, year, 
reference 

Number of 
patients 

Main findings 

Konrad et al, 
2000, [54] 

10 Significant correlation between insulin sensitivity and 
histological activity index and fibrosis 

Hickman et al. 
2003, [66] 

160 In overweight patients, insulin levels were independently 
associated with fibrosis. 

Hui et al., 2003 
[52] 

260 Portal inflammation was an independent predictor of 
HOMA-IR.  
HOMA-IR was an independent predictor of fibrosis. 

Kawaguchi et al., 
2004, [67] 

158 Increased fasting insulin and HOMA-IR were associated 
with the severity of hepatic fibrosis. 

Maeno et al., 
2003, [68] 

56 HOMA-IR increased in parallel with the progression of 
fibrosis. 

Muzzi et al., 
2005, [69] 

221 HOMA-IR was an independent predictor of fibrosis. 

D'Souza et al. 
2005, [70] 

59 HOMA-IR was an independent predictor of fibrosis. 

Fartoux et al. 
2005, [57] 

141 High insulin levels were predictor for fibrosis in a 
univariate analysis but not an independent predictor in a 
multivariate analysis 

 
The development of steatosis in HCV patients can be related to insulin resistance. Insulin 

resistance is known to have a pivotal role in liver-fat accumulation and in the development of 
nonalcoholic fatty liver disease (NASH) [74]. Insulin induces the transcription of sterol 
regulatory element binding protein 1c (SREBP-1c), a key regulator of fatty acid synthesis in 
the liver. Overexpression of SREBP in mouse adipose tissue leads to fatty infiltration [75]. 
However, in HCV other direct mechanisms leading to steatosis have been described, mainly 
in genotype-3. In patients with HCV genotype 3, extensive steatosis occurs at an early stage 
of the disease in the majority of patients, correlating with viral load [71,76]. Several 
mechanisms by which HCV alters lipid metabolism have been identified including: inhibition 
of microsomal triglyceride transfer protein, oxidative stress, hyper-homocysteinaemia, and 
induction of genes such as stearoyl coenzyme A desaturase 4 [71,76]. Steatosis has a central 
role in the progression of fibrosis and it was found to be an independent predictor of fibrosis 
[57,71]. Lipid accumulation in the liver even without peripheral lipid accumulation, can in 
turn lead to hepatic insulin resistance [77] and reducing liver triglyceride content reversed 
hepatic IR [78]. Therefore a vicious circle is suggested: In non-3 genotype HCV infection 
leads to insulin resistance, leading to fibrosis and steatosis and the latter further augments IR 
and fibrosis. In genotype 3, viral proteins lead primarily to steatosis and subsequently to 
fibrosis.  
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MECHANISMS FOR INSULIN RESISTANCE IN HCV 
 
In a study of nonobese/nondiabetic subjects with HCV compared with non-HCV patients, 

liver tissue was examined following incubation with insulin [79]. In liver tissue of HCV 
patients, but not in non-HCV patients, several defects were found in the insulin signal: 
decreased tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1), decreased IRS-
1/p85 phosphatidylinositol 3-kinase (PI3-kinase) association and PI3-kinase activation and 
marked reduction in insulin stimulated Akt phosphorylation [79].  

The impairment in insulin signaling can be related to increased levels of proinflammatory 
cytokines such as TNF-α, that occurs in HCV [80]. TNF-α producing cells, mainly of the 
macrophage /Kupfer lineage, are increased in HCV infection and activation of TNF-α showed 
significant correlation with the inflammatory process [62,63]. TNF-α has been shown by 
many studies to link obesity and IR [81,82]. Long-term exposure of animals to TNF-α 
induced insulin resistance, whereas neutralization of TNF-α increased insulin sensitivity [83]. 
TNF-α interferes with the insulin signaling pathway, particularly by inhibiting tyrosine 
phosphorylation of the insulin receptor and IRS proteins [84]. Emerging data suggest that a 
TNF- α inhibitory effect on insulin signaling is mediated by activating serine /threonine 
(Ser/Thr) kinases that phosphorylate the IRS proteins and uncouple them from their upstream 
and downstream effectors [85]. Inhibition of IRS proteins requires stimulation of c-Jun NH2 - 
terminal kinase (JNK) and inhibitor kB kinase β (IKK β). Inhibition of IKK β prevents 
Ser/Thr phosphorylation of IRS proteins induced by TNF- α as well as by high-fat diet. TNF-
α regulates expression of several adipocyte genes known to modulate insulin sensitivity 
[85,86]. These intriguing data link inflammatory process caused by various environmental 
stress-stimuli including chronic HCV infection, and major metabolic pathways [87]. The 
mechanisms for TNF-α induced insulin resistance are summarized in Table 5.  
 

Table 5. Mechanisms for TNF-α induced insulin resistance. 
 

• TNF-α inhibits insulin-stimulated phosphorylation of insulin receptor and IRS proteins by 
activating serine/threonine kinases that phosphorylate the IRS proteins and uncouple them 
from  their upstream and downstream effectors. 

• TNF-α down-regulates genes in adipocytes encoding proteins  such as: adiponectin, PPAR-
γ, GLUT-4 

• TNF-α stimulates lipolysis, increasing free fatty acids and  subsequently leading to insulin 
resistance in muscle and liver 

• TNF-α has a direct inhibitory effect on insulin action in the liver 
• TNF-α induces hepatic SOCS-3 expression subsequently leading  to IR 

Abbreviations:  
TNF, tumor necrosis factor; PPAR, peroxisome proliferator-activated receptors;  
GLUT, glucose transporter; SOCS, suppressors of cytokine signaling, IR, insulin resistance 

 
Our own results support the hypothesis that TNF-α can link HCV infection and the 

development of type 2 DM [55]. Soluble TNF receptors (sTNFR) 1 and 2, considered to be 
reliable indicators of TNF-activation were measured in non-cirrhotic HCV patients with and 
without diabetes, type 2 DM patients, and healthy controls. Marked and significant increase 
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of both sTNFR1 and sTNFR2 were demonstrated in HCV patients with DM compared with 
the other 3 groups [55]. These results demonstrate that excessive activation of TNF-α 
characterizes HCV patients who develop DM and suggest that TNF-α can play a central role 
in the pathogenesis of insulin resistance that leads to type 2 DM. Further support for the role 
of TNF-α in IR is provided by a mouse model that specifically expressed the HCV core 
protein in the liver [75]. These animals developed IR at an early age, and glucose intolerance 
on a high-fat diet caused by a failure of insulin to suppress hepatic glucose production. The 
role of TNF-α in the pathogenesis of these abnormalities was strongly suggested by findings 
of more than 2-fold increase of TNF-α in the liver and by restoration of insulin sensitivity by 
TNF-α antibody [75]. Interestingly, high pretreatment intrahepatic TNF-α mRNA level is also 
a predictor of failure to respond to interferon therapy [88]. 

 
HCV Liver disease 

                        steatosis                                     fibrosis 

   

                                   Inflammation 

TNF-α Insulin 
resistance 

Host factors: 
ageing 
obesity 
family history  
of DM 

  SOCS-3  

HCV 

Type 2 
DM 

HCV 

 

Figure: Proposed scheme of events in HCV infection (non-genotype 3). HCV-mediated liver-
inflammatory process and possible direct effect of HCV, cause activation of TNF-α subsequently 
leading to insulin resistance (IR) in susceptible persons. Host factors such as ageing, obesity and family 
history of type 2 DM can augment IR either by increasing TNF-α levels or by other non-TNF 
independent mechanisms. TNF-α and HCV core protein induce hepatic expression of SOCS-3 also 
leading to IR. A bi-directional relationship between IR and steatosis exists and both IR and increased 
steatosis lead to progression of fibrosis. Abbreviations: TNF, tumor necrosis factor; SOCS, suppressor 
of cytokine signaling. 

Proinflammatory cytokines that increase with HCV infection and HCV core protein, can 
up-regulate suppressor cytokine signaling (SOCS)-3, known to inhibit insulin signaling [67]. 
In human hepatoma cells, HCV core up-regulated SOCS-3 and caused ubiquitination of IRS-
1 and IRS-2. These defects were not seen SOCS3-/- mouse embryonic fibroblasts cells or 
when an inhibitor of proteosomal proteolysis was added [67]. Recent data have shown that 
over-expression of SOCS-1 and SOCS-3 in obese animals led to the development of IR and 
hepatic steatosis and inhibiting the expression of SOCS proteins improved insulin sensitivity 
and hepatic steatosis [89]. The inhibitory effect of SOCS proteins on insulin signaling can be 
mediated by attenuating the activity of signal transducer and activator of transcription 3 
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(STAT-3), and mice lacking liver STAT-3 revealed IR. Interestingly injection of TNF-α into 
a mouse model, induced marked expression of SOCS-3 [90]. A recent study found a strong 
correlation between SOCS-3 and TNF-α mRNA in livers of HCV patients [91]. 

We suggest the following scheme in non-genotype 3 HCV infection (Figure). HCV-
induced liver inflammation and possible direct effect of HCV, cause activation of TNF-α and 
subsequently, by the various mechanisms described above, to insulin resistance. Host factors 
such as ageing, obesity, family history of type 2 DM can augment insulin resistance either by 
increasing TNF-α levels or by other non-TNF independent mechanisms. TNF-α, and HCV 
core protein induce hepatic expression of SOCS-3 also leading to IR. A bi-directional 
relationship between IR and steatosis exists and both IR and increased steatosis lead to 
progression of fibrosis.  

 
 

IMPLICATIONS AND APPROACHES TO TREATMENT 
 
Assuming that about 180 million people worldwide are infected with HCV [2], that 144 

million of those have chronic hepatitis and that about 36 million (~20%) have cirrhosis – than 
millions may be affected by the so called HCV – Diabetes association. At a conservative 
estimate, one third of the HCV-induced cirrhosis patients (12 million) and one fifth of those 
with chronic hepatitis (~28 million) have diabetes. Thus, 40 million people may have 
diabetes that is strongly associated with an infectious cause (HCV). This constitutes a major 
public health problem which may markedly increase if HCV-infected patients who have 
insulin resistance that falls short of diabetes (impaired fasting glucose, impaired glucose 
tolerance) – are also considered. Before reviewing the implications of concurrent HCV-
Diabetes, these huge numbers suggest that screening for glucose abnormalities should be 
initiated in anti-HCV-positive patients [34]. An early detection might possibly allow for 
improved follow-up and better control. This may be no less important for the HCV-infected 
non diabetic subjects. In one small study, oral glucose tolerance test exposed 9/50 (18%) 
hitherto unrecognized diabetes patients [34] and in another, 7/71 hepatitis C patients who 
were free of diabetes (10%) became diabetic during a 7-year follow-up [65]. 

Since barely a decade has elapsed since the HCV-Diabetes link had been first recognized 
and much less, since insights into the mechanisms have been gained – both the current 
understanding of its implications and treatment considerations remain largely speculative and 
only partially understood. Nevertheless, several assumptions seem reasonably valid: 

First, like other patients with diabetes, patients whose diabetes is associated with chronic 
hepatitis C are likely to be prone to the microvascular and macrovascular complications of 
diabetes. In fact one retrospective study even suggests that the course of microvascular 
disease in HCV patients may be worse than that of controls: patients with diabetic 
glomerulosclerosis that were comparable on renal biopsy, showed a significantly sharper 
decline of renal function when they had concurrent HCV infection than did similar patients 
who did not have chronic hepatitis C [92]. Also, during a follow-up period of just over two 
years, one third of the HCV patients required hemodialysis vs. 18% of the HCV-negative 
group (P=0.1). Thus, primary prevention measures with lifestyle modification, aspirin, tight 
blood pressure (and glycemic) control and possibly also a cautious use of statins are probably 
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indicated. This may be particularly true since type 2 diabetes as well as atherosclerosis are 
regarded today as having a significant inflammatory component and both occur more often 
and exhibit a worse course when markers of inflammation are increased [93-97]. TNF levels 
in particular, have been associated with carotid atherosclerosis [98] and with recurrent 
vascular events after myocardial infarction [99]. As a chronic inflammatory condition 
associated with increased levels of TNF in the liver and in the serum, hepatitis C - Diabetes 
may well be associated with more adverse vascular outcomes than either condition alone. 

Second, as previously discussed (Figure), the literature suggests a vicious cycle in that 
more extensive liver inflammation and fibrosis may lead to higher glucose and 
hyperinsulinemia in susceptible persons, while the latter in turn, promote progression to 
fibrosis [52], that may further deteriorate glucose tolerance [80,100]. The initiating events in 
this vicious cycle remain hard to determine. However, a recent elegant study from Paris 
shows that at least in genotype 1 patients, insulin resistance is the cause rather than the 
consequence of steatosis and fibrosis. Moreover, hyperinsulinemia and associated steatosis 
≥10% constitute prominent risk factors for extensive fibrosis [57]. The postulated central role 
of HCV-induced cytokines, primarily TNF-α, in the pathogenesis of insulin resistance remain 
an attractive hypothesis [55]. 

Third, one hitherto unconfirmed study from Japan suggests that increasing insulin 
resistance in patients with chronic hepatitis C may be a harbinger of increased extra hepatic 
manifestations [101]. 

Fourth, diabetes mellitus in HCV may increase the risk of these patients to develop 
hepatoma (HCC). A case-control study of primary liver cancers among US veterans revealed 
that diabetes alone was not associated with a significantly increased risk. However, when 
diabetes was associated with a chronic viral hepatitis such as HCV, the risk of hepatoma was 
significantly increased (adjusted odds ratios 1.57) [102]. When 279 patients with chronic 
hepatitis C in whom cirrhosis was excluded, were followed, HCC developed in 13 patients 
over a mean follow-up period of about 7 years. Only diabetes mellitus and age were 
associated with hepatoma in multivariate analysis [103]. Synergism between HCV and 
diabetes in hepatocarcinogenesis [104,105] must be carefully evaluated in future studies. 

Fifth, diabetes mellitus in HCV-induced cirrhosis may be associated with poor survival 
[106]. The status of the glycemic control was identified as an independent predictor of 
survival (P=0.0018). In contrast, it had no predictive value in patients with HBV. 

Sixth, there is enough evidence to support that liver damage is additive and possibly 
synergistic when more than one noxious stimuli are present. Therefore, close attention and 
attempt to correct any potentially reversible coexisting condition that may adversely affect 
the liver is important. This commonly includes obesity-associated nonalcoholic fatty liver 
disease (NAFLD) [74], alcohol consumption, iron overload in certain patients [107], etc. 

In addition to screening HCV patients for glucose abnormalities and taking preventive 
measures common to all patients with diabetes, two questions of central importance remain, 
that are unique to HCV-Diabetes patients:  

 
1. What is the role of current antiviral treatments in improving glucose tolerance and 

ameliorating diabetes?  
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2. Can treatment aimed at better control of the diabetes (such as with insulin 
sensitizing agents) improve the course of the chronic liver disease? 

 
These questions are complex and can only be answered partially at present.  
Antiviral therapy with interferon leading to clearance of HCV resulted also in restoration 

of insulin sensitivity [50]. However sustained response is attained in less than half of HCV 
patients and further modalities of therapy are needed [5]. As discussed before, insulin 
resistance that has a central role in the pathogenesis of the HCV-DM association, also 
adversely affects the course of the liver disease. Can we then improve chronic HCV liver 
disease by using measures to improve insulin sensitivity? Some data suggest that weight loss 
in HCV patients is associated with reduction of liver enzymes, steatosis and fibrosis [108]. 
Insulin sensitizing agents such as metformin and thiazolidinediones, have been shown in 
small studies to have a beneficial effect in NASH and may have also a role in HCV liver 
disease [109]. TNF-α inhibition that was shown in the transgenic animal model to restore 
insulin sensitivity, is another intriguing possibility [72]. TNF-α inhibition has been used 
successfully in rheumatoid arthritis and in inflammatory bowel diseases [110]. Initial and 
partial observations suggest that administration of anti-TNF antibodies to patients with 
chronic hepatitis C, does not adversely affect the chronic viral infection. Further large studies 
evaluating different treatment modalities of improving insulin sensitivity are needed to 
establish their role in chronic hepatitis C virus infection.    
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ABSTRACT 
 
 
Recent developments in the field of genetics and molecular biology have transformed the 
way we look at iron-related disorders, particularly hemochromatosis. This chapter 
presents a unifying concept of this disorder that is based on this new knowledge and 
stems from the idea that, beyond their genetic diversities, all known hemochromatoses 
originate from the same metabolic error, the genetic disruption of human tendency for 
circulatory iron constancy. Hepcidin, the iron hormone, holds a central pathogenic place 
in hemochromatosis, similar to insulin in diabetes: genetically determined lack of 
hepcidin synthesis or activity causes unrestricted release of iron from macrophages and 
intestine leading to tissue iron overload and disease.  
 
 
In the past decade, the number of proteins implicated in iron homeostasis has increased 

dramatically; many of these have been characterized, their functions and regulatory pathways 
dissected; and genetic causes have apparently been identified for the major disorders 
associated with tissue iron overload. These dramatic steps forward have transformed the way 
we look at iron-related disorders, particularly hemochromatosis (HC) or hereditary 
hemochromatosis. The term “hemochromatosis” was coined in 1989 by Von Recklinghausen 
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[1] to describe the necroscopic finding of massive organ damage associated with dark tissue 
staining caused by what he believed to be a blood-borne pigment. It was Sheldon, however, 
in his monumental 1935 review of all cases published in the world’s medical literature [2], 
who suggested that the disorder was probably hereditary. For much of the 20th century, 
hemochromatosis was believed to be a monogenic disease [3-7]. In 1996, Feder et al. [8] 
discovered a pathogenic mutation (C282Y) involving a novel MHC class I-like gene, which 
was present in the majority of hemochromatosis patients throughout the world. However, as 
genetic testing for HFE mutations became more widespread, it rapidly became clear that the 
situation was more complicated than previously thought. In fact, we have seen the discovery 
of other iron genes whose mutations were associated with hereditary iron overload syndromes 
with some, or many, or apparently even all of the phenotypic features of classic 
hemochromatosis: transferrin receptor 2 (TfR2) [9], hepcidin (HAMP) [10], hemojuvelin 
(HJV) [11] and ferroportin (FPN) [12,13]. Is the hemochromatosis label valid for these 
syndromes as well? Over the past century, the definition of HC and classification of this iron-
overload disorder has been changing, evolving, stretching, and twisting to accommodate an 
increasingly rapid and rich succession of the new discoveries, in particular, those of the 
genetics era. This review presents a concept of HC, based on this new knowledge, which 
stems from the idea that, beyond their genetic diversities, all known hemochromatoses belong 
to the same clinicopathologic entity as they all originate from the same pathophysiologic 
event [14].  

 
 

I) DEFINITION AND CLASSIFICATION 
 
Hemochromatosis is an iron loading disorder caused by a genetically determined failure 

to prevent unneeded iron from entering the circulatory pool and characterized by progressive 
parenchymal iron overload with potential for multi organ damage and disease. This definition 
includes the classic disorder related to HFE C282Y homozygosity (the prototype for this 
syndrome and by far the most common form) and the rare disorders more recently attributed 
to loss of TfR2, HAMP, or HJV. There exist four basic features that defines this disease 
(Table 1): hereditary nature (usually autosomal recessive); early and progressive expansion of 
the plasma iron compartment (increasing transferrin saturation); progressive parenchymal 
iron deposits with potential for severe damage and disease that may involve, liver, endocrine 
glands, heart and joints; non-impaired erythropoiesis and optimal response to therapeutic 
phlebotomy. If hemochromatosis is defined by the presence of all four of the features 
discussed above, other iron-overload syndromes can be excluded from this subset if they lack 
at least one of its defining characteristics (Table 2).  
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Table 1. Distinguishing features of hemochromatosis. 
 

• Hereditary (usually autosomal recessive) trait 
• Early and progressive increase of circulatory iron (i.e. high transferrin saturation) that 

precedes iron accumulation in tissues (i.e. high serum ferritin) 
• Early and preferential iron deposition in parenchymal cells with potential for damage and 

diseases such as liver cirrhosis, cardiomiopathy, endocrinopathy, arthropathy  
• Unimpaired erythropoiesis and optimal response to phlebotomy 

 
Table 2. Human iron overload disorders. 

 
HEREDITARY  ACQUIRED MISCELLANEOUS 
• Hereditary 

hemochromatosis (HFE-, 
TfR2-, HJ-V, HAMP-
related) 

• Ferroportin disease  
• Aceruloplasminemia a 
• Atransferrinemia b 
•  H-ferritin related iron 

overload c 
• Hereditary iron-loading 

anaemias 

• Dietary  
• Parental  
• Long-term haemodialysis 
• Chronic liver disease 

o Hepatitis C and B 
o Alcoholic cirrhosis, 
o NASH 

• Porphyria cutanea tarda  
• Post portacaval shunting 
• Dysmetabolic iron overload 

syndrome  

• African siderosis d 
• Neonatal 

haemochromatosis e 
 

a Ceruloplasmin is important in the release of iron from cells. Affected individuals present with 
progressive extrapyramidal signs, cerebellar ataxia, dementia, diabetes mellitus and hypochromic 
microcytic anemia [87,88]. b Iron transport and delivery to the bone marrow is impaired. The main 
clinical feature is severe anemia, while tissue iron overload results from a compensatory increase in 
intestinal iron absorption [90]. c Due to mutation in the regulatory region of H ferritin [91], but this 
single observation awaits validation by additional reports. d Particularly frequent among Africans 
who drink a traditional beer brewed in non-galvanized steel drums, the disorder was once 
exclusively attributed to dietary excess, segregation analysis has led to the conclusion that an 
unidentified iron-loading gene may confer susceptibility to the disease [92,93] while one modifier 
gene could be ferroportin [94]. e Massive hepatic iron loading and generally fatal perinatal liver 
failure whose hereditary nature is uncertain, although familial cases have been described [95]. 
 
 

II) MOLECULAR PATHOGENESIS  
 

A. The Hemochromatosis Proteins  
 

a) 1. HFE 
HFE is a major histocompatibility class-I-like protein whose ancestral peptide-binding 

groove is too narrow to allow classic antigen presentation [15] while a possible non-classic 
activity has been recently proposed [16]. It is incapable of binding iron [17], while interaction 
between HFE and the transferrin receptor, TfR1, which mediates transferrin-bound iron 
uptake by most cells [17,18], has been fully documented although its biological effects are 
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still uncertain. At present, it is unclear whether the interaction of HFE with TfR1 is key for 
the pathogenesis of HC [19,20,21].  

The C282Y mutation (substitution of tyrosine for cysteine at position 282 due to a single-
base transistion, 845G->A), the most common pathogenic mutation of HFE, is associated 
with disruption of a disulfide bond in HFE that is critical for its binding to β2-microglobulin 
[22]. The latter interaction is necessary for the stabilization, [intracytoplasmic] transport and 
expression of HFE on the cell surface and endosomal membranes where HFE interacts with 
TfR1. The H63D mutation, a common HFE mutation whose pathogenic significance is still 
uncertain, does not impair HFE-TfR1 interaction. While the biological function of HFE is 
still unknown, circumstantial evidence indicate that it might be required for the synthesis of 
hepcidin, the iron hormone secreted by the hepatocytes (see below) (Figure 1). 
 

 

Figure 1. Hepcidin as a common pathogenic denominator in hemochromatosis. (A) In normal subjects 
circulatory iron sets a basal level of hepcidin synthesis by hepatocytes. Serum hepcidin modulates the 
amount of iron released from macrophages and enterocytes that contributes the pool of circulatory iron 
able, in a regulatory feed-back loop, to control the hepatic production of hepcidin. HFE, TfR2 and HJV 
are likely required for hepcidin activation in response to the circulatory iron signal (B) If HFE is non 
functional (i.e. HFE-related hereditary hemochromatosis) hepcidin synthesis by the hepatocytes is 
unregulated and inappropriately low, although a residual hepcidin activity will be still possible due to 
the presence of functional TfR2 and HJV: the consequent unrestricted release of iron from macrophages 
and enterocytes leads to progressive expansion of the plasma iron pool followed by tissue iron overload 
and organ damage. Circumstantial evidence indicates that also TfR2 may be required for iron sensing 
by the hepatocyte. Therefore, a similar pathogenic pathway may be shared by TfR2-related 
hemochromatosis (C). HJV is likely a more important regulator of hepcidin than HFE and TfR2. 
Therefore, a mutated HJV will lead to a more profound inhibitory effect on hepcidin synthesis, a more 
dramatic increase in circulatory iron and a more severe iron overload syndrome (D).  
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b) 2. Transferrin Receptor 2 (TFR2) 
The gene for a second human transferrin receptor (TfR2) [23], unlike TfR1, is highly 

expressed in the liver and it is not regulated by intracellular iron status [24]. TfR2 mediates 
the uptake of transferrin-bound iron by hepatocytes [23], but its in vitro affinity for 
transferrin is 25–30-fold lower than that of TfR1 [25]. The biologic role and function of 
TFR2 remain unknown, but recent studies suggest a role for TfR2 in hepcidin synthesis in the 
liver. In fact, its putative role in hepatocyte uptake of iron [23] is difficult to reconcile with 
the hemochromatosis phenotype observed in humans with pathogenic TfR2 mutations [9] and 
in TfR2-knock-out mice [26]. Yet, its persistent hepatic expression during iron overload 
might conceivably reflect a contribution to the modulation of hepcidin synthesis in this 
setting (see below) (Figure 1).  

 
c) 3. Hemojuvelin (HJV) 

Hemojuvelin has been recently discovered while searching for the gene responsible for 
“juvenile” HC [11]. The putative full-length protein is 426 amino acids; it contains a C-
terminal GPI-anchor, suggesting that it can be present in either a soluble or a cell-associated 
form. The function of hemojuvelin is presently unknown. However hepcidin levels are 
depressed in individuals with HJV mutations, [11] and in HJV knock-out mice [27]. In a 
recent study cellular hemojuvelin positively regulated hepcidin mRNA expression, and 
recombinant soluble hemojuvelin suppressed hepcidin mRNA expression in primary human 
hepatocytes in a log-linear dose-dependent manner, suggesting that HJV is a transcriptional 
regulator of hepcidin [28] (Figure 1).  

 
d) 4. Hepcidin (HAMP) 

Hepcidin, the long waited iron hormone, is an antimicrobial defensin-like peptide [29-
31]. It is the product of the HAMP gene, constituted of 3 exons and 2 introns located on 
chromosome 7 and 19 in mouse and humans, respectively. Humans and rats have a single 
HAMP gene [31], whereas two functional genes, Hamp 1 and 2 are present in the mouse 
genome [32]. Expression of hepcidin mRNA is nearly confined to the liver. The transcript 
encodes a precursor protein of 84 amino acids, including a putative 24-aa leader peptide 
while the circulating forms consist of only the C-terminal portion (20- and 25 amino acid 
peptides) [33].  

Evidence from transgenic mouse models indicates that hepcidin is the principal down-
regulator of the transport of iron across the small intestine and the placenta, and its release 
from macrophages. Transgenic animals over-expressing hepcidin die perinatally due to 
severe iron-deficiency anemia occurring in the context of reticuloendothelial cell iron 
overload [32]. In vivo injection of hepcidin into mice significantly reduced mucosal iron 
uptake and transfer to the carcass, independently on iron status or presence of HFE [34], or 
induces hypoferremia in humans [35]. The present view is that hepcidin down-regulates iron 
efflux from intestine and macrophages by interacting with the main iron export protein in 
mammals, ferroportin (FPN). In fact, it has been recently shown, that hepcidin binds to FPN 
in cultured cells stably expressing FPN, and, following complex internalization, leads to FPN 
degradation [36]. Moreover, hepcidin is highly concentrated in organs expressing FPN [35]. 
This implies decreased FPN expression, and reduced iron egress from cells such as 
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enterocytes and macrophages, whenever circulating hepcidin levels are high, namely, 
inflammation [31,37] and iron overload [31,38-40].  

The stimulation of hepcidin during inflammation is indirect and appears to be mainly 
mediated by the inflammatory cytokine IL-6 [40-42], likely produced by Kupffer cells [43], 
whereas it is controversial whether HFE is involved in this activity [42-44]. Due to its 
sensitivity to inflammatory stimuli and owing to its effect on iron egress from macrophages 
and enterocytes, hepcidin is likely responsible, along with its cellular counterpart ferroportin, 
for iron trapping in enterocytes and macrophage during chronic inflammatory disorders, an 
iron disturbance eventually leading to “anemia of inflammation” or “anemia of chronic 
disease” [45].  

As to the regulatory role of iron on hepcidin synthesis, it might be that serum iron or 
transferrin saturation is the signals for hepcidin up-regulation but the details of this 
stimulation are still obscure. In fact, exposure of cultured murine and human hepatocytes to 
iron salts [31] or iron-saturated transferrin [40] does not increase hepcidin mRNA and may 
even reduce it. At variance with their role in inflammation, Kupffer cells do not seem to be 
required for hepcidin stimulation during iron overload [43,46].  

The fact that mice with genetic disruption of the transcription factors Upstream 
Stimulatory Factor 2 (USF2) or C-EBPa, both required for hepcidin transcriptional control, 
have an hemochromatotic phenotype [47,48] and human lacking hepcidin have a severe form 
of HC [10] places now hepcidin at the center of the pathogenesis of HC (see below) (Figure 
1).  

 
 

B) The Metabolic Abnormality in all Forms of HC  
 
The first biochemical manifestation of hemochromatosis is an increase in the transferrin 

saturation, which reflects an uncontrolled influx of iron into the bloodstream from 
enterocytes and macrophages. Duodenal transfer of iron to the plasma is inappropriately high 
for body iron stores [49]. As a result, their intestinal iron absorption generally exceeds iron 
loss by approximately 3 mg / day [50]. The enhanced absorption of dietary iron by duodenal 
enterocytes plays an essential role in elevating total body iron, but macrophages are normally 
the source of most of the iron found in the plasma compartment [51]. In hemochromatosis, 
these cells seem to release more iron than their normal counterparts, and consequently they 
are invariably iron-poor [14]. The release of iron from both duodenal cells and macrophages, 
which is mediated by the iron exporter ferroportin (FPN), is normally down-regulated by the 
hepatic iron-regulating hormone, hepcidin. Indeed, the iron-overload syndromes associated 
with HFE, TfR2, HAMP, and HJV mutations are all characterized by inadequate hepcidin 
synthesis [11,39,52,53]. Its expression in the liver is also significantly impaired in HFE, TfR2 
and HJV knock-out mice [27,54,55] and hepatic deposition of iron in HFE-KO animals can 
be prevented by hepcidin overexpression [56]. These findings suggests a unifying pathogenic 
model for all forms of HC in which HFE, TfR2 and HJV are all independent but 
complimentary regulators of hepcidin synthesis in the liver (Figure 1). When all three 
proteins function correctly (and the HAMP gene that encodes hepcidin is normal), the 
amount of iron transferred into the blood will be appropriate to body needs, and excessive 
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iron deposition in tissues will be avoided. The relative contributions of the three genes to this 
modulatory process may be different, with a more substantial role assigned to HJV based on 
the more severe iron overload phenotype associated with HJV mutations. Loss of one of the 
minor regulatory proteins (HFE- or TfR2-related HC) will result in an appreciable increase in 
iron influx into the bloodstream, but residual hepcidin activity will be sustained by the 
second minor regulator and the major regulator, HJV gene. The result is a mild “adult” 
hemochromatosis phenotype, with gradual plasma iron loading and gradual accumulation of 
iron in tissues. Loss of the "major" hepcidin regulator, HJV will produced a more dramatic 
effect on influx of iron into the bloodstream (not unlike the one produced by loss of hepcidin 
itself) and result in a more severe, “juvenile”, HC. Combined loss of HFE and TfR2 
(HFE+TfR2-related HH) would theoretically result in much more rapid and substantial 
increases in plasma iron, and, consequently, greater iron overload in tissues, in short, a severe 
“juvenile” phenotype, as recently reported [53]. Finally, the complete loss of hepcidin 
(HAMP-related HH), in spite of normal HFE, TfR2, and HJV, will inevitably lead to massive 
uncontrolled release of iron into the circulation.  

 
 

III) EPIDEMIOLOGY 
 
HFE-related hemochromatosis is the most common form of HC and also the most 

frequently inherited metabolic disorder found in whites, with a prevalence of the pathogenic 
mutation ten times higher than that of cystic fibrosis. The C282Y mutation likely arose in a 
single individual, in this case a Celtic or Viking ancestor inhabiting northwestern Europe 
some 2000 years ago. The genetic defect, which caused no serious obstacle to reproduction 
and may even have conferred some advantages, was passed on and spread through population 
migration [57].  

Whiel organ disease is highly unlikely in simple C282Y heterozygotes, 1%-2% of 
compound C282Y / H63D heterozygotes seem to be predisposed to expression of the disease 
[57]. The clinical significance of other seemingly rarer forms of compound heterozygosity, 
e.g., monoallelic C282Y or H63D mutation with substitution of cysteine for serine at amino-
acid position 65 (S65C) or other rare changes on the second allele, is still being debated [14].  

The frequency of TfR2 mutations is low and so far they have been detected in a few 
pedigrees throughout the world. TFR2 gene is relatively large, spanning 21 kilobases and 
including 18 exons, thus, detection of new TFR2 mutations in single patients remains 
cumbersome. Analysis of TfR2 mutations should be especially considered in individuals with 
adult non-HFE hemochromatosis, particularly from families with high consanguinity.  

Most cases of juvenile HC are due to mutations of HJV located on chromosome 2 [11]. 
To date 23 mutations have been identified in 43 juvenile HC families. One common 
mutation, G320V, has been reported in all studies. It is present in half of juvenile HC 
families. A small proportion of patients with the juvenile form of HC carry mutations in the 
gene encoding the iron regulatory peptide hepcidin on chromosome 19q13 [10]. 
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IV) CLINICAL ASPECTS 
 

A) Classic HFE HC 
 
HFE-related hemochromatosis is a multifactorial disease characterized by step-wise 

progression from biochemical abnormality to organ toxicity [14]. The altered HFE protein 
plays an essential role in this process but its presence alone is insufficient to explain the 
broad spectrum of metabolic and pathologic consequences ascribed to the disease. 
Expressivity of the genetic defect may lead to biochemical abnormalities, symptoms and 
signs or overt organ disease. Early diagnosis in hemochromatosis is especially important 
since treatment by venesection before irreversible end-organ damage has occurred can restore 
a normal life expectancy [58-60]. 

Hemochromatosis should be suspected in a middle-aged men presenting with cirrhosis of 
the liver, bronze skin, diabetes and other endocrine failure, or joint inflammation and heart 
disease. However, this classical syndromic presentation is rare. Today diagnosis is made at 
earlier stages as an effect of screening and enhanced case detection due to greater clinician 
awareness and higher index of suspicion. The most common presenting symptoms are now 
fatigue, malaise, and arthralgia, while hepatomegaly is one of the earliest physical signs. 
Elevated serum transferrin saturation iron, which precedes increased serum ferritin, and 
moderately increased transaminase levels are common biochemical abnormalities. Increasing 
serum ferritin levels herald iron accumulation in tissues, and values above 1000 ng/ml may 
indicate underlying liver fibrosis in HFE-HC, even when transaminase levels are normal [61]. 
Once the diagnosis of HFE-HC is established, all family members, particularly siblings, 
should be subjected to a thorough biochemical and clinical evaluation, and genetic testing is 
advisable for adult first-degree relatives. Further details on HFE-HC are available elsewhere 
[62,63]. 

As specified, while all patients with overt HFE-related HC (i.e., with organ damage) 
carry the C282Y mutation on both HFE alleles, some C282Y homozygotes present no 
evidence of organ disease or biochemical abnormalities although they should still be 
considered to be at increased risk. It is currently impossible to predict whether (and to what 
extent) a C282Y homozygote will express the disease phenotype. At present, we can only 
conclude that, while the majority of C282Y homozygotes have laboratory evidence of plasma 
and tissue iron overload (i.e., high transferrin saturation and ferritin levels, respectively), 
organ disease requiring medical treatment is today much less common [64-68]. 

Although clinical descriptions of TfR2-related HC are currently limited, patients with 
TfR2 mutations almost invariably present signs of significant hepatic iron overload and 
express a systemic iron loading syndrome almost indistinguishable from that of HFE 
hemochromatosis [9,69-72].  

 
 

B) “Juvenile” HC 
 
The rather vague term, “juvenile hemochromatosis,” has been used to refer to a form of 

hereditary iron overload with a development pattern resembling that of adult HC but more 
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rapidly progressive. Because of the higher rate of iron loading associated with this disorder 
(and possibly differential tissue sensitivities to this massive toxic insult), cardiomyopathy and 
endocrinopathy, including reduced glucose tolerance, appear earlier than they do in adult HC, 
and death before the age of 30 is not uncommon [73,74]. We now know that this syndrome is 
usually associated with HJV or, in rarer cases, HAMP mutations (Table 3). The commonest 
symptom at presentation is hypogonadism, which, at the end of the second decade, may be 
present in all cases. In sporadic cases, also abdominal pain and cardiac disease represent 
common findings, while liver cirrhosis is recognized at later stages although silent 
micronodular cirrhosis is part of the syndrome.  

Increased risk of clinically expressed disease has already been documented in patients 
with heterozygous mutations of both HFE and HAMP [75]. Reports of uncharacteristically 
severe disease in patients who apparently have TfR2 mutations alone, or in combination with 
HFE variants, might also be accounted for by undetected mutations of other hereditary 
hemochromatosis genes. The variety of genotypes that can produce a hereditary 
hemochromatosis phenotype highlights the importance of defining and classifying this 
disease as a unique clinicopathologic entity.  

Therapeutic phlebotomy is the safest, most effective and most economical approach to 
treatment of all forms of HC. It can normalize life expectancy if initiated before organ 
damage has occurred. One unit (400-500 ml) of blood (containing approximately 200-250 mg 
of iron) is removed weekly until serum ferritin is less than 20-50 µg/L and transferrin 
saturation drops below 30%. Maintenance therapy, which typically involves removal of 2-4 
units a year, can then be initiated and it must be continued for the duration of the patient’s 
life to keep transferrin saturation and ferritin normal. Phlebotomy has little effect if started 
after organ impairment has already developed: the hypogonadism, cirrhosis, destructive 
arthritis, and insulin-dependent diabetes associated with HC are usually irreversible. Only if 
phlebotomy is contraindicated or non tolerated, other iron removal strategies (e.g use of 
deferoxamine or other iron chelators) should be considered. 

 
 

V) THE FERROPORTIN DISEASE 
 
The ferroportin disease (FD) (Table 2 and 3) is an hereditary iron storage disease distinct 

from HC. It is an autosomal dominant inherited disorder of iron metabolism which causes 
progressive iron retention predominantly in reticuloendothelial cells of the spleen and liver 
and is characterized by steadily increase of serum ferritin, inappropriately high as compared 
to the extent of serum transferrin saturation, marginal anemia, and mild organ disease [76].  

The disorder was described clinically in 1999 [77] and associated with the A77D 
mutation of ferroportin (FPN) in 2001 [12,13]. The disorder has been now reported in many 
countries and, at variance with the distribution of the HFE gene mutations that appear to be 
restricted to Caucasians of northern European ancestry, it appears to be spread worldwide in 
different ethnic groups [76] (Table 3).  



 

Table 3. Hereditary iron overload disorders in humans. 
 

DISORDER 
 

AFFECTED GENE  
( symbol / location) 
 

KNOWN OR 
POSTULATED GENE 
PRODUCT FUNCTION a 
 

GENETICS MECHANISM FOR 
CELLULAR IRON 
ACCUMULATION  

CLINICAL 
ONSET 
(decade) 
 

MAIN CLINICAL 
MANIFESTATION 

Hemochromatosis 
gene 
(HFE / 6p21.3) 
 

• Interaction with 
transferrin receptor 1 

• Hepcidin regulator 

Transferrin-receptor 2  
(TfR2 / 7q22) 

• Uptake of iron-bound 
transferrin  

• Hepcidin regulator 

 
 
 
 
 
3°-5° 
 

 
 
 
 
 
Liver Disease 
 

Hepcidin antimicrobial 
peptide  
(HAMP /19q13.1) 
 

 Down-regulation of iron 
efflux from macrophages, 
enterocytes, placenta  

I. HEMOCHROMATOSIS  
 
 

Hemojuvelin 
(HJV/ 1p21) 

Hepcidin regulator 

 
 
 
 
 
 
Autosomal 
recessive 
 

 
 
 
 
 
 
Increased iron influx 
  

 
 
2°-3° 
 

 
 
Hypogonadism and 
cardiac disease 

II. Ferroportin Disease 
 

Solute carrier family 
40 (iron-regulated 
transporter), member 1  
(SLC40A1 / 2q32)  

Iron export from cells 
including macrophages, 
intestine, placenta  
 

Autosomal 
dominant  
 

Decreased iron efflux 4°-5° 
 

Liver abnormalities 
Marginal anemia 
 

III. Aceruloplasminemia Ceruloplasmin  
(CP / 3q23-q25) 

Iron efflux from cells Autosomal 
recessive 
 

Decreased iron efflux 2°-3° Neurologic 
manifestations 
Anemia 

IV. A(hypo)transferrinemia  Transferrin  
(Tf / 3q21) 

Iron transport in the 
bloodstream 

Autosomal 
recessive 
 

Increased iron influx 1°-2° Anemia 
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FPN is the main iron export protein in mammals. It is expressed in several cell types that 
play critical roles in mammalian iron metabolism, including placental syncytiotrophoblasts, 
duodenal enterocytes, hepatocytes and reticuloendothelial macrophages [78-80]. In vitro, as 
mentioned earlier, FPN has been found to be the cellular receptor for hepcidin [36] (Figure 
1). A current pathogenic model for the FD is that loss-of-function mutations of FPN cause a 
mild but significant impairment of iron recycling particularly by reticuloendothelial 
macrophages [12], which normally must process and release a large quantity of iron derived 
from the lysis of senescent erythrocytes. As a consequence, iron retention by macrophages 
would lead to tissue iron accumulation (i.e. high serum ferritin) but decreased availability of 
iron for circulating transferrin (i.e. low transferrin saturation) and for bone marrow. At later 
stages, both iron retention in cells and activation of feedback mechanisms to increase 
intestinal absorption might contribute to more pronounced iron overload. Although the 
patients are not anemic in the adulthood, indicating that adequate iron is available for normal 
erythropoiesis, they may show a reduced tolerance to phlebotomy and become anemic on 
therapy in spite of persistently elevated serum ferritin values [12,77] (Table 3). It is possible 
that different mutations along the protein may differently affect the function of FPN and 
indirectly lead to variability in clinical expressivity. In this context, anecdotal evidence 
suggests that mutation of this gene can also be associated with parenchymal iron overload 
that closely resembles that of HFE-related hemochromatosis [81]. In addition, recent in vitro 
studies suggest that a subgroup of ferroportin mutations might lead to hepcidin “resistance” 
and increased rather than diminished iron export [82-84]. Therefore, a subgroup of patients 
with FD may carry gain-of-function mutations that lead to enhanced iron release from 
enterocytes and macrophages and a phenotype similar to classic HC. This hypothesis cannot 
be ruled out a priori, but it awaits validation by additional experimental data and more 
extensive clinical studies. 

Although phlebotomy is an effective therapeutic tool, in some individuals a weekly 
phlebotomy program is not tolerated and slight anemia and low transferrin saturation are 
rapidly reached despite a still elevated serum ferritin level. With a less aggressive 
phlebotomy regimen, they can also be iron depleted, although a therapeutic target of serum 
ferritin <30 ng/ml, adopted for classical hemochromatosis, should be avoided due to the risk 
of anemia. Adjuvant therapy with erythropoietin may be beneficial. Discontinuation of 
phlebotomy treatment is followed by a rapid rise of serum ferritin.  

The FD should be suspected in all cases of familial hyperferritinemia or in sporadic cases 
in the absence of known secondary causes (such as infection, dysmetabolism, inflammation 
and malignancy). Differential diagnosis should also consider the rare form of familial 
hyperferritinemia-congenital cataract syndrome, which is not associated with tissue iron 
overload [85,86], aceruloplasminemia [87,88], and dysmetabolic hepatosiderosis [89], 
present in dyslipidemic individuals. 
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ABSTRACT 
 
Primary and secondary iron overload syndromes may result in chronic liver injury, 
ultimately leading to hepatic fibrosis and cirrhosis. Iron toxicity is mediated by a number 
of mechanisms including oxidative stress, with iron-catalyzed production of reactive 
oxygen species causing oxidative damage to lipids, proteins, and nucleic acids. Iron can 
also have pro-fibrogenic effects on the liver which are mediated via inflammatory cells, 
hepatic stellate cells and pro-inflammatory cytokines. Elevated iron stores have been 
observed in a range of liver disorders such as alcoholic liver disease (ALD), nonalcoholic 
steatohepatitis (NASH), chronic hepatitis C virus infection (HCV), and porphyria 
cutanea tarda (PCT). The C282Y mutation in HFE is over-represented in subjects with 
PCT suggesting a role for this mutation in the pathogenesis of iron loading in this 
disorder. However, no clear role for this mutation has been demonstrated in other liver 
disorders. A number of novel iron transport genes may be involved in the pathogenesis of 
iron loading in ALD, NASH, HCV and PCT. Iron reduction therapy has been shown to 
be beneficial in PCT but not in HCV, NASH or ALD.  
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1. INTRODUCTION 
 
It has long been known that serum and hepatic iron parameters can be increased in 

chronic liver diseases of diverse etiologies excluding classical primary and secondary iron 
overload disorders [1]. Hepatic iron deposition is commonly observed in cirrhosis 
irrespective of causation although its clinical significance is often unclear. While excess iron 
may be toxic, evidence continues to mount that lesser degrees of hepatic iron loading may 
worsen liver injury or hepatic fibrosis in non-hemochromatotic liver diseases. Iron deposition 
has been associated with more severe fibrosis in alcoholic liver disease, nonalcoholic 
steatohepatitis and viral hepatitis but not biliary causes of liver disease [2,3,4,5]. More 
importantly, iron deposition is associated with more advanced degrees of liver dysfunction, 
as demonstrated by the significantly higher Child-Pugh and MELD scores. It also occurs in 
well-compensated cirrhosis, where the presence of stainable iron on liver biopsy may be 
predictive of more rapid deterioration in liver function and progression to death or 
transplantation compared with patients without siderosis [6]. 

Assessment of iron status in chronic liver diseases other than classical primary and 
secondary iron overload syndromes is complex. Serum transferrin saturation and ferritin 
levels, while useful for the assessment of iron overload in conditions such as hereditary 
hemochromatosis, are not as useful in the determination of iron status in chronic 
inflammatory liver diseases due to the effects of inflammation and pro-inflammatory 
mediators on serum iron levels and hepatic transferrin and ferritin synthesis [7]. The hepatic 
iron concentration (HIC) measured from biopsy specimens has long been considered the gold 
standard for defining hepatic iron content [8]. The HIC can be determined from fresh or 
paraffin embedded tissue using colorimetric methods or atomic absorption spectrophotometry 
[9,10,11]. Semi-quantitative grading of iron deposition and cellular distribution can be also 
be accomplished using histological assessment of sections stained for iron using Perls' 
Prussian blue method [12]. More recently, the refinement of magnetic resonance imaging and 
measurement of R2 relaxation rate has led to the availability of a non-invasive and rapid 
measurement of HIC which is more accurate than liver biopsy for assessment of liver iron 
stores [13,14,15]. 

 
 

2. IRON AND ALCOHOLIC LIVER DISEASE 
 
Patients with alcoholic liver disease commonly have elevations of serum ferritin levels 

and transferrin saturation [16,17]. Increased levels of non-transferrin-bound iron (NTBI), a 
form of iron thought to be especially reactive, have also been described in active alcohol 
abusers and in alcohol-induced cirrhosis [18]. Despite these elevations, hepatic iron 
concentrations in alcoholic liver disease are usually normal or only slightly increased. There 
are several reasons why hepatic iron overload may occur in patients with alcoholic liver 



Iron in Chronic Liver Disease 177

disease. Intestinal iron absorption may be increased due to increased iron uptake (as seen in 
African dietary iron overload) or up-regulation of intestinal metal transporters. Anemia due to 
hemolysis, hypersplenism, or ineffective erythropoiesis and hypoxemia due to 
interpulmonary shunts or ventilation/perfusion mismatch may increase intestinal iron 
absorption through suppression of hepatic hepcidin production. Hepcidin is a key regulator of 
iron absorption which is influenced by anemia, hypoxia and iron [19]. When hepcidin levels 
are decreased, iron absorption from the gastrointestinal tract and iron release from 
reticuloendothelial cells in the marrow are increased [20]. Hepatic iron uptake may be 
upregulated in the presence of chronic liver disease and elevated concentrations of NTBI. 
Finally, portosystemic shunts are associated with increased hepatic iron deposition 
[21,22,23]. 

A significant independent relationship between hepatic stainable iron and fibrosis has 
been described in a study of 268 alcohol-dependent patients from France [24]. Because 
cirrhosis develops in only 20%–30% of heavy drinkers of alcohol, factors other than alcohol 
must be involved in the pathogenesis. Homozygosity for the C282Y mutation in the HFE 
gene may act as a co-factor in the genesis of liver injury related to alcohol [25]. It is well 
known that excessive alcohol consumption and elevated hepatic iron stores in hereditary 
hemochromatosis interact synergistically to enhance the development of advanced hepatic 
fibrosis and cirrhosis [26]. 

Controversy surrounds the role of heterozygosity for HFE mutations (C282Y or H63D) 
in increasing the severity of alcoholic liver disease. Some studies have shown that the 
presence of the C282Y mutation was strongly associated not only with the presence of 
alcoholic liver disease but with the presence of more advanced degrees of fibrosis or cirrhosis 
[21,27]. However, a study of 257 patients with alcohol related liver disease from the north of 
England demonstrated no effect of HFE mutations on the severity of alcoholic liver disease 
[28]. Likewise, a population based study from Australia did not report an increased 
susceptibility to excessive alcohol consumption in subjects carrying the C282Y HFE 
mutation compared with findings for control subjects [29,30]. Results of studies in animal 
models of alcoholic liver disease provide further support for the concept that iron and alcohol 
can act synergistically. Several studies have clearly demonstrated the synergistic effect of 
diet-induced iron overload and alcohol in the production of increased oxidative stress in the 
liver and the development of liver injury including hepatic fibrosis or cirrhosis [31,32]. 

 
 

3. IRON AND NONALCOHOLIC FATTY LIVER 

DISEASE/NONALCOHOLIC STEATOHEPATITIS 
 
Nonalcoholic fatty liver disease (NAFLD) including nonalcoholic steatohepatitis 

(NASH) is the most prevalent disorder of the liver in the United States [33]. Hepatic steatosis 
detected by magnetic resonance spectroscopy is found in 31% of adults in the United States 
[34] and in 33% of potential live liver donors undergoing liver biopsy [35]. The factors that 
lead to progressive hepatocellular damage after triglyceride accumulation are not well 
elucidated. It appears that alteration of local and systemic factors (particularly insulin 
resistance) that control the balance between the influx or synthesis of hepatic lipids and their 
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export or oxidation leads to hepatic triglyceride accumulation [36]. The steatotic liver is then 
thought to be vulnerable to secondary insults, which lead to hepatocellular inflammation and 
fibrosis. A variety of factors have been implicated to produce a second “hit”, including 
hormones derived from adipose tissue (adipocytokines), oxidative stress and gut-derived 
bacterial endotoxin [37]. 

The association between hepatic iron accumulation and NAFLD/NASH continues to be 
examined. Several studies have reported that 22 to 62% of individuals with fatty liver disease 
and NASH have elevated hepatic iron stores [38,39]. Despite showing that serum ferritin 
levels are increased in 20%–50%, and elevated transferrin saturation (>55%) is present in 
5%–10% of patients with NAFLD, increased ferritin levels are often markers of liver 
inflammation and injury rather than iron overload [40]. 

Studies from Australia and the United States have shown an increased prevalence of the 
C282Y and H63D mutations in HFE in subjects of northern European origin and who have 
NASH, with both homozygosity and heterozygosity being over-represented [41]. It has been 
suggested that the H63D mutation may contribute to the pathogenesis of NASH in men as 
this minor mutation was significantly more common in men with NASH than in women 
[16,42,43]. Some support for the role of iron in NAFLD/NASH was provided by a study in 
which iron-depletion therapy in patients with NAFLD, even with normal body iron stores, 
resulted in the near normalisation of serum alanine aminotransferase levels and marked 
improvements in insulin sensitivity [44]. Another study has shown that phlebotomy therapy 
improves insulin resistance in subjects with hepatic iron overload [45]. Overall, it is generally 
thought that iron burden and HFE mutations do not contribute significantly to hepatic fibrosis 
in the majority of patients with NAFLD [46-51]. 

 
 

4. IRON AND VIRAL HEPATITIS 
 
Abnormal iron studies in patients with hepatitis B were first described by Blumberg and 

colleagues[52-54]. Other studies have shown that persistent hepatitis B virus infection is 
associated with iron overload [55,56]. Modest iron removal in patients with chronic hepatitis 
B by the use of deferoxamine (Desferal) was reported to improve the response rate to 
interferon therapy and to decrease serum ferritin and hepatic iron concentrations [57,58]. 
Interest in the role of iron in hepatitis C began in 1992 when DiBisceglie et al. found that up 
to 36% of patients with chronic hepatitis C had elevated serum iron parameters [59]. Similar 
observations have subsequently been reported by other groups [60,61]. 

While iron is an essential element for the survival of cells, excess amounts can result in 
tissue injury [62]. A key question is whether the iron directly contributes to liver injury or 
whether it is simply a reflection of hepatocellular damage. The concept that iron can act in a 
synergistic fashion with other hepatotoxins has been described previously. Iron has been 
shown to be a synergistic factor in the pathogenesis of alcohol and carbon tetrachloride 
induced liver diseases [63-65]. It is generally accepted that iron increases the formation of 
reactive oxygen intermediates which can result in lipid peroxidation and oxidative damage to 
proteins and nucleic acids. This can result in organelle dysfunction, fibrosis and eventually 
hepatocellular carcinoma. While these findings were initially based on iron overload studies, 
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lipid peroxidation products have been shown in the plasma and liver of patients with chronic 
hepatitis C [66-68]. Farinati et al. found HCV may have a direct cytopathic effect on 
hepatocytes through the occurrence of iron-dependent lipid peroxidation [67]. Patients with 
chronic hepatitis C had significantly greater lobular inflammation, steatosis, serum ferritin 
levels and transferrin saturation, tissue iron, glutathione and malondialdehyde levels 
compared with patients with other forms of chronic hepatitis not related to HCV infection. 
These results suggested that altered serum iron parameters and hepatic iron accumulation in 
chronic hepatitis C may be related to a specific effect of the virus on parenchymal or non-
parenchymal cell function. In liver, the lipid peroxidation products are mainly observed in 
portal tract macrophages [68]. Lipid peroxidation products have been shown to stimulate 
collagen production in activated hepatic stellate cells and cultured human fibroblasts [69,70]. 
Alternatively, lipid peroxidation products may increase production of TGF-β or other 
profibrogenic substances by Kupffer cells which might then stimulate hepatic stellate cell 
activation [71,72]. Iron could also contribute to the increased risk of hepatocellular 
carcinoma in chronic hepatitis C through DNA damage from iron-induced adduct formation 
and chromosomal damage [73-75]. 

Much evidence has accumulated supporting an immunopathological mechanism 
underlying liver injury in chronic hepatitis C [76-78]. Iron has been shown to increase the 
formation of reactive oxygen intermediates which lead to lipid peroxidation and subsequent 
oxidative damage to proteins and nucleic acids [79]. Virus specific T cells are present in the 
liver tissue and peripheral blood of patients with HCV infection and are able to contribute to 
hepatocellular injury, but are not able to eliminate viral infection [80,81]. Iron has been 
shown to impair antigen-specific immune responses and generation of cytotoxic T-cells, 
decrease functional T-helper precursor cells, and enhance T-suppressor activity [82,83]. 
Natural killer cell activity has also been reported to be decreased in iron overload conditions 
[84-86]. Lymphocyte proliferation is inhibited by ferritin [87,88]. Ferritin molecules, 
particularly those rich in heavy (H) subunits, bind to activated T-cells [89] and H-ferritin 
receptors are expressed by T-cell lines [90,91]. These data suggest that iron could impair host 
lymphocyte-dependent clearance of HCV virus. Alpha interferon possesses multiple actions 
including direct antiviral effects and enzyme modulation [92]. The actions of interferon are 
not known to be dependent on intracellular iron although it is possible that iron might also 
interfere in some way with these actions resulting in a reduced antiviral activity. 

It has been suggested that transferrin and nontransferrin-bound iron uptake pathways 
may be affected in necroinflammatory conditions [93]. As a result, non-responders might 
have increased iron uptake and hepatic iron deposition compared with non-responders. 
Increased hepatic iron deposition in hepatitis C may then result in increased oxidative stress 
in the liver, decreased glutathione levels and lipid peroxidation and formation of 
malondialdehyde adducts. The type of molecule where the iron is stored could modulate these 
effects. Ferritin and hemosiderin release iron to different degrees, a property that may 
influence the ability of iron to participate in biological reactions [94]. 

Iron is known to affect immune mediated clearance of HCV by sinusoidal Kupffer cells 
and has also been shown to decrease Kupffer cell production of pro-inflammatory cytokines 
[95,96]. Kupffer cells from iron loaded animals exhibit reduced proinflammatory cytokine 
production compared with Kupffer cells from control animals. Thus iron loading may impair 
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immune clearance mechanisms via impaired macrophage function or interfere with the 
actions of interferon alpha on macrophage function. This is supported by observations that 
iron deposition within zone 1, portal tracts and sinusoidal lining cells is associated with a 
higher likelihood of non-response to interferon therapy [97,98]. There are reports of impaired 
phagocytic function by monocytes in hereditary hemochromatosis [99,100]. and bactericidal 
activity of macrophages in iron overload [101]. Interleukin 2 production by cytotoxic T-cells 
is reduced in the presence of iron overload. 

There has been much interest in the role of iron as a determinant of response to antiviral 
therapy of HCV. Interferon alpha forms the cornerstone of effective treatment for hepatitis C 
[102-105]. There are several characteristics which are known to affect outcome of interferon 
treatment, including age, gender, duration of infection, mode of acquisition, degree of fibrosis 
on histology, HCV genotype and viral load, and iron status [106-113]. Treatment efficacy is 
enhanced by combining therapy with ribavirin and may potentially be improved further by 
optimizing other factors which influence treatment response. Further improvements have 
been possible with the use of long-acting, pegylated interferon plus ribavirin, such that cures 
are now possible in up to 60% of patients [114,115].  

Van Thiel et al. examined the HIC of patients with a variety of different chronic viral 
hepatitis pathologies and found that it was lower in the group of patients who responded to 
treatment than in those who were non-responders [116]. It has been suggested that an HIC of 
greater than 1100 micrograms/gram was predictive of non-response in nearly 90% of patients 
[117,118]. Following these reports, investigators began evaluating the possibility that patients 
might benefit by being depleted of iron by repeated therapeutic phlebotomy before treatment 
with interferon to improve response rates in previous non-responders.  

Therapeutic phlebotomy alone has been shown to reduce serum aminotransferases in 
patients with hepatitis C [119]. In a study of 8 patients with chronic hepatitis C who had 
previously failed to respond to treatment with interferon alpha, serum ALT levels fell in 7 of 
8 following iron reduction [120]. Hayashi et al. reported that iron reduction alone led to the 
normalization of serum ALT levels in 5 of 10 patients with chronic hepatitis C [121]. Four to 
13 phlebotomies, with removal of 1-3 g of iron, over 2-9 months were required to achieve 
iron removal as judged by serum ferritin levels less than 10 ng/ml. Seven patients underwent 
repeat biopsy within 2 months of iron depletion, with no apparent change in the severity of 
portal fibrosis or inflammation. This was followed up in a long-term study of Japanese 
patients who had not experienced a complete or sustained virological response to interferon. 
Therapeutic phlebotomies were performed until a state of iron depletion was achieved, 
defined as a serum ferritin level of less than 10 ng/ml [122]. The iron depletion was then 
maintained by further phlebotomies. Mean serum levels of ALT decreased from 117 to 75 
IU/l and remained at less than 72 IU/l for the ensuing 5 years. The severity of hepatic fibrosis 
in the group subjected to iron reduction decreased from 2.3 to 1.7 by the Desmet scoring 
system (p<0.05). In control subjects not subjected to phlebotomy, the mean value at baseline 
was 1.7 and the mean value at follow-up was 2.0 (p>0.05). The severity of inflammation 
increased in 1 of the 13 in the chronic-iron-reduction group, whereas it increased 
significantly in 12 of 13 control subjects. 

Van Thiel et al. randomized 30 non-responders to iron depletion followed by interferon-α 
or interferon-α alone [123]. Twelve of 15 (80%) of patients treated with iron depletion and 
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interferon had a virological response at 6 months compared with 6/15 (40%) in the 
interferon-alone group. Significantly higher sustained virological response rates were seen in 
the iron depleted group (60%) compared with interferon-alone group (13%). Iron chelation 
with deferoxamine has also been shown to improve response to interferon therapy [124]. 
However, there have been no clear effects of iron reduction on levels of HCV RNA in serum 
[125,126]. 

Fong et al. conducted a randomized study that evaluated the effect of iron depletion on 
aminotransferase activity, HCV RNA levels and response to interferon alpha therapy in 
patients with chronic hepatitis C [127]. Serum ALT levels decreased in 15 of 17 patients after 
phlebotomy. Changes in iron indices and ALT levels were not accompanied by changes in 
HCV RNA levels. At the end of 24 weeks of interferon therapy, similar numbers of 
phlebotomized patients (7 of 17) had a response compared to control patients (6 of 21). 
However after 6 months of follow up, 5 of 17 phlebotomized patients remained HCV RNA 
negative compared with 1 of 21 controls (p=0.07). Tsai et al. have also shown that 
phlebotomy therapy may result in a sustained virologic response in up to 15% of patients who 
have previously not responded to treatment with interferon but who are retreated following 
phlebotomy therapy [128]. 

Boucher et al. found no difference in the HIC between responders and non-responders to 
treatment with interferon and noted that the HIC decreases with IFN treatment whether or not 
patients respond clinically [129]. However, they did identify a relationship between HIC and 
inflammatory activity such that the iron load was higher in those patients with the greatest 
degree of histological inflammatory activity. Interestingly, HIC decreased following 
treatment with interferon. This was related to iron depleted from sinusoidal cells and was 
apparent regardless of whether patients responded to interferon therapy. These findings 
suggest that increased iron stores may be present in patients with chronic hepatitis C 
predominantly as a result of the degree of inflammatory activity, presumably correlating with 
cell injury or necrosis, with subsequent phagocytosis by Kupffer cells resulting in progressive 
increases in Kupffer cell iron loading. Pianko et al. showed that non-responders to interferon 
monotherapy tended to have a higher HIC, and following combination therapy with ribavirin, 
the sustained virological response rate was not affected by the HIC [130]. Rulyak et al. also 
demonstrated that HIC is not an independent predictor of response to therapy with interferon 
and ribavirin and that the HIC is not changed following combination therapy, regardless of 
baseline histology or virologic response [131]. 

Two multicenter, prospective, randomized trials have examined iron reduction as an 
adjuvant therapy to interferon in previous non-responders and interferon-naïve patients. 
DiBisceglie et al. showed that patients in the phlebotomy and interferon group exhibited a 
significant improvement in histological necroinflammatory activity but no benefit in viral 
clearance [132]. Fontana et al. demonstrated that iron reduction improved liver histology but 
also reduced end of treatment HCV RNA levels [133]. Disappointingly, this did not correlate 
with any significant sustained viral eradication after 6 months. Similar negative results have 
been described by others [134,135]. Sievert et al. examined the response to treatment of a 
cohort of 28 adult patients with β thalassemia major, transfusion-acquired severe iron 
overload and chronic hepatitis C infection [136]. Following 6 months of interferon treatment, 
8 patients (28%) achieved a virological and biochemical response which was sustained for a 
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mean of 66 months. Interestingly, the HIC was uniformly high in all patients and had no 
effect on the outcome of treatment. Factors which did predict poor response to treatment 
included high levels of HCV RNA and the presence of HCV genotype 1. Previous studies in 
children have shown response rates to interferon of up to 40% despite the presence of 
increased hepatic iron [137,138]. In both of these studies non-responders appeared to have 
higher hepatic iron content. The responders and non-responders had similar HCV RNA 
levels. There were no significant relationships between HCV RNA levels and the HIC, the 
presence of elevated serum ferritin levels, or the ALT level. Many additional studies have 
been published regarding the role of iron in chronic hepatitis C [139-147]. Most have 
confirmed that increased serum and/or hepatic iron parameters are associated with a lower 
likelihood of response to interferon therapy. 

Banner et al. conducted a study of the frequency with which stainable iron occurred in 
the livers of patients with chronic hepatitis C [148]. These investigators noted that non-
responders to treatment had greater accumulation of iron in the sinusoids and portal tracts. 
Ikura et al. found that the presence and degree of portal iron deposition correlated inversely 
with the response to interferon treatment [149]. The presence of stainable iron has been 
shown to correlate with inflammation and fibrosis in chronic hepatitis C, suggesting that the 
iron came from damaged hepatocytes [150,151]. In contrast, the absence of stainable iron is 
associated with a higher likelihood of response [152]. Other groups have suggested that iron 
may be a more significant factor in certain genotypes, in particular genotype 1b. In a study by 
D'Alba et al. patients with chronic hepatitis C and genotype 1b had higher hepatic iron 
concentrations compared with other genotypes [153]. Genotype and hepatic iron 
concentration remained predictive factors of non-responsiveness on multivariate analysis. 

The discovery of the HFE gene containing two missense mutations which result in 
C282Y and H63D substitutions in the protein and are strongly associated with impaired iron 
metabolism raised the possibility that abnormal HFE genotypes could contribute to iron-
related cell injury in chronic hepatitis C [154]. A number of studies have analysed the 
relationship of HFE mutations and iron overload in chronic hepatitis C [155-157]. Most 
studies indicate that chronic hepatitis C in combination with homozygosity for the C282Y 
mutation results in earlier and more significant liver injury disease than either condition alone 
[158-162]. In general, subjects with chronic hepatitis C have frequencies of HFE mutations 
that are no different from the general population and simple heterozygous status for C282Y 
or H63D is not known to be a risk factor for liver disease in HCV. The product of the HFE 
gene is a major histocompatibility complex-I–type protein, and several immunologic 
differences have been described in subjects with HFE mutations compared with findings for 
those without [163,164]. 

In summary, iron influences the response of chronic hepatitis C to monotherapy with 
interferon alpha but does not seem to be a major factor in combination antiviral therapy with 
ribavirin. The mechanisms responsible for the effects of iron are not clear but emerging data 
suggest that the cellular location of iron within the liver lobule and the subsequent effects on 
immune function are likely to be critical determinants for these effects. 
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5. IRON AND PORPHYRIA CUTANEA TARDA 
 
Porphyria cutanea tarda is caused by a defect in the functioning of uroporphyrinogen 

decarboxylase (UROD). UROD catalyses the conversion of uroporphyrinogen to 
coproporphyrinogen in the biosynthesis of heme, and enzymatic dysfunction results in 
accumulation of uroporphyrins within the skin resulting in the dermatological sequelae. 
Sporadic (type I) PCT accounts for approximately 80% of cases, has normal gene expression 
but the specific hepatic enzymatic activity of UROD is reduced by 60% [165]. In familial 
(type II) PCT there are a variety of autosomal dominant inherited gene mutations that display 
a low penetrance [166]. There is some evidence for a putative type III PCT that appears to be 
a familial form of type I PCT [167,168]. Finally, there is a toxic form of PCT where exposure 
to aromatic hepatotoxic hydrocarbons results in a cutaneous eruption similar to that of 
sporadic PCT, which forms the basis of an animal experimental model for PCT [169]. 

Abnormal iron metabolism in PCT has been long observed, and in 1970 Lundvall clearly 
demonstrated significant iron storage in the livers of 30 patients with PCT [170,171]. Hepatic 
siderosis and steatosis are commonly observed in PCT, while cirrhosis is less common and is 
seen in around 10% of cases. There may be an increased risk of hepatocellular carcinoma in 
patients with PCT [172-174]. 

Hereditary hemochromatosis is a common disease of excess iron storage in target organs 
such as the liver, heart and pancreas [175]. In 1976 a strong association was established 
between hereditary hemochromatosis and HLA-A3 [176]. As the hepatic siderosis of PCT 
and hereditary hemochromatosis appeared similar, investigators screened PCT patients for 
the HLA allelic markers. It was postulated that there might be a common genetic abnormality 
that could explain the iron overload in PCT patients. Kushner et al. reported a single family 
pedigree that appeared to support a link with sporadic PCT and HLA-A3 [177]. Fifty-seven 
percent of their patients with sporadic PCT were HLA-A3 positive. Subsequent investigators 
both reaffirmed and contradicted this observation [178-182]. Thus the issue of a common 
gene defect in hereditary hemochromatosis and PCT remained unanswered. 

The frequency of the C282Y and H63D mutations in patients with PCT was subsequently 
examined. Roberts et al. demonstrated that 44% of patients with PCT carried at least one 
C282Y mutation compared with 11% of controls [183]. They found no difference in the 
incidence of the H63D mutation between patients and controls. Santos et al. described a 
similar incidence of the C282Y mutation in fifteen PCT patients, but a 23% incidence of the 
H63D mutation in PCT patients compared with 4% of controls [184]. The prevalence of 
C282Y and H63D mutations in Australian patients with PCT was similar to that described by 
Roberts [155]. Italian patients with PCT, that had previously shown a strong HLA-A3 linkage 
in 1996, demonstrated no increased incidence of the C282Y mutation, but did show an 
increased incidence of the H63D mutation [185]. 

It is well described that phenotypic expression of PCT is aggravated by external agents 
such as alcohol, estrogens or HCV infection [186-188]. There are conflicting results relating 
to the prevalence of HCV infection in patients with PCT. Patients with PCT from Southern 
Europe have a high prevalence of antibodies to HCV, whereas PCT patients from Northern 
Europe have low prevalence of HCV antibody positivity [189]. Martinelli et al. showed 
65.5% of the PCT patients in Brazil were positive for antibody to HCV [190]. This study also 
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reported a 17.4% incidence of the C282Y mutation in 23 patients with sporadic PCT 
compared with 4% in controls. Interestingly, they found no increased incidence of the H63D 
mutation which is more in keeping with the findings in groups studying patients of a 
Northern European ancestry. 

How do HFE mutations or HCV infection influence the pathophysiology of sporadic 
PCT? It is likely that iron or HCV infection effect hepatocyte UROD activity. The 
importance of iron is clearly demonstrated by the beneficial effect that venesection has on the 
course of PCT. Furthermore, there is an increased incidence of PCT in South African 
populations which also have a high incidence of iron overload. It has been suggested that 
UROD inactivation is in part an iron-dependent process [191]. Neither ferrous nor ferric 
forms of iron have a direct effect on UROD. However, in vitro studies show that iron-
dependent hydroxyl radical generating systems oxidize uroporphyrinogen into products that 
inhibit UROD. In toxic PCT, hydrocarbons may induce the activity of a cytochrome P450 
family that oxidizes uroporphyrinogen; this process has been shown to be promoted by iron. 
It has also been postulated that iron induces the activity of ALA-synthetase which would 
promote the accumulation of uroporphyrins. 

The exact function of HFE has yet to be determined, however, there is accumulating 
evidence to show that it does have a direct physiological role in iron absorption and thus 
when dysfunctional leads to the pathology seen in hereditary hemochromatosis [154]. Thus in 
susceptible individuals, hepatocytes may become iron loaded and UROD activity is inhibited. 

The relationship of HCV infection to disturbances in iron metabolism is far more 
uncertain. Current emphasis has concentrated on the effect that iron has on the infected 
hepatocyte and hepatic immune function. It is accepted that iron-loaded patients with HCV 
infection have a less favorable outcome and are less responsive to anti-viral therapies [105]. 
What remains uncertain is whether the iron loading is a consequence of infection, or a host 
independent factor, that leads to a more severe outcome. Pro-inflammatory cytokines 
produced as a result of HCV infection could alter hepatic iron metabolism. The observation 
that Northern European PCT patients have a high prevalence of the C282Y mutation yet low 
HCV positivity with the converse observation in Southern European PCT patients, reinforces 
the suggestion that the final insult to UROD is an increase in intracellular iron. 

 
 

6. IRON AND PORTOSYSTEMIC SHUNTING 
 
Patients who have undergone portosystemic shunt often develop increased hepatic iron 

deposition [192,193]. Iron loading to the extent observed in typical hemochromatosis has 
been reported in a few patients who have undergone portosystemic shunt [194,195]. The 
reasons for hepatic iron accumulation after shunt placement are unknown. Early animal 
studies showed that duodenal iron absorption was increased following shunt procedures and 
that the increase can be reversed by duodenal exclusion, strongly supporting the suggestion 
that increased absorption of iron by the duodenum is responsible at least in part for increased 
hepatic iron loading [196]. In addition to increased duodenal absorption, other mechanisms 
have been postulated as causes of portosystemic shunt–related iron overload, including 
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relative hepatic hypoxia, and associated pancreatic insufficiency with decreased bicarbonate 
secretion [197]. 

 
 

7. IRON AND END-STAGE LIVER DISEASE 
 
While increases in liver iron are relatively modest and infrequent in chronic hepatitis C 

virus patients, increased stainable iron and/or liver iron content are observed more commonly 
in livers with advanced fibrosis [3,4,198]. Together with the observed association of more 
severe fibrosis in alcoholic liver disease and NASH there is a strong suggestion that hepatic 
iron deposition seen in these conditions is neither a direct result of the specific underlying 
disease nor HFE mutations but rather related to advanced liver fibrosis. Serum iron indices 
and hepatic iron concentrations are often increased in patients with end-stage liver disease. 
Further, iron overload of a magnitude consistent with hereditary hemochromatosis has been 
reported in approximately 10% of cirrhotic livers removed at the time of liver transplantation 
[199,200]. Most patients with iron overload and end-stage liver disease do not have typical 
hereditary hemochromatosis, although an increased prevalence of heterozygosity for HFE 
mutations has been reported in some studies [201,202]. 

Kayali et al. demonstrated the association of siderosis with more advanced stages of 
cirrhosis with significantly higher Child-Pugh and MELD scores among siderotic patients 
[6]. Furthermore, the presence of siderosis was linked with a significant reduction in 
projected 5-year survival without liver transplantation even when the effect of Child-Pugh 
score on survival was taken into account. Despite being associated with more advanced 
degrees of liver dysfunction, the presence of iron deposition in well-compensated cirrhosis 
appears to be predictive of more rapid deterioration in liver function compared with patients 
without siderosis. 

Hepatic iron overload may also be associated with decreased survival after liver 
transplantation in patients with HFE-associated hereditary hemochromatosis as well as in 
those without hereditary hemochromatosis. Using data from the National Hemochromatosis 
Transplant Registry, Kowdley et al. demonstrated that survival after liver transplantation 
among patients with iron overload are significantly lower than those without iron overload 
[203]. Crawford et al. published similar results showing reduced post-transplantation survival 
in hereditary hemochromatosis, with recurrent hepatocellular cancer as the most common 
cause of death [204]. The transplanted organs in hereditary hemochromatosis patients rarely 
reaccumulate iron, however in normal recipients of iron-loaded grafts late function may be 
compromised by slow mobilization of iron stores. Affected patients require careful clinical 
evaluation of perioperative and postoperative risk factors with iron depletion prior to liver 
transplantation possibly improving post-transplantation survival, particularly among patients 
with hereditary hemochromatosis. 
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8. CONCLUSIONS 
 
The effect of hepatic iron as a co-factor in the pathogenesis of chronic liver disease has 

been evaluated in a variety of chronic liver diseases. Iron can have pro-fibrogenic effects on 
the liver which are mediated via inflammatory cells, hepatic stellate cells and pro-
inflammatory cytokines. Elevated iron stores have been observed in a range of liver disorders 
such as ALD, NAFLD/NASH, HCV, and PCT.  

The C282Y mutation in HFE is over-represented in subjects with PCT suggesting a role 
for this mutation in the pathogenesis of iron loading in this disorder. However, no clear role 
for this mutation has been demonstrated in other liver disorders. Iron influences the response 
of HCV to monotherapy with interferon alpha, but not to combination therapy with ribavirin. 
The cellular location of iron within the liver lobule and the effects on immune function are 
likely to be determinants for the mechanisms responsible for the effects of iron. Iron 
reduction therapy has been shown to be beneficial in PCT but not in HCV, NAFLD/NASH or 
ALD. 
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Chapter VII 
 
 

WILSON DISEASE 
 
 

Peter Ferenci* 
Department of Internal Medicine IV, Medical University of Vienna, Austria. 

 
 

DEFINITION 
 
Wilson disease is an autosomal recessive inherited disorder of copper metabolism 

resulting in pathological accumulation of copper in many organs and tissues. The hallmarks 
of the disease are the presence of liver disease, neurologic symptoms and Kayser-Fleischer 
corneal rings.  

The incidence of Wilson disease was estimated to be at least 1:30,000-50,000 with a 
gene frequency of 1:90 to 1:150. Among selected groups of patients Wilson disease is 
certainly more frequent. About 3 to 6% of patients transplanted for fulminant hepatic failure 
and 16% of young adults with chronic active hepatitis of unknown origin have Wilson 
disease. 

 
 

PATHOGENESIS 
 
The basic defect is the impaired biliary excretion of copper resulting in the accumulation 

of copper in various organs including the liver, the cornea and the brain. The consequence of 
copper accumulation is the development of severe hepatic and neurological disease. Copper’s 
unique electron structure allows these cuproenzymes to catalyze redox reactions, but causes 
ionic copper to be very toxic, readily participating in reactions that promote the synthesis of 
damaging reactive oxygen species. Copper overload particularly affects mitochondrial 
respiration and causes a decrease in cytochrome C activity. Damage to mitochondria is an 
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early pathological effect in the liver. Damage to the liver has been shown to result in 
increased lipid peroxidation and abnormal mitochondrial respiration both in copper loaded 
dogs and in patients with Wilson disease. The mechanism(s) triggering copper-induced lipid 
peroxidation are unknown.  

The pathogenesis of neurologic disease is less clear. ATP7B is also expressed in the 
brain, but its function is unknown. It is conceivable that increased copper uptake into the 
brain is a direct result of certain mutation resulting in specific functional alterations of 
cerebral ATP7B. Neuronal damage is mediated by copper deposition in the brain [1]. Copper 
may be directly toxic to neurons or may exert its effects by selective inhibition of brain 
MAO-A. Copper accumulation in the brain may be secondary to liver damage, but this 
hypothesis is inconsistent with the clinical observation that many patients with neurologic 
disease have only mild liver disease, and that conversely patients with advanced liver failure 
have no neurologic symptoms. Furthermore the preferential affection of basal ganglia cannot 
be explained.  

 
 

The Wilson Disease Gene 
 
ATP7B is the gene product of the Wilson disease gene located on chromosome 13 and 

resides in hepatocytes in the trans-Golgi network [2,3]. The functionally important regions of 
the Wilson disease gene are six copper binding domains, a transduction domain (amino acid 
residues 837-864; containing a Thr-Gly-Glu motif) involved in the transduction of the energy 
of ATP hydrolysis to cation transport, a cation channel and a phosphorylation domain (amino 
acid residues 971-1035; containing the highly conserved Asp-Lys-Thr-Gly-Thr motif), an 
ATP-binding domain (amino acid residues 1240-1291) and eight hydrophobic 
transmembrane sequences (1–8), in one of which (region 6) is the cys-pro-cys sequence 
found in all P-type ATPases [4,5]. Alternatively spliced forms of WDP lacking 
transmembrane sequences 3 and 4 (exon 8) are expressed in brain.  

Molecular genetic analysis of patients reveals over 200 distinct mutations (database 
maintained at the University of Alberta -http://www.medgen.med.ualberta.ca). Mutations 
include missense and nonsense mutations, deletions, and insertions. Some mutations are 
associated with a severe impairment of copper transport resulting in severe liver disease very 
early in life; other mutations appear to be less severe with disease appearance in mid 
adulthood. While most reported mutations occur in single families, a few are more common. 
The His1069Gln missense mutation occurs in 30 to 60% of patients of Eastern-, Northern- 
and Central-European origin. It is less frequent in patients of Mediterranean descent and only 
rarely seen in patients of non-European origin. The 2299insC mutation can be detected in 
some patients of European and Japanese descent. The Arg778Leu mutation is present in upto 
60% of patients from Far-East. In Sardinia two frameshift mutations (1515insT and 
2464delC) are found in about 20% of patients. These mutations were not found in other 
populations. 

The study of genotype-phenotype correlations is hampered by the lack of clinical data, 
the rarity of some mutations, and the high frequency of the presence of two different 
mutations in individual patients (compound heterozygotes). In an ongoing study involving 
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820 pts with Wilson disease mostly from Europe, mutations on both chromosomes were 
identified in 58% of the patients, at least one mutation in 30%. Sufficient information is 
available only for the H1069Q mutation. Homozygosity for H1069Q is associated with late 
onset neurologic disease. In contrast, patients with mutations in exons 8 and 13 are 
commonly present with liver disease. 

 
 

Hepatic Copper Metabolism and the Role of ATP7B 
 
Copper is an essential nutrient needed for such diverse processes as mitochondrial 

respiration (cytochrome C), melanin biosynthesis (tyrosinase), dopamine metabolism 
(DOPA-ß-monooxygenase), iron homeostasis (ceruloplasmin), antioxidant defense 
(superoxyde dismutase), connective tissue formation (lysyl oxydase), and peptide amidation. 

Dietary copper intake is approximately 1–2mg/day. Quoted copper contents of foods are 
unreliable. While some foods, such as meats and shellfish, have consistently high 
concentrations, others such as dairy produce are consistently low in copper. However, the 
copper content of cereals and fruits varies greatly with soil copper content and the method of 
food preparation. Estimates of copper intake should include water copper content, and the 
permitted upper copper concentration for drinking water is 2mg/L. Approximately 10% of 
dietary copper is absorbed in the upper intestine, transported in the blood loosely bound to 
albumin, certain amino acids and peptides. Finally, most of the ingested copper is taken up by 
the liver. Copper homeostasis is critically dependent on the liver because this organ provides 
the only physiologically relevant mechanism for excretion of this metal. Within the hepatic 
parenchyma, the uptake and storage of copper occurs in hepatocytes, which regulate the 
excretion of this metal into the bile. Copper appears in the bile as an unabsorbable complex, 
and as a result, there is no enterohepatic circulation of this metal.  

The hepatic uptake of diet-derived copper occurs via the copper transporter 1 (Ctr1) 
which transports copper with high affinity in a metal-specific, saturable fashion at the 
hepatocyte plasma membrane [6,7]. After uptake by hepatocytes copper is bound to 
metallothionein (MT), a cytosolic, low molecular weight, cystein-rich, metal binding protein. 
MT I and MT II are ubiquitously expressed in all cell types including hepatocytes, and have a 
critical role to protect intracellular proteins from copper toxicity [8,9]. The copper stored in 
metallothionein can be donated to other proteins. Specific pathways allow the intracellular 
trafficking and compartmentalization of copper, ensuring adequate cuproprotein synthesis 
while avoiding cellular toxicity (Figure 1). 

Metallochaperones (like ATOX 1) transfer copper to the site of synthesis of copper 
containing proteins [10,11]. The cytoplasmic copper chaperone ATOX1 is required for 
copper delivery to ATP7B by direct protein-protein interaction [12,13]. ATP7B is abundantly 
expressed in hepatocytes and is localized in these cells to the late secretory pathway, 
predominantly the trans-Golgi network. With increasing intracellular copper concentrations, 
this ATPase traffics to a cytoplasmic vesicular compartment that distributes near the 
cannalicular membrane in polarized hepatocytes and is critical for copper excretion [5,14]. 
Copper is incorporated into apoceruloplasmin at the level of the Golgi compartment [15]. 
Ceruloplasmin contains six tightly bound copper atoms. Its main function is to carry copper 
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to various tissues. Another important physiologic role of ceruloplasmin is to act as 
ferrooxidase, converting Fe++ to Fe+++. Other chaperones (Sco1, Sco2, Cox17, lys7) carry 
copper for synthesis of the other cuproenzymes and do not require an interaction with 
ATP7B.  

 

CTR1
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Sco2
CCS

other Cu
proteins

Cu↓

Cu↑

CPLCPL

MTMT

ATOXATOX

ATP7B

Murr1

Cu++

 

Figure1. Model of hepatobiliary copper transport. CTR1= copper transporter 1, MT= Metallothionein, 
CPL= ceruloplasmin, ATOX, Sco1, Sco2, CCS – copper chaperones. 

Biliary excretion is the only mechanism for copper elimination, and the amount of copper 
excreted in the bile is directly proportional to the size of the hepatic copper pool.  

Because hepatic uptake of dietary copper in not saturable, hepatic copper accumulation 
can easily be induced. Toxicity of copper, however, depends on its molecular association and 
subcellular localization rather than on its concentration in the liver. Metallothionein-bound 
copper is nontoxic. Several metals including zinc can induce metallothionein synthesis. 

 
 

CLINICAL PRESENTATIONS 
 
Wilson disease may present at any age, the oldest reported case was 76 years at the time 

of diagnosis. The clinical symptoms are highly variable, the most common ones being liver 
disease and neuropsychiatric disturbances. Children usually present with liver disease, while 
in older patients neurologic disease is more common. None of the clinical signs is typical and 
diagnostic. One of the most characteristic features of Wilson disease is that no two patients, 
even within a family, are ever quite alike. With increased awareness for Wilson disease 
patients are generally diagnosed earlier, thus “late“ consequences of the disease like Kayser-
Fleischer rings or severe neurologic symptoms are less frequently seen. Early symptoms, if 
present at all, are uncharacteristic and nonspecific. Patients presenting with acute or chronic 
hepatic Wilson disease are indistinguishable from patients with liver diseases of other 
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etiology. Early neurologic symptoms are also quite untypical, and may progress slowly over 
many years before diagnosis is made based on “typical signs“. About half of the patients are 
referred for psychological testing because of poor school performance or behavioral 
problems. 
 

 

Figure 2. Kayser-Fleischer ring in a 15 year old patient with neurologic Wilson disease. 

 
Kayser-Fleischer Rings 

 
Characteristically, the ring starts as a small crescent of golden brown granular pigment 

seen at the top of the limbus. This is followed by the appearance of a lower crescent, and 
these two crescents gradually broaden, meet laterally and form complete rings (figure 2).The 
finding of a complete ring therefore suggests long-standing disease and is a useful indicator 
of severe copper overload. The ring is not always detected by clinical inspection. If doubt 
exists, the cornea should be examined under a slit lamp by experienced ophthalmologists. 
Kayser-Fleischer rings are present in 95% of patients with neurologic symptoms, in 50-60 % 
of patients without neurologic symptoms, and only in 10% of asymptomatic siblings. 

 
 

Liver Disease 
 
Most patients with Wilson disease, whatever their clinical presentation, have some 

degree of liver disease. Chronic liver disease (if undiagnosed and untreated) may precede 
manifestation of neurologic symptoms for more than ten years. Patients can present with liver 
disease at any age. The most common age of hepatic manifestation is between 8 and 18 years, 
but cirrhosis may already present in children below the age of 5. On the other hand, Wilson 
disease is diagnosed also in patients presenting with advanced chronic liver disease in their 
50´-is or 60´-is, without neurologic symptoms and without Kayser-Fleischer rings. 
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Depending on referral patterns the proportion of patients presenting with liver disease 
alone varies from 20% to 46%. Liver disease may mimic any forms of common liver 
conditions, ranging from asymptomatic transaminasemia to acute hepatitis, fulminant hepatic 
failure (about 1 out of 6 patients with hepatic presentation), chronic hepatitis, and cirrhosis 
(about 1 out of 3 patients) with all of its complications. 

 
Acute Wilsonian Hepatitis and Fulminant Wilson Disease 

Acute wilsonian hepatitis is indistinguishable from other forms of acute (viral or toxic) 
liver diseases. It should be suspected in young patients with acute hepatitis non A-E. Liver 
histology often reveals the presence of cirrhosis. This initial episode of liver damage may be 
self-limiting and may resolve without treatment, and diagnosis is made retrospectively, when 
neurologic symptoms occur years later. 

On the other hand the disease may rapidly deteriorate and resemble fulminant hepatic 
failure with massive jaundice, hypoalbuminemia, ascites, severe coagulation defects, 
hyperammonemia and hepatic encephalopathy. Hepatocellular necrosis results in the release 
of large amounts of stored copper. Hypercupriemia results in hemolysis and severe hemolytic 
anemia complicates acute liver disease. Although Wilson's disease is a rare disease, in 
patients presenting with fulminant hepatic failure it is not uncommon and accounts for 6 to 
12% of patients with fulminant hepatic failure referred for emergency liver transplantation. 

Although fulminant and subfulminant liver failure due to Wilson's disease has several 
distinctive features, rapid diagnosis may be very difficult. Serum aminotransferase activity is 
usually not increased above 10 times normal and much lower than the values commonly 
recorded in fulminant hepatitis. The combination of anemia, marked jaundice and relatively 
low aminotransferase activities in young patients should always raise the suspicion of acute 
Wilson's disease. The conventionally used parameters of copper metabolism are of little use. 
Kayser-Fleischer corneal rings and neurological abnormalities are absent in most patients 
presenting with acute liver disease. An alkaline phosphatase-total bilirubin ratio below 2.0 
has been claimed to provide 100% sensitivity and specificity to diagnose Wilsonian 
fulminant liver failure, but the usefulness of this test was not confirmed in larger series. The 
best diagnostic test is the quantification of copper in biopsy material or in the explanted liver. 
One puzzling feature of fulminant Wilson disease is the preponderance of female sex 
(female: male ratio 3:1). 

 
Chronic Hepatitis Due to Wilson Disease 

Wilson disease may present, particularly in young patients, with a clinical syndrome 
indistinguishable from chronic active hepatitis of other etiology [16]. Symptoms include 
malaise, fatigue, anorexia, and vague abdominal complaints. Arthralgias, amenorrhea, 
delayed puberty, low grade jaundice may be present. Frequently, Kayser Fleischer rings are 
absent and plasma ceruloplasmin is in the normal range. Liver biopsy shows severe chronic 
active hepatitis but diagnosis is missed if hepatic copper content is not measured. Suspicion 
for Wilson disease should be high in young persons with chronic active hepatitis of unclear 
etiology. In this group Wilson disease is a common diagnosis. Without treatment, patients 
progressively deteriorate with ascites, edema and occasionally jaundice within few months, 
and eventually die of liver failure. 
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About half of patients presenting with neurologic symptoms may also suffer from 
significant liver disease. In a substantial proportion symptomatic liver disease predates the 
occurrence of neurologic signs.  

 
 

Neurologic Presentation 
 
Neurologic symptoms usually develop in mid-teenage or in the twenties. However, there 

are well documented cases in which neurologic symptoms developed much later (45-70 
years). The initial symptoms may be very subtle abnormalities such as mild tremor, speech 
and writing problems and are frequently misdiagnosed as behavioral problems associated 
with puberty. The symptoms may remain constant or progress steadily. The hallmark of 
neurologic Wilson disease is a progressive movement disorder. The most common symptoms 
are dysarthria, dysphagia, apraxia, and a tremor-rigidity syndrome (“juvenile Parkinsonism“). 
Because of increasing difficulty in controlling movement, patients become bedridden and 
unable to care for themselves. Ultimately, the patient becomes helpless - usually alert, but 
unable to talk. In patients presenting with advanced liver disease, neurologic symptoms are 
mistaken as signs of hepatic encephalopathy. 

 
 

Psychiatric Presentation 
 
About one-third of patients initially present with psychiatric abnormalities. Symptoms 

can include reduced performance in school or at work, depression, very labile mood , sexual 
exhibitionism, and frank psychosis. Frequently, adolescents with problems in school or work 
are referred for psychological counseling and psychotherapy. Among our patients two were 
hospitalized in psychiatric institutions for psychosis, one having committed several suicide 
attempts and two for severe alcohol abuse before diagnosis of Wilson´s disease was made. 
The delay in diagnosis in one case was 12 years. 

 
 

Other Clinical Manifestations 
 
Hypercalciuria and nephrocalcinosis may be the presenting signs in patients with Wilson 

disease. Hypercalciuria is possibly the consequence of a tubular defect in calcium 
reabsorption. Penicillamine therapy was accompanied by a decrease in urinary calcium 
excretion to normal values in half of the patients studied. Wiebers et al. observed renal stones 
in 7 of 54 patients with Wilson disease. 

Cardiac manifestations in Wilson's disease include arrhythmias, cardiomyopathy, cardiac 
death, and autonomic dysfunction. Thirty-four percents of patients with Wilson's disease have 
electrocardiographic abnormalities. Two cases of cardiac deaths were reported (one died of 
repeated ventricular fibrillation, the other, of dilated cardiomyopathy). In one of them copper 
content in the myocardium was measured and found to be markedly elevated. 
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The occurrence of chondrocalcinosis and osteoarthritis in Wilson disease may be due to 
copper accumulation similar to the arthropathy of hemochromatosis. 

 
 

DIAGNOSIS 
 
The diagnosis of Wilson disease is usually made on the basis of clinical findings and 

laboratory abnormalities (see table 1). According to Scheinberg and Sternlieb [17], diagnosis 
of Wilson disease can be made if two of the following symptoms are present: Kayser-
Fleischer rings, typical neurologic symptoms and low serum ceruloplasmin levels. 
 

Table 1. Routine tests for diagnosis of Wilson disease. 
 

test typical 
finding 

false "negative“ false "positive“ 

serum 
ceruloplasmin 

decreased Normal levels in pts. with 
marked hepatic inflammation  
overestimation by immunologic 
assay 

low levels in: 
- malabsorption 
- aceruloplasminemia 
- liver insufficiency 
- heterozygotes 

24 hr urinary 
copper 

>100 µg/d normal: 
- incorrect collection 
- children without liver disease 

increased: 
- hepatocellular 

necrosis 
- contamination 

serum "free“ 
copper 

>10 µg/dl normal if ceruloplasmin 
overestimated by immunologic 
assay 

 

hepatic copper >250 µg/g dry 
weight 

due to regional variation 
- in pts with active liver disease 
- in pts with regenerative 

nodules 

cholestatic syndromes 

Kayser-
Fleischer rings 
by slit lamp 

present - in up to 40% of patients with 
hepatic Wilson disease  

- in most asymptomatic siblings 

primary biliary cirrhosis 

 
 

Patients with Neurologic Disease 
 
In a patient presenting with typical neurologic symptoms and having Kayser-Fleischer 

rings the diagnosis is straight forward. Clinical neurologic examination is more sensitive than 
any other method to detect neurologic abnormalities. No further diagnostic procedures are 
necessary to establish the diagnosis. Kayser Fleischer rings are rarely absent in neurologically 
symptomatic patients. However, there are a few well documented cases of neurologic Wilson 
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disease without demonstrable Kayser-Fleischer rings. In such patients diagnosis is usually 
made by a low serum ceruloplasmin level. 

Brain magnetic resonance imaging (MRI) is useful to document the extent of changes in 
the central nervous system. The most common abnormalities are changes in signal intensity 
of gray and white matter, and atrophy of the caudate nucleus, brain stem, cerebral, and 
cerebellar hemispheres. A characteristic finding in Wilson disease is the “face of the giant 
panda“ sign, but is found only in a minority of patients. In Wilson disease, an abnormal 
striatum or an abnormal pontocerebellar tract correlates with pseudoparkinsonian-, and an 
abnormal dentatothalamic tract with cerebellar signs. On treatment some of the MRI 
abnormalities are fully reversible. 

Auditory evoked brainstem potentials are helpful to document the degree of functional 
impairment and the improvement by decoppering treatment [18,19]. 

 
 

Patients with Liver Disease and Hemolytic Anemia 
 
Diagnosis is far more complex in patients presenting with liver diseases. None of the 

commonly used parameters alone allows a certain diagnosis of Wilson disease. Usually a 
combination of various laboratory parameters is necessary to establish the diagnosis. 

Kayser-Fleischer rings may be absent in up to 50 % of patients with Wilsonian liver 
disease and even in a higher proportion in fulminant Wilson disease. On the other hand 
patients with primary biliary cirrhosis may occasionally have Kayser-Fleischer rings. 

 
Laboratory Parameters 

 
Routine Laboratory Parameters of Liver Disease 

In general, transaminases are only mildly increased, and deep jaundice combined with 
mild elevation of liver enzymes should raise the suspicion for fulminant Wilson disease. 
However, increases of transaminases may be indistinguishable from findings seen in acute 
hepatitis. Sometimes alkaline phosphatase activities are relative low in patients with Wilson 
disease. A ratio of total serum bilirubin concentration and alkaline phosphatase activity (>2) 
may differentiate fulminant Wilson disease from other forms of fulminant hepatic failure. 
However, the usefulness of this test was not confirmed in larger series. 

 
Serum Ceruloplasmin 

Serum ceruloplasmin can be measured by an immunologic assay or by the oxydase 
method. Since the immunologic ceruloplasmin assay can be automated by nephelometric 
methods, it is widely used in clinical laboratories. The oxydase method is only performed in 
specialized centers. Whereas serum ceruloplasmin is decreased in most patients with 
neurologic Wilson disease, it may be in the low normal range in up to 45% of patients with 
hepatic disease [20]. On the other hand, even a low ceruloplasmin level is not diagnostic for 
Wilson disease in the absence of Kayser Fleischer rings. It may be low in subjects with 
familial hypoceruloplasminemia, in celiac disease, in severely malnourished subjects, and in 
heterozygous carriers of the Wilson disease gene [21]. Thus, in patients with liver disease a 



Peter Ferenci 210 

normal ceruloplasmin level cannot exclude, nor is a low level sufficient to make the diagnosis 
of Wilson disease. An overestimation of serum ceruloplasmin can be suspected if the serum 
copper concentration is lower than expected by the measured ceruloplasmin (which contains 
0.3% of copper) level. Finally, ceruloplasmin is an acute phase reactant and its serum 
concentration increases as consequence of inflammation. Most patients with normal 
ceruloplasmin had marked liver disease. Similarly serum ceruloplasmin may increase in 
pregnancy to high normal values. 

 
Serum Copper 

In general, serum copper values parallel those of ceruloplasmin. Therefore, serum copper 
is frequently low in patients with Wilson disease. However, about half of patients have serum 
copper levels in the normal range. Patients with fulminant Wilson disease and/or hemolytic 
anemia may even have markedly increased levels. Most of the copper in serum is bound to 
ceruloplasmin, and under normal condition less than 5% circulates as “free copper“ and does 
not exceed 10 µg/dl in normal subjects. The “free“ copper concentration can be calculated by 
subtracting from the total copper concentration the ceruloplasmin bound copper 
(ceruloplasmin times 3.3).  

 
Urinary Copper Excretion 

Urine copper excretion is markedly increased in patients with Wilson disease; however, 
its usefulness in clinical practice is limited. The estimation of urinary copper excretion may 
be misleading due to incorrect collection of 24-hour urine volume or to copper 
contamination. In presymptomatic patients urinary copper excretion may be normal, but 
increase after D-penicillamine challenge [22]. On the other hand urinary copper excretion is 
also increased in any disease with extensive hepatocellular necrosis. 

 
Hepatic Copper Content 

Hepatic copper content exceeds 250 µg/g dry weight (normal: up to 50) is increased in 
82% of patients with WD. In the absence of other tests suggestive for abnormal copper 
metabolism, diagnosis of Wilson disease cannot be made based on an increased hepatic 
copper content alone. Patients with chronic cholestatic diseases, neonates and young children 
and possibly also subjects with exogenous copper overload have increased hepatic copper 
concentration >250 µg/g. On the other hand, hepatic copper content may be normal or 
borderline in about 18 % of patients with unquestionable Wilson disease due to sampling 
given great regional differences in hepatic copper distribution, especially in the cirrhotic 
liver. Thus, estimates from a single biopsy specimen may be misleading. 

Hepatic copper content was measured in 106 liver biopsies obtained at diagnosis of 
Wilson disease, in 212 patients with a variety of noncholestatic liver diseases, and 26 without 
evidence of liver disease [23]. Liver copper content was >250 µg/g dry weight in 87 (82%) 
patients, between 50 and 250 µg/g in 15, and in the normal range in 4. Liver copper content 
did not correlate with age, the grade of fibrosis, or the presence of stainable copper. Liver 
copper content was >250 or between 50 and 250 µg/g dry weight in 3 (1.4%) and 20 (9.1%) 
of 219 patients with noncholostatic liver diseases, respectively. By lowering the cut off from 
>250 to 75 µg/g dry weight the sensitivity of liver copper content to diagnose Wilson disease 
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increased from 81.2 to 96%, the negative predictive value from 88.2 to 97.1%, but the 
specificity (98.6 to 90.1%) and the positive predictive value (97.6 to 87.4%) decreased. Thus, 
although liver copper content is a useful parameter it neither proves nor excludes Wilson 
disease with certainty.  

Diagnosis of Wilson disease requires a combination of a variety of clinical and 
biochemical tests. A diagnostic scoring system (table 2) was developed at the 8th International 
Meeting on Wilson disease, Leipzig/Germany [24] and its validity was confirmed by a 
retrospective analysis of a larger cohort of pediatric cases [25].  

 
Table 2. Scoring system developed at the 8th International Meeting on Wilson disease, 

Leipzig 2001 [24]. 
 

Typical clinical symptoms and signs Other tests 
KF rings  Liver copper (in absence of cholestasis)  
 Present 2  >5xULN (>250µg/g) 2 
 Absent 0  50-250µg/g 1 
Neurologic symptoms   Normal (<50µg/g) -1 
 Severe 2  Rhodanine pos. granules* 1 
 Mild 1 Urinary copper (in absence of acute   
 Absent 0 hepatitis)  
Serum Caeruloplasmin   Normal 0 
Normal(>0.2g/l) 0  1-2x ULN 1 
0.1-0.2g/l 1  >2x ULN 2 
<0.1g/l 2 Normal, but >5xULN after D-pen 2 
Coombs’ neg. hemolytic   Mutation Analysis  
Anemia   2 chromosome mutations 4 
 Present 1  1 chromosome mutation 1 
 Absent 0  No mutations detected 0 
TOTAL SCORE Evaluation:  
4 or more Diagnosis established   
3 Diagnosis possible, more test needed   
2 or less Diagnosis very unlikely   

* If no quantitative liver copper available 
 

Liver Biopsy 
 

Light Microscopy 
Liver biopsy findings are generally nonspecific and not directly helpful to make the 

diagnosis of Wilson disease. Liver pathology includes early changes like fatty intracellular 
accumulations, which often proceed to marked steatosis. At later stages, hepatic inflammation 
with portal and periportal lymphocytic infiltrates, presence of necrosis and of fibrosis may be 
indistinguishable from other forms of hepatitis. Some patients have cirrhosis without any 
inflammation. The detection of focal copper stores by the Rhodanin stain is a pathognomic 
feature of Wilson disease but is only present in the minority (about 10%) of patients. 
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Electrone Microscopy 
The ultrastructural abnormalities include pathological changes of mitochondria and 

peroxisomes. Hepatocellular mitochondria are pleomorphic, with varying combinations of 
abnormalities including enlargement, bizarre shapes, and increased matrix density, separation 
of the normally apposed inner and outer membranes, widened intercristal spaces, enlarged 
granules, and crystalline, vacuolated, or dense inclusions. Sometimes peroxisomes are 
abnormally enlarged, rounded, or misshapen, and contain a granular or flocculent matrix of 
varying electron density. 

 
Radiocopper-Test 

The basis of this test is the biphasic plasma kinetics of copper. Four hours following a 
tracer dose of 64Cu, > 95% is removed from the circulation by the liver, and within 24 hours, 
6% to 8% reappears incorporated into ceruloplasmin [26]. This second peak is absent in 
Wilson disease patients [27]. This test is rarely used today. 

 
Mutation Analysis 

 
Direct Mutation Analysis 

Direct molecular-genetic diagnosis is difficult because of the occurrence of many 
mutations, each of which is rare [28]. Furthermore, most patients are compound 
heterozygotes (i.e. carry two different mutations). Direct mutation diagnosis is only helpful, if 
a mutation occurs with a reasonable frequency in the population. In Northern, Central and 
Eastern Europe [28] the most common mutations are: H1069Q mutation (allele frequency: 
43.5%), mutations of exon 8 (6.8%), 3400delC (3%) and P969Q (1.6%). In other parts of the 
world the pattern of mutations is different (ie. Sardinia: UTR –441/-427del, 2463delC [29]; 
Far East: R778L [30,31]. Screening for mutations is done by denaturating HPLC analysis 
followed by direct sequencing of exon suspected to carry a mutation. This approach is 
impractical for clinical diagnosis. In contrast, using allele-specific probes; direct mutation 
diagnosis is rapid and clinically very helpful, if a mutation occurs with a reasonable 
frequency in the population (Table 3.) In Austria, the H1069Q mutation is present in 61% of 
Wilson disease patients, and a two-step PCR based test for this mutation became very useful. 
A multiplex PCR for the most frequent mutations makes direct mutation analysis for 
diagnosis feasible. 

 
Haplotype Analysis 

Because of the complexity in identifying the many mutations in Wilson disease, 
haplotypes can be used to screen for mutations and to examine asymptomatic siblings of 
index patients. A number of highly polymorphic microsatellite markers have been described 
that closely flank the gene and are highly variable: D13S316, D13S314, D13S301, D13S133 
[32]. Where the markers are different at each locus in a patient, testing of at least one 
parent/or child of the patient is necessary to obtain the haplotype. The identification of 
unusual haplotypes can lend to support, but is not sufficient to confirm the diagnosis of 
Wilson disease.  
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Microsatellite markers are also useful to study the segregation of the Wilson disease gene 
in most families. By these approach diagnostic dilemmas in differentiating heterozygote gene 
carriers and affected asymptomatic siblings can be solved [33,34]. For such analysis, at least 
one first degree relative and the index patient is required. 

 
Table 3. Common mutations of the WD gene in various populations. 

 
Area (Ref) Most common mutation 

(exon) 
Other common mutations 
(exon) 

Central-, Eastern-, Northwestern 
Europe [28,47]* 

H1069Q (14) 3400delC (15), exon 8 
(multiple), P969Q (13) 

Sardinia [29] -441/-421 del (5' UTR) 2463delC, V1146M 
Canary Islands [48] L708P (8)  
Spain [49] M645R (6) L1120X (15) 
Turkey [29]** P969Q, A1003T (13) Exon 8, H1069Q,  
Brasil [50] 3400delC (15)  
Saudi Arabia [51] Q1399R (21)  
Far East [30,31] R778L (8)  

* Russia, Bjelorus, Poland, Bulgaria, former Yugoslavia, Slovakia, Hungary, Germany, Benelux, 
Greece (Ferenci P, unpublished data); ** Ferenci P (unpublished data) 

 
 

Family Screening 
 
Once diagnosis of WD was made in an index patient evaluation of his family is 

mandatory. The likelihood to find a homozygote among siblings is 25%, among children 
0.5%. Testing of second degree relatives is only useful if the gene was found in one of the 
immediate members of his/her family. No single test is able to identify affected siblings or 
heterozygote carriers of the WD gene with sufficient certainty. Today, mutation analysis is 
the only reliable tool for screening the family of an index case with known mutations; 
otherwise haplotype analysis can be used. A number of highly polymorphic microsatellite 
markers that closely flank the gene allow tracing the WD gene in a family.  

 
 

TREATMENT 
 
Treatments for Wilson disease progressed from the intramuscular administration of BAL 

to the more easily administered oral penicillamine. Alternative agents to penicillamine like 
trientine were developed and introduced for patients with adverse reactions to penicillamine. 
Zinc was developed separately, as was tetrathiomolybdate, which was used for copper 
poisoning in animals. Today, the mainstay of treatment for Wilson disease remains lifelong 
pharmacologic therapy, but the choice of the drug mostly depends on the opinion of the 
treating physician and is not based on comparative data. Based on the recent AASLD practice 
guideline on Wilson disease initial treatment for symptomatic patients should include a 
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chelating agent (penicillamine or trientine). Treatment of presymptomatic patients or 
maintenance therapy of successfully treated symptomatic patients can be accomplished with 
the chelating agent penicillamine or trientine, or with zinc [35]. Liver transplantation, which 
corrects the underlying hepatic defect in Wilson disease, is reserved for severe or resistant 
cases. 

 
 

Penicillamine 
 
Penicillamine was first reported to be effective in treating Wilson disease by Walshe in 

1956 and is since the "gold standard“ for therapy. Penicillamine acts by reductive chelation: 
it reduces copper bound to protein and decreases thereby the affinity of the protein for 
copper. Reduction of copper thus facilitates the binding of copper to the drug. The copper 
mobilized by penicillamine is then excreted in the urine. Within a few weeks to months, 
penicillamine brings the level of copper to a subtoxic threshold, and allows tissue repair to 
begin. The great majority of symptomatic patients, whether hepatic, neurologic or 
psychiatric, respond within months of starting treatment. Among neurologic patients, a 
significant number may experience an initial worsening of symptoms before they get better.  

The usual dose of penicillamine is 1 to 1.5 g/day. Initially, this dose will cause a large 
cupriuresis, but copper excretion later on decreases to 0.5 mg/d. To prevent deficiency 
induced by penicillamine pyridoxine (vitamin B6) should be supplemented (50 mg/week). 
Once the clinical benefit was established, it is possible to reduce the dosage of penicillamine 
to 0.5 to 1 g/d. A lower maintenance dose will decrease the likelihood of late side effects of 
the drug.  

A major problem of penicillamine is its high level of toxicity. In our series 20% of 
patients had major side-effects and were switched to other treatments. Other series report 
even higher frequencies of side effects. There are two broad classes of penicillamine toxicity: 
direct, dose dependent side effects and immunologically induced lesions. Direct side effects 
are pyridoxine deficiency, and interference with collagen and elastin formation. The later 
results in skin lesions like cutis laxa and elastosis perforans serpingiosa. By routine skin 
biopsies one year after initiation of treatment we found signs of elastic and collagen fiber 
abnormalities in every patient, but none developed symptomatic skin disease so far. These 
side effects can be prevented or mitigated by decreasing the dosage of penicillamine. 
Immunologic mediated side effects include leukopenia and thrombocytopenia, systemic lupus 
erythematodes, immune complex nephritis, pemphigus, buccal ulcerations, myasthenia 
gravis, optic neuritis, and Goodpasture syndrome. Immunologic mediated side effects occur 
within the first three months of treatment and require immediate cessation of penicillamine. 
To diagnose these side effects as soon as possible, patients should be monitored in weekly 
intervals during the first six week of therapy. If the drug is well tolerated, control intervals 
can be gradually prolonged.  
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Trientine 
 
Trientine is a copper chelator, acting primarily by enhancing urinary copper excretion. 

Trientine is licensed for treatment of Wilson disease and is now generally available. 
Experience with trientine is not as extensive as with penicillamine. It seems to be as effective 
as penicillamine with far fewer side effects. Its efficacy was evaluated in patients with 
intolerance to penicillamine [36]. Discontinuation of penicillamine resulted in death from 
hepatic decompensation or fulminant hepatitis in 8 of 11 patients who stopped their own 
treatment after an average survival of only 2.6 years. In contrast, 12 of 13 patients with 
intolerance to penicillamine switched to trientine (1 to 1.5 g per day) were alive at 2 to 15 
years later. The remaining patient was killed accidentally. However, the efficacy of trientine 
was not compared with penicillamine as initial treatment of Wilson disease. Uncontrolled 
anecdotal reports and our own experience indicate, that trientine is a satisfactory first line 
treatment for Wilson disease. In the early phase of treatment trientine appears to be more 
potent to mobilize copper than penicillamine, but cupriuresis diminishes more rapidly than 
with penicillamine. The cupriuretic power of trientine may be disappointing but is sufficient 
to keep the patient clinically well.  

 
 

Ammonium Tetrathiomolybdate 
 
This drug has two mechanisms of action. First, it complexes with copper in the intestinal 

tract and prevents thereby absorption of copper. Second, the absorbed drug forms a complex 
with copper and albumin in the blood and renders the copper unavailable for cellular uptake. 
There is very limited experience with this drug. Tetrathiomolybdate appears to be a useful 
form of initial treatment in patients presenting with neurologic symptoms [37]. In contrast to 
penicillamine therapy, treatment with tetrathiomolybdate does not result in initial neurologic 
deterioration. This agent is particularly effective at removing copper from the liver. Because 
of its effectiveness, continuous use can cause copper deficiency. Besides, bone marrow 
depression was observed in a few patients treated with this drug. 

 
 

Zinc 
 
Zinc interferes with the intestinal absorption of copper by two mechanisms. Both metals 

share the same carrier in enterocytes and pretreatment with zinc blocks this carrier for copper 
transport (with a half-life of about 11 days). The impact of zinc induced blockade of other 
copper transport by other carriers into the enterocytes was not studied. Second, zinc induces 
metellothionein in enterocytes [38], which acts as an intracellular ligand binding metals 
which are then excreted in the feces with desquamated epithelial cells. Indeed, fecal excretion 
of copper is increased in patients with Wilson disease on treatment with zinc. Furthermore, 
zinc also induces metallothionein in the liver protecting hepatocytes against copper toxicity 
[39,40]. Data on zinc in the treatment of Wilson disease are derived from uncontrolled 
studies using different zinc preparations (zinc sulfate, zinc acetate) at different doses (75-250 
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mg/d) [41]. The efficacy of zinc was assessed by four different approaches. First, patients 
successfully decoppered by d-penicillamine were switched to zinc and the maintenance of 
their asymptomatic condition was monitored. Most patients maintained a negative copper 
balance and no symptomatic recurrences occurred. Some patients, however, died of liver 
failure after treatment was switched to zinc. Stremmel observed the occurrence of severe 
neurologic symptoms in a 25 year old asymptomatic sibling 4 months after switching from d-
penicillamine to zinc [41]. 

Second groups are symptomatic patients switched to zinc as alternate treatment due to 
intolerance to D-penicillamine. 16 case histories were published so far. Liver function and 
neurologic symptoms improved in 3 and 5 patients, respectively. One patient further 
deteriorated neurologically and improved on retreatment with d-penicillamine. The remaining 
patients remained in stable condition. Follow-up studies in 141 patients demonstrated that 
zinc is effective as sole therapy in the long-term maintenance treatment of Wilson disease. In 
a third group zinc was used as first line therapy. About 1/3 were asymptomatic siblings, 2/3 
presented with neurologic or hepatic symptoms. Most patients remained free of symptoms or 
improved. In 15% neurologic symptoms worsened and improved on d-penicillamine. Three 
patients died of progressive liver disease. Finally, in a prospective study in 67 newly 
diagnosed cases the efficacy of d-penicillamine and zinc was similar. This was not a 
randomized study; every other patient was treated with zinc. Zinc was better tolerated than D-
penicillamine. However, two zinc-treated patients died of progressive liver disease.  

It is unknown whether a combination of zinc with chelation therapy is useful or not. 
Theoretically these drugs may have antagonistic effects. Interactions in the maintenance 
phase of zinc therapy with penicillamine and trientine were investigated by Cu balance 
studies and absorption of orally administered 64Cu as endpoints. The result on Cu balance 
was about the same with zinc alone as it is with zinc plus one of the other agents. Thus, there 
appear to be no advantages to concomitant administration. 

 
 

Antioxidants 
 
As discussed before, the main mechanism of hepatocellular injury by excess copper is the 

formation of free radicals resulting in lipid-peroxydation and impaired mitochondrial 
respiration. Thus, antioxidants, such as a-tocopherol, may be important adjuncts in the 
treatment of Wilson disease. There are no large experiences with a-tocopherol. A few 
observations indicate that this therapeutic adjunct may be useful in severe liver disease. 

 
Drug Therapy During Pregnancy 

Controversy over prescribing penicillamine in pregnant patients exists due to its possible 
teratogenic effects. Rare cases of birth defects including hydrocephalus and cerebral palsy 
have been reported in patients treated with penicillamine for a variety of diseases. However, 
the overall teratogenic risk of penicillamine is low and there is general support for continuing 
treatment throughout pregnancy to avoid the risk of relapse in the mother, although the 
optimal dosage of penicillamine is not known. Trientine appears to be an alternative to 
penicillamine with no reported teratogenic effects, but the experience with this drug is 
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limited. The use of zinc in pregnancy has not been associated with any fetal abnormality and 
possibly has a protective effect from some birth defects. The limited experience with zinc or 
trientine in pregnancy does not justify a change in drug therapy during pregnancy. 

 
Monitoring Therapy 

If a decoppering agent is used for treatment, the compliance can be tested by repeated 
measurements of the 24 hour urinary copper excretion. This approach is not useful if patients 
are treated with zinc. If in a compliant patient urinary copper excretion decreases over time 
and stabilizes at < 500 µg/day, the dose of d-penicillamine can be lowered.  

Efficacy of treatment can be monitored by the determination of “free” copper in serum, 
and depending on the presenting symptoms, Liver disease can be assessed by routine liver 
function tests. Repeated liver biopsies with measurement of hepatic copper content are not 
helpful. Improvement of neurologic symptoms can be documented by clinical examination. In 
addition, some of the MRI abnormalities are fully reversible on treatment. Auditory evoked 
brainstem potentials are also helpful to document improvement by decoppering treatment. 

 
 

Liver Transplantation 
 
Liver transplantation is the treatment of choice in patients with fulminant WD and in 

patients with decompensated cirrhosis. Besides improving survival, liver transplantation also 
corrects the biochemical defect underlying Wilson disease. However, the role of this 
procedure in the management of patients with neurological Wilson's disease in the absence of 
hepatic insufficiency is still uncertain. 

Schilsky analyzed 55 transplants performed in 33 patients with decompensated cirrhosis 
and 21 with wilsonian fulminant hepatitis in the United States and Europe. The median 
survival after orthotopic liver transplantation was 2.5 years, the longest survival time after 
transplantation was 20 years. Survival at 1 yr. was 79%. Nonfatal complications occurred in 
five patients. Fifty-one orthotopic liver transplants (OLT) were performed on 39 patients (16 
pediatric, 23 adults) at the University of Pittsburgh. The rate of primary graft survival was 
73% and patient survival was 79.4%. Survival was better for those with a chronic advanced 
liver disease presentation (90%) than it was for those with a fulminant hepatic failure (73%) 
presentation. In the Mayo clinic series one-year survival ranged from 79% to 87%, with an 
excellent chance to survive long term. The outcome of neurologic disease following OLT is 
uncertain. In the retrospective survey four of the seven patients with neurological or 
psychiatric symptoms due to Wilson's disease improved after OLT. Anecdotal reports 
documented a dramatic improvement in neurologic function within 3 to 4 months after OLT. 
In contrast, central pontine and extrapontine myelinolysis and new extrapyramidal symptoms 
developed in a patient 19 months after OLT. Some patients transplanted for decompensated 
cirrhosis have had psychiatric or neurologic symptoms, which improved following OLT. 
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PROGNOSIS 
 
Untreated, symptomatic Wilson disease progresses to death in all patients. The majority 

of patients will die of complications of advanced liver failure, some of progressive neurologic 
disease. The overall mortality from Wilson disease treated medically (in most cases by d-
penicillamine) has not been assessed prospectively. The mortality in 33 patients followed for 
21 years by Scheinberg and Sternlieb was approximately 20. In a German study in 51 patients 
the cumulative survival was slightly reduced during the early period of follow up but was not 
different from an age- and sex matched control population after 15 years of observation 
(96%). 

 
 

Liver Disease 
 
In general, prognosis depends on the severity of liver disease at diagnosis. In patients 

without cirrhosis or with compensated cirrhosis liver disease does not progress after initiation 
of decoppering therapy. Liver function (serum albumin, prothrombine time) improves 
gradually and will become normal in most patients within 1 to 2 years. In compliant patients 
treated with d-penicillamine or trientine, liver functions remains stable and no progressive 
liver disease is observed. 

Schilsky followed 20 patients with Wilsonian chronic active hepatitis. Treatment with D-
penicillamine was promptly initiated in 19 patients. One refused treatment and died 4 months 
later. Treated patients received D-penicillamine or trientine for a total of 264 patient-years 
(median: 14). In 18 symptomatic improvement and virtually normal levels of serum albumin, 
bilirubin, aspartate aminotransferase, and alanine aminotransferase followed within 1 year. 
One woman died after 9 months of treatment. Two patients, who became noncompliant after 
9 and 17 years of successful pharmacological treatment, required liver transplants. 

 
Table 4. Prognostic index in Wilson disease  

 
 0* 1* 2*  3* 4* 
Serum bilirubin (µmol/l) <100 100-150 151-200 201-300 >301 
INR -1.29 1.3-1.6 1.7-1.9 2.0-2.4 >2.5 
AST (IU/L) -100 101-150 151-300 301-400 >401 
WBC (109/L) 0-6.7 6.8-8.3 8.4-10.3 10.4-15.3 >15.3 
Albumin (g/L) >45 34-44 25-33 21-24 <21 

*= score points, ULN= upper limit of normal.  
A score ≥ 11 is associated with high probability of death (without emergency liver transplantation 
(sensitivity: 93% specificity: 98%, positive predictive value: 88%.). 

 
In patients presenting with fulminant Wilson disease, medical treatment is rarely 

effective. Without emergency liver transplantation mortality is very high. In a group of 34 
patients, Nazer et al developed a prognostic index based on serum bilirubin levels, aspartate 
aminotransferase activity, and prothrombin time. This score was refined in a large group of 
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children diagnosed at King´s College in London, UK [42] by including WBC and serum 
albumin (table 4). A score > 11 was highly predictive of death without transplantation. 
However, this prognostic score was not validated prospectively. Nevertheless, it is a useful 
guide to assess short term mortality in the setting of liver transplantation.  

 
 

Hemolytic Anemia 
 
If diagnosed and treated early, hemolysis subsides within few days after initiation of d-

penicillamine therapy. Spontaneous remissions may occur even without treatment but relapse 
usually within few months. Hemolysis associated with active liver disease may progress to 
fulminant Wilson disease rapidly.  

 
 

Neurologic Disease 
 
Patients presenting with neurologic symptoms have a better prognosis than those 

presenting with liver disease. The prognosis for survival is favourable [43], provided that 
therapy is introduced early. 

In Brewer´s series, 2 out of 54 patients died due to complications which were attributed 
to their impaired neurologic function [44].  

Neurologic symptoms are partly reversible. Improvement of neurologic symptoms occurs 
gradually over several months. Initially, neurologic symptoms may worsen, especially on 
treatment with d-penicillamine. In some patients neurologic symptoms disappear completely, 
and abnormalities documented by evoked responses or MR-imaging may completely resolve 
within 18 to 24 months. Brain function was assessed by repeated recording of short latency 
sensory potentials, auditory brain stem potentials and cognitive P300 evoked potentials in 10 
patients followed prospectively after diagnosis for 5 years. [45]. Electrophysiological and 
clinical improvement was observed as early as 3 months after initiation of chelation therapy 
and continued until final assessment after 5 years. Three patients became completely normal 
but residual symptoms were detectable in 7. Czlonkowska et al [46] studied 164 patients 
diagnosed over an 11 year period. Twenty died during the observation period. The relative 
survival rate of all patients in our group was statistically lower than in the Polish population. 
The main cause of death was diagnosing the disease at an advanced stage, but in six patients 
presenting with mild signs disease progressed despite treatment. There was no difference in 
mortality rate in patients treated with d-penicillamine or zinc sulphate as initial therapy.  
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ABSTRACT 
 
Gaucher disease (GD), the most common lysosomal storage disease, is caused by 
mutations in the  β-glucocerebrosidase gene, and results in accumulation of 
glucosylceramide in macrophages (“Gaucher” cells) of the spleen, liver, and bone 
marrow. Since the advent of enzyme replacement therapy (ERT) for Gaucher disease a 
decade and a half ago, the quality of life of patients has improved substantially: 
symptomatic patients have benefited from reduction in hepatosplenomegaly and 
improvement in anemia and thrombocytopenia. While there are broad correlations 
between specific mutations, i.e. the genotype, and the clinical course, i.e. the phenotype, 
(such as between the most common “Jewish” mutation N370S with type I, non-
neuronopathic GD or homozygosity of the L444P mutation and type II or type III, 
neuronopathic, GD), predictions based on genotype are imperfect, and hence researchers 
are still trying to identify modifiers and effectors that impact clinical heterogeneity. In 
assessing a patient for GD, in addition to the enzymatic assay to diagnose GD and the 
surrogate markers chitotriosidase and CCL-18, plus evidence of anemia and 
thrombocytopenia, other laboratory tests may not be within normal ranges; liver function 
tests are usually abnormal only in severely affected patients. Visceral imaging (liver and 
spleen) is based on ultrasonography, CT or MRI.  
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INTRODUCTION 
 

Definition and Epidemiology 
 
Gaucher disease (GD) was described in 1882 by a French medical student, Philippe 

Gaucher, who assumed that the large cells which today bear his name were a manifestation of 
a primary splenic neoplasm. Today it is apparent that GD, the most prevalent sphingolipid 
storage disorder, is caused by deficiency of the lysosomal enzyme β-glucocerebrosidase, 
leading to the accumulation of glucocerebroside, in macrophages [1]. These "Gaucher cells", 
which are filled with undegraded substrate, accumulate in and impact the function of many 
organs and tissues, but initially and universally, the liver, the spleen, and the bone marrow.  

Although there are some enclaves with high mutation incidence such as in the 
Norbottnian province in Sweden, GD has an ethnic predilection primarily among Ashkenazi 
Jews, where the carrier frequency is 1:17 (i.e. a prevalence of about 1:850 live births) [1]. In 
the general population, the estimated frequency is in the range of 1:50,000 to 1: 1,000,000 
[2].  

 
 

Classification into three Clinical Forms 
 
GD is characterized its considerable phenotypic heterogeneity with a complete spectrum 

of clinical morbidity. In its mildest form, there are totally asymptomatic individuals (no signs, 
no symptoms, and with normal values of almost all specific laboratory parameters) whose 
diagnosis is made incidentally, for example, during routine genetic screening [3]. At the other 
extreme, with the most severe presentation, is a neonatal variant with severe multi-organ 
involvement with brain damage, hydrops fetalis and ichthyosis, with death occurring either in 
utero or within the first 2 days of life [4].  

Today one can appreciate that GD is in fact a continuum of clinical entities; however, 
traditionally, the disease was divided into three forms based on the absence (type I) or 
presence and severity of central nervous system involvement (types II and III). This 
phenotypic classification actually preceded identification of the defective enzyme as the 
underlying etiology of GD.  

Type I, also known as “adult” or “chronic" form is by definition non-neuronopathic; it is 
the most prevalent form, accounting probably for more than 95% of the world´s patients, with 
expression at any age from childhood to old age. There is a high prevalence among 
Ashkenazi Jews.  

Types II, the “infantile” or “acute" neuronopathic form and type III, the “juvenile” or 
“sub-acute" neuronopathic form, are panethnic, but relatively rare among European and 
American Caucasians (estimated frequencies according to the International Gaucher Registry 
are >1% and >5% for types II and III, respectively; [5]), but putatively more common than 
type I in Asia or in Arab countries (e.g., Egypt), which are under-represented in the Registry 
and where epidemiological data are unavailable. Further subclassifications are available [6], 
but clinically the most used is the one named above.  
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Molecular Biology and Pathophysiology  
 
The variability in clinical features is related in part to the many (>250) mutations 

identified to date in the glucocerebrosidase gene [7]. While there are broad correlations 
between specific mutations, i.e. the genotype, and the clinical course, i.e. the phenotype, 
(such as between the most common “Jewish” mutation N370S with type I or homozygosity of 
the L444Pmutation and neuronopathic disease; [8]), predictions based on genotype are 
imperfect. Several reports have addressed the intra-familiar heterogeneity of siblings with the 
same genotype, underscoring the importance of environmental and other genetic factors 
(“modifier genes”). Inflammatory cytokines may be candidate “modifiers” and have been 
studied relative to GD severity, but there have been only few studies with statistically 
significant results [9] supporting the relation between a specific polymorphic change in a 
gene encoding a cytokine, such as IL-6, which is known to be elevated in GD [10], and 
clinical disease manifestation. 

A recent study by Ron and Horowitz suggests dysfunction of the endoplasmic reticulum 
(ER) as a new cellular pathological process in GD [11], playing a critical role in the clinical 
course of the disease. These investigators have shown that mutations which lead to 
glucocerebrosidase misfolding induce trafficking of the mutated protein that is either 
disturbed or acceptable, and because of this, phenotype may be more severe or mild, 
respectively [11]. This hypothetical construct, that looks not only at accumulation of the 
undigested glycolipid, but also at the proteotoxic effect of the misfolded mutant enzyme in 
the ER, has led to the development of a new class of pharmacological chaperones [12].  

In liver, infection and inflammation lead to an acute phase response and lipoproteins 
become enriched in ceramide, glucosylceramide, and sphingomyelin, enhancing uptake by 
macrophages [13,14]. GD, on the other hand, is characterized by primary accumulation of 
glucosylceramide that triggers a chronic inflammatory state, that is, admittedly, still poorly 
understood [15-17]. Importantly, however, in animals given [14C]-labelled glucosylceramide 
intravenously, glucosylceramide is predominantly stored in the liver [18]. The half-life of 
glucosylceramide is about 3.5 days, with predominant excretion via bile. In livers from rats 
who were treated with conduritol-B-epoxide, an inhibitor of glucocerebrosidase, or who were 
injected with glucosylceramide emulsion, protein, lipid and DNA content is increased. It is 
not clear whether this protein retention is due to increased protein synthesis or to decreased 
protein degradation [19].  

Although it is well known that GD can lead to cirrhosis [20], hepatocellular carcinoma 
without pre-existing cirrhosis [21] and cholelithiasis [22], the role of glucosylceramide for 
bile formation and bile composition is not fully understood. 

 
 

Diagnosis 
 
The gold standard for the diagnosis of GD is demonstration of decreased β-

glucocerebrosidase activity in peripheral blood samples. In case of leucocytopenia, this assay 
can also be performed in fibroblasts. Despite widespread availability of this simple 
biochemical assay since 1970, it is only rarely used when GD is first considered in the 
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differential diagnosis of a patient; unfortunately, too, physicians still refer patients for a bone 
marrow examination in order to the identify Gaucher cells in the aspirate [23]. Indeed, the 
symptoms of hepatosplenomegaly with signs of pancytopenia, often induce physicians to 
recommend bone marrow aspiration, liver and even spleen biopsy which may lead to an 
unwarranted splenectomy. It is important to emphasize that invasive diagnosis is not 
necessary. Today enzymatic diagnosis is performed in conjunction with PCR-based DNA 
mutation analysis. As the availability of sequencing services increases, it is to be expected 
that in the future each patient will have a complete sequence of the relevant gene, allowing 
not only the identification of the rare private mutations, but also avoidance of errors related to 
more complex mutations that are currently missed due to pitfalls of the current methodology 
[7].  

In the past decade, surrogate markers, chitotriosidase and CCL-18, have been added to 
the diagnostic work-up of GD; both markers are highly elevated in patients with GD, to a 
level that they provide a “quality control” for the glucocerebrosidase assay [16,24]; in 
addition they are useful for monitoring the clinical course of disease progression, relapse, or 
response to specific therapy.  

 
 
CLINICAL PRESENTATION WITH EMPHASIS ON THE LIVER 
 

Signs and Symptoms 
 
While phenotypic heterogeneity is a hallmark of GD, invariably most patients of all ages 

present with symptoms, signs or laboratory findings related to splenomegaly and its related 
hypersplenism. In general, thrombocytopenia is more pronounced than anemia [6] 
(leucopenia is rarely severe and by itself has not been associated with increased tendency to 
bacterial infections), and repeated episodes of epistaxis or excessive bleeding after dental 
procedure, delivery or surgery, are among the common presenting features. Splenomegaly as 
an incidental finding during an intercurrent illness or routine physical examination is rather 
common, as is pancytopenia detected upon routine blood count. Splenomegaly is more 
pronounced than hepatomegaly, and in addition to the associated anemia and 
thrombocytopenia, may be associated with linear growth retardation in children, with early 
satiety and/or abdominal discomfort. In more severe cases, complications such as splenic 
infarction or subcapsular bleeding following trauma or extraordinary physical effort may 
occur.  

An experience-based axiom is that the earlier the age of presentation, the more severe the 
clinical course. Ashkenazi Jewish patients, due to the high prevalence of the “mild” mutation 
N370S, tend to have a milder phenotype relative to non-Jewish patients, and there may be 
specific ethnic groups, such as the Japanese [25], who tend to develop a particularly severe 
course (including in the case of L444P homozygotes where some Japanese had been thought 
to have type I disease but, with better analyses, like other ethnicities have neuronopathic 
disease [26]. Accordingly, the mean age of diagnosis at the International Gaucher Registry, 
the largest database of patients with GD (albeit, with ascertainment bias towards more 
severely affected patients since the emphasis is on patients receiving enzyme replacement 
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therapy), in patients with the N370S/N370S genotype (mostly Ashkenazi Jews) was 27.2 
years [5], whereas in Japan >60% of type I patients experienced onset of GD signs/symptoms 
at <5 years [25]. Bone pains are less frequent at presentation, although there are patients 
whose first manifestation of GD is acute bone crisis. These episodes are often predictive of a 
more severe clinical course because of skeletal complications. Prior to the advent of enzyme 
therapy, bone crises typically developed within a short period after splenectomy. Similarly, 
many skeletal complications are seen in splenectomized patients [27]. In more severely 
affected patients, bone pain is present at more than half of the patients [28].  

In communities where genetic screening programs includes GD, the vast majority of 
patients are diagnosed when they are asymptomatic. Moreover, because of early diagnosis of 
GD, patients may present with atypical manifestations; however, skeletal involvement 
remains an important symptom of clinical expression even in the era of enzyme replacement. 
Destruction of the bone is a major feature of GD and results from expansion and activation of 
Gaucher cells within the bone marrow. Major bone complications comprise bone crises, 
pathological fractures (mainly of the ribs), osteolytic lesions and avascular necrosis of large 
joints (Figure 1), usually the hips, knees or shoulders.  

 

A B  

Figure 1. Typical skeletal lesions. Erlenmeyer flask deformity of the distal femur with lytic lesions (A) 
and avascular necrosis of the right hip joint (B). 

Pulmonary features include interstitial lung disease and pulmonary hypertension, both 
rare and usually with poor prognosis. The availability of ERT has changed the natural history 
of GD, and when administered prior to the development of irreversible bone lesions, 
secondary skeletal and pulmonary complications will hopefully be prevented. 

Liver manifestations other than hepatomegaly per se are infrequent, and tend to develop 
in patients with other signs of severe disease, including after splenectomy. In splenectomized 
patients, the liver may be massively enlarged, and may be palpable in the left lower quadrant. 
Liver function tests may be normal even in patients with marked hepatomegaly, and in the 
more severely affected patients, abnormal liver enzyme tests, along with hyperbilirubinemia, 
low albumin and abnormal prothrombin time (PT) may be detected. Cirrhosis with portal 
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hypertension may develop in such severely affected patients, and this in turn may lead to 
liver failure and the need for liver transplantation [29]. Hepato-pulmonary syndrome, 
although a rare entity, has also been reported with the classic triad of advanced liver disease, 
arterial deoxygenation and intrapulmonary vascular dilatation [30]. 

 
 

Laboratory Findings 
 
In working up a patient for GD, in addition to the enzymatic assay to diagnose GD and 

the surrogate markers chitotriosidase and CCL-18, plus evidence of anemia and 
thrombocytopenia, other laboratory tests may not be within normal ranges. These laboratory 
tests may be grouped as:  

 
• complete blood count and coagulation profile,  
• inflammatory markers,  
• biochemical and serological abnormalities and  
• other surrogate markers.  
 
The majority of these abnormalities may be detected in routine studies whereas others 

may require the expertise of dedicated research laboratories. 
 

Complete Blood Count and Coagulation Profile 
Anemia and thrombocytopenia are very common in GD; both may be caused by 

hypersplenism per se (increased sequestration of blood cells within the enlarged spleen), but 
both may have other causes. Anemia may be due to iron deficiency (caused either by 
excessive bleeding or by altered iron metabolism), vitamin B12 deficiency, autoimmune 
haemolysis or bone marrow failure. In most of the patients the mean corpuscular volume 
(MCV) tends to be on the high side, primarily because of liver involvement and an increased 
fraction of young erythrocytes. Immune thrombocytopenia and marrow failure may also 
account for low platelet counts, while thrombocytopathy (abnormal platelet aggregation 
and/or adhesion, as functional defects) may be an additional cause for bleeding tendency 
[31]. The latter may be due to diminished clotting factors and deficiencies of factors II, V, 
VII, VIII, X, XI and XII have been described in as many as 40% of adult patients with GD 
[32]. Increased clearance through the enlarged spleen, increased activation of coagulation as 
well as fibrinolysis, (leading also to elevated D-dimers) have all been implicated as causes for 
these deficiencies, while factor XI deficiency may be due to another genetic defect commonly 
found among Ashkenazi Jews [33]. 

 
Inflammatory Markers 

Significant elevations in fibrinogen, erythrocyte sedimentation rate and C-reactive 
protein, indicative of a low-grade inflammatory profile, have recently been reported. 
Nonetheless, these inflammatory markers do not necessarily correlate with disease severity, 
and they do not improve with ERT [34], unlike the polyclonal hyperglobulinemia, another 
feature of inflammation, which does decrease with ERT [35]. Pro-inflammatory cytokines, 
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such as serum IL-6 and IL-10 are elevated in GD, are probably secreted by the Gaucher cells, 
and their levels also decrease with treatment [34].  

 
Biochemical and Serological Findings 

Routine biochemical panel may be either within the normal range, or may show mildly 
abnormal liver function tests (only in the few patients with hepatic fibrosis or cirrhosis are 
these tests severely abnormal: see below). Blood urea nitrogen (BUN) and serum creatinine 
levels tend to be lower than the normal range (but generally without clinical significance) as 
are total cholesterol, LDL- and HDL-cholesterol [36]. It has been shown that these decreased 
levels are due to the reduced apoprotein levels that are part of the structure of the HDL and 
LDL particles, apo-B and apo-A1, respectively [36], while apoE is increased. Interestingly, 
mildly elevated aminotransferases may eventually respond to therapy [37]. Another study has 
shown that patients with Gaucher disease have decreased plasma taurine levels and that ERT 
might correct this [38]. Taurine is an osmolyte capable of exerting chaperone-like functions 
in the liver although it is as yet unclear whether decreased taurine availability in liver could 
be a cofactor in permanent activation of the glucosylceramide-storing macrophages in GD. 

Parameters of bone metabolism, either bone formation or bone resorption, have shown 
conflicting results, and are therefore not used clinically. Some patients may have 
abnormalities in serological parameters, e.g. NT-brain natriuretic factor, which is correlated 
with pulmonary hypertension even in GD [39]. 

 
Additional Surrogate Markers 

Plasma chitotriosidase and CCL18 levels are surrogate markers, show elevated levels in 
patients versus control subjects, correlate with disease severity, and are reduced concomitant 
with ERT [16]. The simplicity of the new assays and its reliability will probably obviate the 
use of the traditional markers, such as angiotensin converting enzyme (ACE), tartrate-
resistant acid phosphatase (TRAP), hexosaminidase, ferritin, which, although elevated in GD, 
are nonetheless not as sensitive and are less good correlates of clinical severity [40]. Other 
markers of macrophage activation, such as sCD163, cathepsin K, and neopterin [40,41], have 
all been described in research labs but are not used clinically.  

 
 

Diagnostic Imaging 
 
The radiological findings in GD may be classified into skeletal, pulmonary, and visceral, 

according to the organs involved. Most patients, including the mildly affected ones, will 
usually show the “Erlenmeyer flask deformity” of the distal femora on plain x-rays, which 
may also have some evidence of sclerotic and/or lytic lesions; patients with more severe 
disease may demonstrate osteoporosis, avascular necrosis, or pathological fractures [42]. A 
more sensitive imaging of the bones is achieved with magnetic resonance imaging (MRI) 
where extensive changes of the bone marrow can be seen that were not evident on plain X-
ray [43]. 

Chest X-ray is usually normal, but patients with severe disease may evince a range of 
pulmonary abnormalities that may be interstitial (with ground-glass appearance on 
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computerized tomography; CT) or vascular, i.e. pulmonary hypertension [44]. Often the 
choice of imaging is critical to identification of pathology [44]. 

Visceral imaging (liver and spleen) is based on ultrasonographic study, CT or MRI. The 
main abnormality other than organomegaly, is the presence of space-occupying-like lesions, 
that may be identified as hypo- or hyperechoic or mixed lesions [45]. These lesions are found 
more frequently in the spleen [46,47] than in the liver, and more often in adults than in 
children [48]. The importance of their identification is mainly to differentiate them from 
tumours [49,50], in particular hematological malignancies, which have been reported to be 
more common in patients with GD relative to the general population (see below). Often 
pseudotumours inside or adjacent to the liver have been observed. They are usually mistaken 
for solid lesions and result in a thorough diagnostic work-up to exclude a hepatic malignancy 
or a metastasic process. Usually, biopsy reveals a "Gaucheroma", which is a tumour-like 
accumulation of Gaucher cells, that can occur in almost any region of the body [51]. Imaging 
of these intra- or para-hepatic lesions may mimic hepatocellular carcinoma, metastases or 
even focal nodular hyperplasia, requiring an experienced eye for diagnosis (Figure 2).  

 
A                                                               B

 

Figure 2. Gaucher cell pseudotumour adjacent to the liver. Typical ultrasound (A) and MR (B) aspect of 
a pseudotumour-like parahepatic, hyperechoic, hypointense lesion, suspicious of a solid lesion like 
HCC or metastasis. Biopsy revealed no hepatocytes, but only Gaucher cells, see also [22].  

In addition to the role of radiological imaging in the evaluation of the patients with GD at 
baseline, radiological imaging is frequently used for follow-up and to document the response 
to treatment, disease-specific and otherwise. While both CT and MRI provide accurate organ 
volume estimations, they are expensive and relatively rare resources. In addition, CT involves 
considerable amounts of radiation, if used repeatedly (which is a particular concern in 
children and young adults) and MRI may require general anaesthesia in young children and 
claustrophobic patients of all ages because it is unpleasant and requires immobilization for a 
longer time period. Therefore, for routine follow-up we prefer to use ultrasound, with CT in 
abeyance for specific questions, while MRI volumetric assessment is the preferred modality 
in the context of clinical trials in adults. MRI and bone densitometry are useful for 
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monitoring bone response or disease progression in treated and untreated patients, 
respectively. 

 
 

Liver Diseases Associated with Gaucher Disease 
 

Viral Hepatitis and Autoimmune Hepatitis 
Viral hepatitis may develop in patients with GD, but there is very little information about 

these co-morbidities in the literature. In the referral clinic at Shaare-Zedek Medical Centre in 
Jerusalem, 28 patients out of >550 patients had positive serological markers for active 
hepatitis B or C (11 and 12 patients respectively) or both (5 patients), the majority of whom 
were probably infected following blood transfusions given during surgical procedures, prior 
to the availability of reliable tests to detect viral hepatitis in blood donors. Yet, only a handful 
of patients developed clinically significant hepatitis with the need to receive specific HCV 
therapy [52].  

Liver fibrosis and cirrhosis are rare in GD. In an attempt to investigate the mutual impact 
of viral hepatitis and GD on each other, Margalit and Ilan have recently discovered that 
patients with GD have an altered humoral and cellular immune profile, including a markedly 
increased number of peripheral blood killer cells (NKT) cells [53]. In order to investigate 
potential benefit for patients with GD, which they hypothesized was related to elevated 
intracellular levels of glucocerebroside, they showed that administration of β-
glucosylceramide resulted in marked amelioration of concanavalin A-induced hepatitis in 
mice, a model in which NKT cells are key mediators of hepatic damage [54]. These 
preliminary observations may explain, in part, the relative rarity of HCV-related cirrhosis 
among patients with GD, and also provide another example where studies of patients with a 
rather rare inherited disorder, may have ramification to larger numbers of patients suffering 
from other (in this case, immune-mediated) disorders. In fact, Phase I clinical studies with β-
glucosylceramide are pending for patients with non-alcoholic steatohepatitis (NASH) and 
Crohn’s disease. 

The hyperactivity of the immune system in GD is also manifested by high prevalence of 
polyclonal hypergammaglobulinemia and an increased incidence of monoclonal 
gammopathies. High titers of natural, polyspecific, non-pathogenic autoantibodies in the sera 
of GD patients have been demonstrated but these were not correlated with the 
immunoglobulin levels [55]. In addition, there is an impression of increased prevalence of 
autoimmune disorders in GD, but no formal study has substantiated this anecdotal 
experience. In the experience of the authors, several autoimmune disorders, such as 
autoimmune haemolytic anemia [56], immune thrombocytopenia and Hashimoto thyroiditis, 
may be more common in patients with GD.  

With regard to the liver, a single patient with GD and autoimmune hepatitis is known to 
us, who required courses of steroids. Subsequently, ERT was given in the hope of preventing 
osteoporosis in an osteopenic patient. There is also some hope that, if there is a relation 
between the metabolic defect of GD and the development of an autoimmune disorder, that the 
reduction in storage cells and their secretory products may have a beneficial effect. There is 
also a case report of chronic active hepatitis in a patient with GD prior to the ERT era [52]; 
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the clinical course of remissions and exacerbations of the disease activity was typical of 
"autoimmune" chronic active hepatitis and seemed unaffected by the coexistence of GD. 
Steroid and immunosuppressive treatment resulted in prompt resolution of the chronic 
hepatitis, with no apparent inimical impact on bones. 

 
Liver Cirrhosis and Portal Hypertension 

In 1981, in a study of the clinical and liver histopathological observations among 25 
patients with GD, three cases with cirrhosis were noted [57]. Two single cases were reported 
in 1964, with a few others having been reported later, mainly in case reports of orthotopic 
liver transplantation. It is of interest that in our single case of documented histological 
evidence of liver cirrhosis in GD (which was diagnosed together with hepatocellular 
carcinoma), the patient was positive for hepatitis C virus. Almost all the reported patients had 
been splenectomized at an early age, and all suffered from severe, progressive, multi-organ 
involvement. In a pathological study of 275 patients from 1982 by Lee [58], end stage liver 
failure and/or bleeding esophageal varices were among the causes of death from type I GD; 
whereas in a small series of 5 fatal cases of type I GD from Japan (all splenectomized) four 
patients suffered from liver cirrhosis [59]. It is to be hoped that in the era of ERT when 
splenectomy is not part of the management of patients with GD, and when liver function can 
be kept within the normal range, there will be no new cases of cirrhosis related to GD. 

 
Hepatocellular Carcinoma 

Increased incidence of malignancies among patients with GD has been suggested in the 
literature of the past two decades: initially because of individual case reports, but 
subsequently in a study from 1993, which showed that 10 of 48 (20.8%) patients with GD 
had developed a malignancy, as compared with 35 of 511 (6.8%) among the control group 
[60]. Because this latter study and other small series noted in the literature suffered from 
some methodological flaws and because the concern of a predilection for cancer was a real 
concern for patients with GD, two independent groups, a single referral clinic in Jerusalem 
with more than 500 patients and the International Gaucher Registry, have studied this 
assertion. The conclusions of both studies were that with the possible exclusion of multiple 
myeloma, there is no increased incidence of any malignancy among patients with GD 
[61,62]. Nonetheless, an even more recent collaborative study from The Netherlands and 
Germany identified 14 non-Ashkenazi patients with GD (out of 131 patients) who developed 
a cancer, implicating an increased risk of 2.5 for all cancers and an increased risk of 12.7 for 
hematologic malignancies relative to control population [62]. It is noteworthy that the two 
most common malignancies in the above Dutch-German collaboration were multiple 
myeloma and hepatocellular carcinoma in the absence of preexisting cirrhosis [63]. It may be 
speculated that the obvious conflicting results are due to differences in age (younger median 
age and potential underreporting in the International registry database [62]) or milder disease 
severity (more Ashkenazi Jewish patients in the Jerusalem study [61]). A single case of 
hepatocellular carcinoma was also seen in the Jerusalem clinic (unpublished), but the liver 
had a cirrhotic appearance (Figure 3). Comparable to the three patients noted in the literature, 
the Jerusalem patient was also a splenectomized patient with very severe Gaucher disease 
(including long-standing pulmonary involvement), who had been treated with ERT for more 
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than 11 years. While we believe that ERT prolongs the lives of severely afflicted patients (i.e. 
hepatocellular carcinoma can develop in any patient with cirrhosis of liver), others have 
speculated that ERT itself might be the causative factor [64]. There is a case report prior to 
the era off ERT of a patient with GD and HBsAg-positive cirrhosis who was found at autopsy 
to have hepatocellular carcinoma suggested by antecedent ultrasound [65], and there are 
reports after the era of ERT [66]. Given the grave prognosis of a late diagnosis of 
hepatocellular carcinoma, α–fetoprotein and a comprehensive hepatic ultrasound should be 
part of the routine annual follow-up for at risk patients. Finally, an aggressive diagnostic 
approach (liver biopsy) should be taken in patients with emergent evidence of hepatic lesions 
on ultrasound [67].  

 

 

Figure 3. Gaucher cells showing cirrhosis and a hepatocellular carcinoma. A liver biopsy from a 
Gaucher patient showing massive cirrhosis and associated hepatocellular carcinoma. 

Other Hepato-Biliary Complications 
Other possible liver complications include cases of severe liver fibrosis without evidence 

of cirrhosis, non alcoholic steato-hepatitis (NASH), amyloidosis and neonatal hepatitis. Two 
studies suggested increased prevalence of gallstones in patients with GD (including among 
male patients); various factors may contribute to gallstone formation in these patients, 
including anemia, prior splenectomy, hepatic involvement and increased biliary excretion of 
glucosylceramide [68,69].  
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EFFECT OF THERAPY: ERT AND SRT 
 
Therapeutic goals in Gaucher disease are:  
 
• Normalisation of linear growth and unimpaired cognitive development in children 
• Restoration quality of life and functional mobility 
• Prevention of progression of skeletal involvement 
• Prevention of bone complications  
• Improvement of atypical manifestations (ocular, cardiac, pulmonary)  
• Freedom or relief from pain 
• Discontinuation of analgesics 
• Normalization of organ volumes 
• Prevention of bleeding 
• Normalization of leucocytes, hemoglobin and platelet counts 
 
Improvement in the hematological parameters and reduction in organomegaly are usually 

achieved within approximately the first two or three years of therapy. Both placenta-derived 
and recombinant ERT [70,71] and substrate reduction therapy (SRT) [72] have been shown 
to be efficacious in meeting these goals, although SRT is less potent and has several side 
effects. Thus, with the passage of a decade and a half of therapeutic options for 
haematological and visceral normalization, the goals of therapeutic intervention for GD now 
devolve on its ability to impact bone pathology and other more severe manifestations of GD. 
To date it appears as if some complications of bone and lung and brain are virtually 
irreversible, and therefore the emphasis is on preventing these complications from happening 
by early specific treatment.  

Reduction of liver volume has been an important outcome measure in the clinical trials 
that led to approval of ERT [70,71] and SRT [72] for type I GD. The choice of the liver 
volume is logical: it is always enlarged in symptomatic patients; unlike the spleen which had 
been removed in many patients, the liver is present and accessible; unlike haemoglobin and 
even platelets, it is rarely affected by confounding factors and concurrent and intercurrent 
diseases; and unlike the skeletal features which are so slow to respond, the liver is expected 
to show significant reduction within 6 months [73]. In the minority of patients with abnormal 
liver function tests, specific therapy will improve these results [74]. Some patients may not 
respond with significant reduction in liver volume within the first year, but these patients 
usually evince a very dramatic reduction in splenic volume, so that the reduction in 
hepatomegaly seems to occur later. It is virtually universal that specific therapy will induce 
reduction of hepatomegaly to approximately normal size. 

If there is no response of the liver at all (no reduction in hepatomegaly, no improvement 
in liver function tests) one should look for an additional pathological process, especially in 
splenectomized patients. Examples from the literature and from the authors’ unpublished 
experience include severe liver fibrosis, an associated autoimmune hepatitis, or 
hepatocellular carcinoma. Patients with severe GD at baseline, who have already developed 
liver cirrhosis, are also less likely to achieve significant (hepatic) benefit.  
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Data from the International Gaucher registry show a 20-30% reduction in liver volume in 
one to two years and up to 40% in five years with ERT [75]. The improvement in spleen size 
with ERT is even more dramatic, with decreases of 30% and 50% after one and two years, 
respectively [75]. Based on the International Gaucher registry's cumulative experience in 
more than 1000 patients, therapeutic goals have defined these values as indicators for 
satisfactory response [73]. After the first 2-5 years on ERT, most patients will achieve their 
optimal response, they will plateau and further change in dose will have little or no clinically 
important effect [75]. At this time point, dose reduction with an eye towards a maintenance 
regimen should be considered.  

The clinical trials of SRT with miglustat (Zavesca®, Actelion Pharmaceuticals, Basel, 
Switzerland) also used reduction in hepatomegaly as outcome measure of the clinical trials. 
Although the results were not as dramatic as those reported with ERT, they were statistically 
significant as early as 6 months [72,76]. In addition, the reduction in hepatomegaly continues 
beyond the first 2 years of therapy, plateauing in a manner comparable to that seen with ERT 
but over a more protracted course. However, one should bear in mind, that the clinical trials 
of SRT enrolled patients with mild to moderate disease severity, and hence the degree of 
hepatomegaly was not as significant as that reported in the patients who were enrolled in the 
clinical trials with the ERT (the greater the initial size, the greater the initial reduction with 
specific therapy [71]). Future studies may allow better comparisons between ERT and SRT.  

Therapeutic options in the future include the options of gene therapy, stem cell therapy, 
and chaperone-like substances, but today, none has succeeded as a viable alternative to 
currently available commercial therapeutic modalities.  

 
 

CONCLUSIONS 
 
GD is a multi-system disease whose visceral manifestations can be treated with enzyme 

replacement. Hepatosplenomegaly is the most common pathology seen by imaging. The main 
abnormality other than organomegaly, is the presence of space-occupying-like lesions, that 
may be identified as hypo- or hyper-echoic or as mixed lesions. These lesions are found more 
frequently in the spleen than in the liver, and more often in adults than in children. Liver 
fibrosis and cirrhosis are rare in GD. In the single case of documented histological evidence 
of liver cirrhosis in GD in our combined experience (which was diagnosed together with 
hepatocellular carcinoma), the patient was positive for hepatitis C virus. Almost all the 
reported patients with cirrhosis had been splenectomized at an early age, and all suffered 
from severe, progressive, multi-organ involvement. In a pathological study of 275 patients, 
end stage liver failure and/or bleeding esophageal varices were among the causes of death 
from type I GD; whereas in a small series of 5 fatal type I GD from Japan (all 
splenectomized), four patients had liver cirrhosis. Other possible liver complications include 
cases of severe liver fibrosis without evidence of cirrhosis, non alcoholic steatohepatitis 
(NASH), amyloidosis and neonatal hepatitis. Two studies suggested increased prevalence of 
gallstones in patients with GD. Data from the International Gaucher registry show a 20-30% 
reduction in liver volume in one to two years and up to 40% in five years with ERT; 
similarly, clinical trials of substrate reduction therapy with miglustat used reduction in 
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hepatomegaly as an outcome measure and although results were not as dramatic as those 
reported with ERT, they were statistically significant as early as 6 months. 
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ABSTRACT 
 
α1-Antitrypsin deficiency most commonly results from the severe Z deficiency allele 
(Glu342Lys). The point mutation causes an aberrant conformational transition within the 
α1-antitrypsin molecule and the formation of polymers that are retained within the 
endoplasmic reticulum of hepatocytes. It is these polymers that underlie the PAS positive 
inclusions that are the characteristic feature of the disease. The clinical spectrum of liver 
disease in α1-antitrypsin deficiency is broad, ranging from mild abnormalities in liver 
function tests to cirrhosis and hepatocellular carcinoma. Both male gender and obesity 
are linked to poor prognosis. Other conditions associated with α1-antitrypsin deficiency 
include emphysema, panniculitis and vasculitis. Smokers are particularly susceptible to 
the development of emphysema due to the unopposed action of proteases on the 
pulmonary parenchyma causing tissue destruction. Treatment options for the hepatic 
complications of α1-antitrypsin deficiency include symptomatic support, reduction of 
portal hypertension and ultimately liver transplantation. The disease does not recur in the 
transplanted organ. Future treatment strategies may include inhibiting α1-antitrypsin 
polymerization and gene therapy.  
 
 

INTRODUCTION  
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α1-Antitrypsin is the most abundant protease inhibitor in the circulation and the 
archetypal member of the serine protease inhibitor (serpin) superfamily [1]. It is a 52kDa 
glycoprotein secreted by hepatocytes and to a lesser extent, by bronchial epithelial cells, 
macrophages and the intestinal epithelium [2]. By forming an irreversible complex with 
locally released neutrophil elastase, α1-antitrypsin protects the connective tissues from 
proteolytic attack. This is most important within the lung as genetic deficiency of α1-
antitrypsin is associated with the development of early onset panlobular emphysema [2,3]. In 
fact, deficiency of this protein has been associated with many different pulmonary syndromes 
including chronic bronchitis [4,5], asthma [4,6], bronchiectasis [4,7-9] and pulmonary 
vasculitis [4,10-12], although the evidence for a link with bronchiectasis is poor. 

The role of α1-antitrypsin in the pathogenesis of chronic liver disease is quite different as 
this is caused by protein overload rather than plasma deficiency. In this chapter we review the 
epidemiology and clinical features of α1-antitrypsin deficiency associated liver disease and 
demonstrate how understanding the molecular mechanism will allow the development of 
novel therapeutic strategies. 

 
 

THE ALLELIC VARIANTS OF ALPHA1-ANTITRYPSIN 
 
Many allelic variants of α1-antitrypsin have been described [2,13]. They are inherited in a 

co-dominant fashion and classified according to their migratory profile on isoelectric 
focusing analysis. The normal allele is denoted as M and the commonest deficiency variants, 
S and Z, result from point mutations in the α1-antitrypsin gene, which is located at 14q32.1 
within the SERPIN supergene cluster [14]. The S variant (Glu264Val) results in a 40% deficit 
in plasma protein levels [15] but is not linked to any clinical disorder. The Z variant 
(Glu342Lys), in contrast, results in severe plasma deficiency and progressive clinical disease. 
Other mutations causing severe plasma deficiency include the Siiyama (Ser53Phe) and 
Mmalton (deletion of 52Phe) variants. A milder form of plasma deficiency is caused by the I 
allele (Arg39Cys). The α1-antitrypsin phenotypes known to be associated with clinical liver 
disease are shown in Table 1. 
 

Table 1. α1-antitrypsin phenotypes associated with liver disease [16]. 
 

Phenotype Risk of liver disease 
ZZ +++ 
SZ ++ 
MZ + 

 
There have been two recent meta-analyses of the geographical distribution of α1-

antitrypsin deficiency [18,19]. The highest prevalence of the Z allele was recorded in 
northern and western European countries and gradually decreases towards the south east of 
the continent (see Figure 1). In contrast, the highest frequency of the S allele is found in 
southern Europe and its prevalence gradually decreases towards north-east Europe (see 
Figure 1). Therefore the prevalence of the Z homozygote varies from approximately 1 in 
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1500 in Scandinavia to approximately 1 in 2000 in the United Kingdom and on average, the 
frequency of the severe Z allele in all Northern Europeans approaches 4%. It is widely 
accepted that α1-antitrypsin deficiency arose in Southern Scandinavia with the disease being 
spread to other countries whose inhabitants are of European descent. The average gene 
frequency in North America is on a par with the lowest end of the range reported in Europe. 
A survey from the St Louis, Missouri area revealed the prevalence of Z homozygotes to be 
approximately 1 in 2800 [20]. A 2003 study based on control cohort data on the population of 
North America indicated that the incidence of inheriting either an S or Z α1-antitrypsin allele 
was 1 in 9.8 for Canada and 1 in 11.3 for the United States [15,19]. The gene frequency of 
the Z variant in Australasia is similar to that of North America [17,21]. The disease is rare in 
far East Asia and most cases in Japan are attributed to the Siiyama variant (Ser53Phe) rather 
than the Z allele [22]. The disease is also thought to be rare in South America [19] although 
few studies have been reported from this region. Evidence is emerging that there may be 
significant prevalence of the Z allele in parts of the Middle East, Central and South East Asia 
and the whole African continent [19] although more studies are needed.  
 

 

Figure 1. Frequencies of (A) PI*S and (B) PI*Z alleles in Europe. Reproduced from Luisetti and 
Seersholm [17] with permission. 
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THE STRUCTURE AND FUNCTION OF ALPHA1-ANTITRYPSIN 
 
Crystal structures have demonstrated that α1-antitrypsin is composed of three β-sheets 

(A-C) and an exposed mobile reactive loop (Figure 2) that presents a peptide sequence as a 
pseudosubstrate for the target protease [23-27]. The critical amino acids within this loop are 
the P1-P1' residues, methionine-serine, as these act as a ‘bait’ for neutrophil elastase [28]. 
After docking, the enzyme cleaves the P1-P1' peptide bond of α1-antitrypsin [29] and the 
protease is inactivated by a mousetrap action (Figure 2) that swings it from the upper to the 
lower pole of the protein in association with the insertion of the reactive loop as an extra 
strand (s4A) in β-sheet A [30-34]. This altered conformation of α1-antitrypsin bound to its 
target enzyme is then recognized by hepatic receptors and cleared from the circulation [35-
37]. The remarkable ‘mousetrap’ action of α1-antitrypsin is central to its role as an effective 
inhibitor of serine proteases. Paradoxically, it is also its ‘Achilles heel’ as point mutations in 
these mobile domains make the molecule vulnerable to aberrant conformational transitions 
such as those that underlie α1-antitrypsin deficiency. 
 

 

Figure 2. α1-antitrypsin can be considered to act as a mousetrap [23,34]. Following docking (left) the 
neutrophil elastase (top) is inactivated by movement from the upper to the lower pole of the protein 
(right). This is associated with insertion of the reactive loop (red) as an extra strand into ß-sheet A 
(green) [38]. 

There is now overwhelming evidence that the liver disease associated with the Z variant 
of α1-antitrypsin is due to a failure of secretion and the accumulation of aggregated protein 
rather than plasma deficiency. Strong support is provided by the recognition that null alleles, 
which produce no α1-antitrypsin, are not associated with liver disease [39]. Moreover, the 
overexpression of Z α1-antitrypsin in animal models results in liver damage [40,41]. It has 
been shown that the Z variant of α1-antitrypsin is retained within hepatocytes as the mutation 
causes a unique conformational transition which allows a novel protein-protein interaction. 
The point mutation in the Z variant of α1-antitrypsin is at residue P17 (17 residues proximal 
to the P1 reactive centre) at the head of strand 5 of β-sheet A and the base of the mobile 
reactive loop (Figure 3). The mutation opens β-sheet A, thereby favouring the insertion of the 
reactive loop of a second α1-antitrypsin molecule to form a dimer [23,42-44]. This can then 
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extend to form polymers (Figure 3) that tangle in the endoplasmic reticulum of the hepatocyte 
to form the Periodic Acid Schiff (PAS) positive inclusions that are the hallmark of Z α1-
antitrypsin liver disease [42,45-47]. 
 

Z 

M M* D P 

21 

 

Figure 3. Pathway of serpin polymerization. The structure of α1-antitrypsin is centered on β-sheet A 
(green) and the mobile reactive centre loop (red). Polymer formation results from the Z variant of α1-
antitrypsin (Glu342Lys at P17; arrowed) or mutations in the shutter domain (blue circle) that open β-
sheet A to favour partial loop insertion (step 1) and the formation of an unstable intermediate (M*), 
[43,48,49]. The patent β-sheet A can then accept the loop of another molecule (step 2) to form a dimer 
(D) which then extends into polymers (P). 

 

Figure 4. Z α1-antitrypsin is retained within hepatocytes as intracellular inclusions. (A) These inclusions 
are PAS positive and diastase resistant (arrow) and are associated with neonatal hepatitis and 
hepatocellular carcinoma. (B) Electron micrograph of a hepatocyte from the liver of a patient with Z α1-
antitrypsin deficiency shows the accumulation of α1-antitrypsin within the rough endoplasmic 
reticulum. These inclusions are composed of chains of α1-antitrypsin polymers shown here from the 
plasma of a Siiyama α1-antitrypsin homozygote (C). Reproduced from Carrell and Lomas [3] with 
permission.  

Support for this hypothesis came from the demonstration that plasma purified Z α1-
antitrypsin formed chains of polymers when incubated under physiological conditions [42]. 
The rate of polymer formation was accelerated by raising the temperature to 41°C and could 
be blocked by peptides that competed for annealing to β-sheet A [42,50,51]. The role of 
polymerization in vivo was confirmed by the finding of α1-antitrypsin polymers in inclusion 
bodies from the liver of Z α1-antitrypsin homozygotes with cirrhosis [42,45,46] and in 
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hepatic cell lines [52] and mouse models [47] expressing the Z variant (Figure 4). Moreover, 
point mutations that block polymerization increased the secretion of mutants of α1-antitrypsin 
from a Xenopus oocyte expression system [53,54]. 

Biochemical, biophysical and crystallographic analyses have been used to assess the 
pathway of α1-antitrypsin polymerization (Figure 3) [43, 48]. Step 1 represents the 
conformational change of α1-antitrypsin to a polymerogenic monomeric form (M*) and step 2 
represents the formation of α1-antitrypsin dimers and polymers (P). The presence of the 
unstable, polymerizing intermediate M* was predicted from the biophysical analysis of 
polymer formation [43] the demonstration of an unfolding intermediate [27,55,56], and 
solving the crystal structure of a polymerogenic mutant of α1-antichymotrypsin [48]. The Z 
mutation forces α1-antitrypsin into a conformation that approximates the unstable M* and 
hence favours polymer formation [49]. 

The accumulation of α1-antitrypsin within hepatocytes also occurs with the two other rare 
mutations: Siiyama [57,58] and Mmalton [59]. These variants result from mutations in the 
shutter domain of α1-antitrypsin (Figure 3). 

The precise way in which α1-antitrypsin polymers cause hepatocyte damage is still to be 
fully elucidated. Studies in mice transgenic for the human Z α1-antitrypsin gene have shown 
that the polymers accumulate within the Endoplasmic Reticulum (ER) of hepatocytes [41,60]. 
These mice develop chronic liver disease and hepatocellular carcinoma despite having 
normal levels of circulating α1-antitrypsin due to endogenous genes, which would imply that 
Z α1-antitrypsin polymers are directly toxic to hepatocytes [61]. The quality control 
mechanisms within the ER of hepatocytes are currently being elucidated. It is understood that 
trimming of asparagine linked oligosaccharides targets Z α1-antitrypsin polymers into a non-
proteosomal disposal pathway [62] although it has been proposed that numerous proteosomal 
pathways are also involved in handling the polymers [63]. There is also an intense autophagic 
response within hepatocytes to degrade the mutant protein and it has been proposed that this 
results in mitochondrial damage and subsequent death of the hepatocyte [60,64,65]. 

The temperature and concentration dependence of polymerization may account for the 
wide clinical spectrum of liver disease in those patients who are homozygous for the Z allele. 
The synthesis of Z α1-antitrypsin rises as part of the acute phase response and subsequent 
protein accumulation causes the degradative pathways to become overwhelmed thereby 
exacerbating hepatic injury. Recent data from a Drosophila model of α1-antitrypsin 
deficiency shows a clear temperature dependence of polymerization in vivo [66]. There is 
also clinical evidence to suggest that high temperatures exacerbate the liver disease 
associated with Z α1-antitrypsin. In a prospective study of 120 Z α1-antitrypsin homozygotes, 
two patients developed progressive jaundice following episodes of systemic inflammation 
and many asymptomatic infants developed deranged liver function tests in association with 
coryzal illnesses and eczema [67,68]. 

 
 

THE SERPINOPATHIES 
 
The loop sheet polymerisation that underlies Z α1-antitrypsin associated liver disease is 

not restricted to α1-antitrypsin and has now been shown to underlie the deficiency and 
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inactivation of other serpin variants. This common mechanism allows these disorders to be 
grouped together as ‘the serpinopathies’ [13]. Naturally occurring mutations have been 
described in the shutter (Figure 3) and other domains of the plasma proteins C1-inhibitor, 
antithrombin and α1-antichymotrypsin. These mutations destabilize the serpin architecture to 
allow the formation of inactive polymers that are retained within hepatocytes. This has not 
been shown to cause clinically significant liver disease but does result in severe plasma 
deficiency, which leads to uncontrolled activation of proteolytic cascades and angio-oedema, 
thrombosis, and chronic obstructive pulmonary disease respectively [3,13,23,38]. 

The process of serpin polymerization has most recently been illustrated in the inclusion 
body dementia, familial encephalopathy with neuroserpin inclusion bodies (FENIB) [69]. 
This is an autosomal dominant dementia characterized by eosinophilic neuronal inclusions of 
neuroserpin. The inclusions are PAS positive and diastase resistant and bear a remarkable 
similarity to those formed by Z α1-antitrypsin within the liver. The inclusions are formed of 
neuroserpin and affected individuals carry point mutations in the shutter domain of the 
protein that destabilize the protein allowing polymer formation [70].  

 
 

THE CLINICAL FEATURES OF  
ALPHA1-ANTITRYPSIN DEFICIENCY 

 
Liver Disease 

 
There is a broad clinical spectrum of liver disease associated with α1-antitrypsin 

deficiency. Many patients remain asymptomatic throughout their lives and many others have 
abnormal liver function tests but no clinical sequelae [71]. It is presumed that both genetic 
and environmental factors alter the hepatocyte response to Z α1-antitrypsin polymer 
accumulation [4,72]. There is conflicting evidence as to whether breast feeding protects 
against the development of chronic liver disease and early death in childhood [72,73] but 
there is no doubt that the accumulation of abnormal protein starts in utero [74] and is 
characterized by the accumulation of diastase-resistant, periodic acid-Schiff positive 
inclusions of α1-antitrypsin in the periportal cells [75,76]. 

Over 70% of Z α1-antitrypsin homozygote infants have a raised serum alanine 
aminotransferase in the first year of life but it only remains abnormal in 15% of children at 12 
years of age [67,68,77,78]. Similarly, serum bilirubin is raised in 11% of Z homozygous 
infants in the first 2-4 months but usually falls to normal by 6 months of age. One in 10 
infants develops cholestatic jaundice and 6% develop clinical evidence of liver disease 
without jaundice. Approximately 15% of these patients progress to juvenile cirrhosis. The 
overall risk of death from liver disease in Z homozygote children during childhood is 2-3%, 
with boys more at risk than girls. Z α1-antitrypsin homozygous individuals have a 2% 
incidence of abnormal liver enzyme levels during adolescent years and a 5% incidence from 
20-50 years of age [71]. Male gender and obesity are thought to predispose to advanced liver 
disease in adults with α1-antitrypsin deficiency but there has been no proven correlation with 
either alcohol intake or a past history of viral hepatitis [79]. 



Russell L. Phillips, Meera Mallya and David A. Lomas 252 

The overall incidence of decompensated liver disease is rare but all adults who are 
homozygous for the Z α1-antitrypsin allele have evidence of slowly progressive hepatic 
damage [80,81]. This is usually subclinical and may only be evident as a minor degree of 
portal fibrosis without derangement of liver function tests. The presentation of patients with 
chronic liver disease secondary to α1-antitrypsin deficiency is indistinguishable from that due 
to other causes, although typically such patients will present with asymptomatic 
hepatosplenomegaly and mildly abnormal liver function tests rather than with portal 
hypertension and its complications [71,82-84]. Baseline investigations that should be 
performed in all patients with suspected α1-antitrypsin deficiency are listed in Table 2. 
 

Table 2. Baseline investigations for patients with  
hepatic complications of α1-antitrypsin deficiency. 

 
Liver Function Tests: AST, ALT, Alkaline Phosphatase, Bilirubin, Albumin  
Clotting studies:  PT, APTT, Fibrinogen 
Liver Ultrasound Scan 
α fetoprotein 
α1-Antitrypsin levels and phenotype 
Caeruloplasmin and copper levels 
Viral hepatitis screen  
Autoantibody screen 
 
Necroscopic studies have shown an odds ratio of developing hepatocellular carcinoma of 

5.0 in patients with Z α1-antitrypsin deficiency, usually but not always in association with 
cirrhosis [4,85]. 

Despite there being a clear correlation between liver disease and homozygosity for the Z 
allele, the risk of liver disease in individuals heterozygous for the Z mutation is uncertain. It 
has been proposed that ‘heteropolymers’ consisting of the Z allele and another mutant allele, 
such as S or I, can form hepatic inclusions in a similar way to Z α1-antitrypsin polymers and 
lead to the development of cirrhosis [16]. The S and I variants of α1-antitrypsin have much 
slower rates of polymerization than the Z variant such that individuals who are homozygous 
for these mutations do not have clinically significant retention of polymers or plasma 
deficiency [16,81]. The shutter domain mutants Mmalton and Siiyama have been shown to 
cause both plasma deficiency and hepatic inclusions but there is currently insufficient 
information to state whether or not homozygotes develop progressive liver damage and 
cirrhosis [81]. 

 
 

Lung Disease 
 
α1-Antitrypsin deficiency is a proven genetic risk factor for chronic obstructive 

pulmonary disease (COPD) [86]. Smoking is the most important risk factor for the 
development of emphysema in Z α1-antitrypsin homozygotes [13,87]. A lack of circulating 
α1-antitrypsin leads to uncontrolled proteolytic attack from host proteinases and subsequent 
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tissue destruction. The mutant Z α1-antitrypsin is also five-fold less effective at inhibiting 
neutrophil elastase compared to the normal M protein [50]. This results in characteristic 
bibasal panlobular emphysema. The inhibitory activity of Z α1-antitrypsin can be further 
reduced as it is susceptible to oxidation by free radicals from leucocytes or direct oxidation 
by cigarette smoke [88]. The pathways underlying the development of emphysema in 
individuals with α1-antitrypsin deficiency are illustrated in Figure 5. 
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  Z antitrypsin 

plasma 
deficiency 

polymerization

inactivation pro-inflammatory
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Figure 5. Model for the pathogenesis of emphysema in patients with α1-antitrypsin deficiency. The 
plasma deficiency and reduced inhibitory activity of Z α1-antitrypsin may be exacerbated by the 
polymerization of α1-antitrypsin within the lungs. α1-Antitrypsin polymers also act as a pro-
inflammatory stimulus to attract and activate neutrophils. Cigarette smoke directly promotes neutrophil 
recruitment and creates an acidic local environment which promotes polymer formation and the 
oxidation and inactivation of α1-antitrypsin. Reproduced with permission from Lomas and Mahadeva 
[13].  

Patients with Z α1-antitrypsin deficiency have been shown to have an excess number of 
neutrophils in bronchoalveolar lavage fluid and in sections of pulmonary parenchyma 
[13,89,90]. Studies have shown that polymers themselves are chemotactic for human 
neutrophils and induce neutrophil shape change, stimulate myeloperoxidase release and 
encourage neutrophil adhesion [91,92]. It is thought that it could be the presence of polymers 
that explains the progression of lung disease in Z α1-antitrypsin homozygotes after smoking 
cessation, despite adequate intravenous replacement with plasma α1-antitrypsin. 

The investigations that should be carried out in a patient with pulmonary complications 
of α1-antitrypsin deficiency are shown in Table 3. 

Plain chest radiographs show evidence of hyperinflation, reduced lung markings and, 
occasionally, bulla formation. Lung function tests show evidence of obstructive airflow (with 
reduced FEV1/FVC ratio), increased lung volumes, air trapping (as shown by a raised 
residual volume) as well as impaired gas transfer. Often symptomatic patients will be hypoxic 
on arterial blood gas analysis [4]. 
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Table 3. Baseline investigations for patients with pulmonary complications of α1-
antitrypsin deficiency. 

 
PA Chest Radiograph  
Pulmonary Function Tests: Spirometry with reversibility to bronchodilators 
   Lung volumes and a flow volume loop 
   Residual volume 
   Diffusion capacity 
   Oxygen saturation ± Arterial blood gases 
High Resolution CT scan 
α1-Antitrypsin levels and phenotype 

 
 

OTHER MANIFESTATIONS OF  
ALPHA1-ANTITRYPSIN DEFICIENCY 

 
Panniculitis 

 
Many cases of panniculitis associated with α1-antitrypsin deficiency have been reported 

[4,93]. Typically individuals develop painful nodules which ulcerate, often in association 
with fat necrosis. Treatment options include corticosteroids, dapsone, tetracycline and 
intravenous α1-antitrypsin replacement therapy. It is not known how deficiency leads to 
panniculitis although there are several hypotheses. These include insufficient inhibition of 
membrane-bound serine proteases, increased elastin degradation promoted by large amounts 
of fatty acids, insufficient inhibition of complement activation and neutrophil accumulation at 
sites of inflammation resulting in the release of serine proteases with subsequent damage to 
surrounding connective-tissue structures [94]. 

 
 

Vasculitis 
 
α1-Antitrypsin deficiency has been linked to systemic vasculitides, notably the cANCA 

(anti-proteinase 3 antibody) positive vasculitides such as Wegener’s granulomatosis 
[4,10,11]. There is a higher prevalence of cANCA in individuals with the Z allele [12]. 
Proteinase 3 is a major substrate for α1-antitrypsin and so deficiency of α1-antitrypsin might 
enhance development of autoimmunity to proteinase 3. It is also possible that Z polymers 
may promote autoimmune vasculitic responses [12,91]. It has been recommended that all 
patients with cANCA positive vasculitis are tested for α1-antitrypsin deficiency [95]. 
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DIAGNOSIS 
 
Serum α1-antitrypsin levels are classically low in α1-antitrypsin deficiency and the 

precise level often gives an indication as to the nature of the underlying α1-antitrypsin 
variant. Normal (MM) α1-antitrypsin is present in plasma at a concentration of 1.9-3.5 mg/ml. 
The S allele reduces plasma levels to 60% of normal so an MS heterozygote will have typical 
α1-antitrypsin levels ranging between 1.5-2.8 mg/ml and an SS homozygote between 1.1-2.1 
mg/ml. The Z allele reduces plasma levels to 10-15% of normal. Therefore an MZ 
heterozygote will typically have plasma levels ranging from 0.9-1.7 mg/ml, an SZ 
heterozygote between 0.6-1.1 mg/ml and a ZZ homozygote between 0.2-0.4 mg/ml (see 
Table 4). 
 

Table 4. Serum levels of α1-antitrypsin according to phenotype. 
 

MM 1.9-3.5 mg/ml 
MS 1.5-2.8 mg/ml 
SS 1.1-2.1 mg/ml 
MZ 0.9-1.7 mg/ml 
SZ 0.6-1.1 mg/ml 
ZZ 0.2-0.4 mg/ml 

 
It must be remembered, however that α1-antitrypsin is an acute phase reactant protein and 

serum levels will be elevated during any episodes of acute inflammation. Therefore the 
phenotype should always be confirmed by isoelectric focusing or by genotyping.  

Naturally all patients should have their liver function tests monitored and all other causes 
of cirrhosis should be excluded whatever the α1-antitrypsin phenotype or serum level, as it 
cannot be assumed that the chronic liver disease is solely as a result of α1-antitrypsin 
deficiency.  

Liver biopsy is a sensitive way of assessing hepatocyte damage by α1-antitrypsin polymer 
accumulation. Histology typically reveals the characteristic diastase-resistant PAS positive 
globules within the hepatocyte ER when viewed either by light or electron microscopy (see 
Figure 4). Other typical features seen in liver biopsy specimens include mild portal fibrosis 
with lobular steatosis, chronic active hepatitis (featuring inflammatory infiltrate of the portal 
tract with piecemeal necrosis) and cirrhosis [96]. 

 
 

TREATMENT 
 
Treatment strategies for the liver and lung complications of α1-antitrypsin deficiency are 

highlighted in Tables 5 and 6. 
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Table 5. Treatment strategy for hepatic complications of α1-antitrypsin deficiency. 
 

Current [71,97] 
Alcohol avoidance 
Vitamin replacement and nutritional support and advice to ensure BMI 20-25 
Vaccination against Hepatitis A and B 
Supplemental fat soluble vitamins in severe disease 
Paracentesis for ascites 
Transjugular Intrahepatic Portosystemic Shunt (TIPS) for portal hypertension 
Liver Transplantation (disease will not recur in transplanted organ) 
Screening for family members 
Genetic counseling 
Support from community organizations USA: Alpha-1 foundation, Alpha-1 association, 
AlphaNet 
     UK: Alpha1antitrypsin alliance, Alpha1 UK 
     Other: Alpha 1 Canada 
Future [13,98] 
Strategies to prohibit polymerization  
Gene Therapy 
Gene Repair 

 
Treatment of the chronic liver disease associated with α1-antitrypsin deficiency is 

supportive. End stage liver disease and severe portal hypertension are indications for hepatic 
transplantation. α1-Antitrypsin induced cirrhosis will not recur in the transplanted liver as the 
transplanted organ will produce M (normal) α1-antitrypsin and therefore no further polymers 
will be formed. 

Intravenous augmentation therapy with purified α1-antitrypsin to boost low plasma levels 
is currently available in a few countries as a specific treatment for patients with emphysema, 
where it is the deficiency of the protease inhibitor that causes lung tissue destruction 
[98,104,105]. The goal of this treatment is to raise and maintain serum α1-antitrypsin 
concentrations above the protective threshold, which is thought to be 0.8mg/ml. There have 
been three different preparations of human α1-antitrypsin that have received US FDA 
approval for therapeutic use. The original preparation was derived from pasteurization of 
pooled human plasma and is called Prolastin. Prolastin is also licensed in parts of mainland 
Europe, South America, Canada and Ukraine [12]. More recent drugs, using solvent 
detergent and nanofiltration from human plasma, have subsequently been developed (Aralast, 
Zemaira). These newer preparations have been shown in small, randomized, double blind 
clinical trials to raise serum levels above the protective threshold. However these trials only 
compared the new drugs to prolastin with the aim of showing that their therapeutic effects 
were not inferior to established treatment [106,107]. To date there has been only one 
randomized placebo-controlled trial of augmentation therapy where patients were allocated to 
receive either intravenous replacement therapy or albumin infusions. Over 3 years of follow 
up there was no significant alteration in FEV1 between the groups although a trend towards a 
slower loss of lung tissue as assessed by CT scan was noted in augmentation therapy 
recipients [108]. The infused protein remains active after administration and the treatment is 
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generally well tolerated with few important side effects recorded in studies specifically 
designed to address this issue [109-111]. The most common adverse events reported were 
dyspnoea, dizziness, syncope, chills, urticaria, nausea and fatigue. Although there are 
contradictory studies as to whether patients obtain a long term improvement in lung function 
[112-115], the 2003 international evidence based standards document of care from the 
American Thoracic Society and the European Respiratory Society recommends intravenous 
augmentation therapy in those individuals with established airflow obstruction and in those 
individuals who have undergone lung transplantation for emphysema associated with α1-
antitrypsin deficiency [95]. The use of intravenous augmentation therapy is, of course, of no 
value in treating the polymer driven liver disease. 

 
Table 6. Treatment strategy for pulmonary complications of α1-antitrypsin deficiency. 

 
Current [99] 
Smoking cessation (including Nicotine Replacement Therapy) 
Avoidance of environmental irritants 
Prevention of pulmonary infections 
Influenza and Pneumonia vaccinations 
Early and aggressive treatment of asthma/COPD exacerbations 
(bronchodilators/corticosteroids) 
Early treatment of Pulmonary Hypertension and Cor Pulmonale 
Regular exercise, physiotherapy, pulmonary rehabilitation 
Management of anxiety and depression 
Supplemental Oxygen when required as determined by arterial blood gas analysis 
Intravenous α1-antitrypsin augmentation therapy (only certain countries) 
Opioids for palliative control of terminal breathlessness 
Bullectomy/Lung Volume Reduction Surgery (poor outcome in α1-antitrypsin deficiency) 
Lung Transplantation  
Screening for family members  
Genetic counseling 
Support from community organizations USA: Alpha-1 foundation, Alpha-1 association,   
AlphaNet  
     UK: Alpha1 UK, Alpha1antitrypsin alliance 
     Other: Alpha1 Canada 
Future [98, 100-103] 
Inhaled augmentation therapy 
Gene Therapy 

 
 

FUTURE STRATEGIES 
 
Understanding the mechanism behind α1-antitrypsin polymerization has allowed the 

development of new strategies to prevent polymerization and therefore encourage more 
native α1-antitrypsin to be secreted from the hepatocytes, which would prevent hepatocyte 
death and increase the circulating α1-antitrypsin concentration. Indeed it has been shown that 
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the polymerization of Z α1-antitrypsin can be blocked by annealing reactive loop peptides to 
β-sheet A [42]. However these peptides were too long to enable rational drug design and 
therefore a 6-mer peptide has been produced that specifically binds to Z α1-antitrypsin and 
inhibits polymerization [49]. In the future it may be possible to convert such small peptides 
into drugs that can be used to inhibit polymerization. More recently a hydrophobic pocket has 
been identified in α1-antitrypsin that is bounded by strand 2A and helices D and E [26,116]. 
This cavity is patent in the native protein but is filled during the polymerization process when 
β-sheet A accepts an endogenous reactive loop peptide [26]. Introducing mutations into this 
pocket retards polymerization and increases the secretion of Z α1-antitrypsin from a Xenopus 
oocyte expression system [54]. This cavity is therefore an ideal target for the development of 
drugs that will stabilize β-sheet A and therefore prevent polymerization. A range of 
compounds that are suspected to perform such a task have been selected by computational 
analysis and are currently being screened in vitro. 

Another strategy involves the use of chemical chaperones to stabilize intermediates on 
the folding pathway. Osmolytes such as betaline, trimethylamine oxide and sarcosine all 
stabilize α1-antitrypsin against polymer formation [117]. Glycerol has been shown to bind to 
and stabilize β-sheet A and increase Z α1-antitrypsin secretion from cell lines [118,119]. 
Similarly 4-phenylbutyrate (4-PBA) increases expression of Z α1-antitrypsin from cell lines 
[118] and has been shown to increase the expression of mutant (ΔF 508) cystic fibrosis 
transmembrane regulator protein both in vitro and in vivo [120,121]. A pilot study is 
currently being carried out to evaluate the potential of 4-PBA to promote the secretion of α1-
antitrypsin in patients with α1-antitrypsin deficiency, although preliminary results have not 
been encouraging [122]. 

Gene therapy trials have largely been directed at treating the respiratory complications of 
α1-antitrypsin deficiency. This is because the introduction of a normal gene does not reduce 
the production of the endogenous abnormal gene product. Therefore hepatocyte damage will 
occur regardless of the total serum α1-antitrypsin concentration. Several studies have 
suggested that an adeno-associated virus (AAV) mediated delivery of α1-antitrypsin is a 
potential strategy for successful gene therapy [100-103]. A recent study has reported that 
intrapleural administration of an AAV5 vector may provide a potential therapeutic route 
[123]. 

In order for gene therapy to prevent the liver complications of α1-antitrypsin deficiency 
any potential therapy would need to inhibit the expression of the mutated gene and replace it 
with a normally functioning one. This has been achieved in vitro using site specific 
ribozymes to cleave the α1-antitrypsin mRNA at a specific site to prevent abnormal protein 
production, followed by subsequent retroviral transduction of a normal gene into the same 
cell line [124]. In vivo work in this field has involved the use of transgenic mice carrying the 
human Z α1-antitrypsin allele. The mice were treated via an indwelling portal vein catheter 
with a simian virus 40 (SV40) derived vector carrying a ribozyme designed to target the 
human transcript. This resulted in significant reduction in production of human Z α1-
antitrypsin and therefore reduced accumulation of the abnormal protein. Moreover when 
normal mice were treated with an SV40-derived vector containing normal human α1-
antitrypsin that was resistant to ribozymal cleavage, high levels of human α1-antitrypsin were 
expressed [125]. 
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Other, more speculative, future approaches include a potential role for gene repair. 
Chimeric RNA/DNA oligonucleotides have been used in model systems to amend a single 
gene mutation [98,126]. More recently encouraging results have been obtained with single 
stranded bare DNA oligonucleotides both in vivo and in vitro [98,127]. There may also be a 
potential role for stem cell therapy in α1-antitrypsin deficiency although this needs further 
evaluation [128]. 

 
 

PROGNOSIS 
 
According to the Death Review Committee (DRC) of the National Heart, Lung and 

Blood Institute Registry, individuals with severe α1-antitrypsin deficiency have an excess 
mortality linked to lung and liver disease. In the subject population (studied over 7 years in 
37 centers across North America) emphysema accounted for 85% of mortality and cirrhosis a 
further 12% [129]. Liver failure accounted for 25% of deaths in those patients who had never 
smoked. 

 
 

CONCLUSION 
 
α1-Antitrypsin deficiency is a well recognized cause of both emphysema and chronic 

liver failure. In the years to come it is to be hoped that there will be an increasing awareness 
of α1-antitrypsin deficiency and this should lead to the condition being diagnosed at younger 
ages. Therefore, the incidence of lung disease should be significantly reduced as patients can 
be advised about the dangers of cigarette smoking and other family members can be 
screened. Tackling the liver disease associated with α1-antitrypsin deficiency represents more 
of a clinical conundrum and will most probably rely on an efficient screening programme, 
coupled with either genetic manipulation or the prevention of Z α1-antitrypsin 
polymerization. 
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ABSTRACT 
 
The glycogen storage diseases (GSDs) or glycogenoses comprise several inherited 
diseases caused by abnormalities of the enzymes that regulate the synthesis or 
degradation of glycogen. Advances in molecular genetics [1,2] have led to the 
identification of the precise genetic abnormalities that cause the specific impairments of 
enzyme function of the various GSDs. Likewise, improved understanding of the 
pathophysiologic derangements resulting from individual enzyme defects has led to the 
development of effective nutritional therapies for these disorders [3,4]. For example, in 
type I GSD (GSD I), a disease that formerly was characterized by severe growth failure 
and delayed puberty, meticulous adherence to dietary therapy prevents hypoglycemia, 
ameliorates the biochemical abnormalities, decreases the size of the liver, and results in 
normal or nearly normal physical growth and development. Long-term complications, 
including nephropathy that can progress to renal failure, and hepatic adenomata that can 
hemorrhage or become malignant and may be associated with severe anemia, are a major 
concern in GSD I. In type III GSD (GSD III), the liver decreases in size during puberty; 
however, adults uncommonly develop cirrhosis, and patients with absent muscle 
glycogen debrancher enzyme activity develop progressive debilitating myopathy and 
cardiomyopathy. It is unclear whether these complications can be prevented by 
nutritional therapy. The severe form of type IV GSD (GSD IV) rapidly progresses to 
cirrhosis with portal hypertension and liver failure and no specific treatment, other than a 
liver transplant, is currently available. GSDs caused by lack of phosphorylase activity are 
milder disorders with a good prognosis.  
 

                                                        
∗  Correspondence concerning this article should be addressed to Joseph I. Wolfsdorf, M.B., B.Ch., Department of 

Medicine, Children’s Hospital Boston, 300 Longwood Avenue, Boston, MA 02115. Tel: (617) 355-2420; Fax: 
(617) 730-0194; e-mail address: joseph.wolfsdorf@childrens.harvard.edu. 
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INTRODUCTION 
 
The glycogen storage diseases (GSDs) or glycogenoses comprise several inherited 

diseases caused by abnormalities of the enzymes that regulate the synthesis or degradation of 
glycogen (Figures 1) [3,5]. Glycogen is a highly branched polymer of glucose and is the 
storage form of glucose in mammals. The major sites of glycogen deposition are skeletal 
muscle and liver, but many cell types are capable of glycogen synthesis, including cardiac 
and smooth muscle, the kidney, brain and even adipose tissue. Glycogen comprises 
approximately 4-6 percent and 1-2 percent of the wet weight of the liver and skeletal muscle, 
respectively. In the average well-fed man consuming a diet rich in carbohydrate about 80 g of 
glycogen is stored in the liver and 400 g in skeletal muscle [6]. 
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Figure 1. Simplified scheme of glycogen synthesis and degradation in the liver. Note that in skeletal 
muscle GLUT-4, transports glucose across the cell membrane and glucose-6-phosphatase is absent. 
UDP-glucose is uridine diphosphoglucose; 1. hexokinase/glucokinase, 2. glucose 6-phosphatase, 3. 
phosphoglucomutase, 4. glycogen synthase, 5. branching enzyme, 6. glycogen phosphorylase, 7. 
debranching enzyme, 8. phosphofructokinase, 9. fructose 1,6-bisphosphatase, 10. acid maltase, 11. 
pyruvate dehydrogenase. 
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Glucose transporter-2 (GLUT2) is the most important facilitative glucose transporter in 
hepatocytes, pancreatic ß-cells, and the basal membranes of renal proximal tubular cells and 
intestinal mucosal cells [7]. It has a high Km (~ 40mmol/L); consequently, the free glucose 
concentration in hepatocytes increases in direct proportion to the increase in plasma glucose 
concentration. After a meal, exogenous glucose delivery increases at rates largely determined 
by the carbohydrate content of the ingested food and the rate of gastric emptying. 
Endogenous glucose production is suppressed, and excess glucose is either metabolized or 
stored as glycogen in skeletal muscle and the liver [8].  

Glycogen synthesis and degradation in the liver follow distinct pathways that begin and 
end with glucose-1-phosphate (G1P) (Figure 1) [9]. The liver is freely permeable to glucose, 
which is rapidly phosphorylated by glucokinase to form glucose-6-phosphate (G6P) before it 
can enter one of several metabolic pathways. It can be reversibly converted to G1P, the 
starting point for glycogen synthesis (Figure 1). G1P reacts with uridine triphosphate to form 
uridine diphosphate (UDP)-glucose. Glycogen synthase catalyzes the formation of α-1,4-
linkages from UDP-glucose, which elongates chains of glucose molecules. A branching 
enzyme forms the α-1,6-linkages at branch points along the chain making glycogen a 
branched polymer. Alternatively, G6P can be hydrolyzed to glucose by glucose-6-
phosphatase or it can be metabolized via the glycolytic pathway to pyruvate and lactate or via 
the pentose phosphate pathway to ribose-5-phosphate, a precursor of nucleotide synthesis. A 
cascade of enzymatic reactions activates hepatic glycogen phosphorylase, the rate-limiting 
enzyme of glycogenolysis, which removes glucose from the outer branches of glycogen, 
yielding G1P (Figure 2). 
 

Glucagon, epinephrine in the liver
 
    adenyl cyclase (active) 

 
ATP           cyclic AMP 
 
              cyclic AMP-dependent protein kinase (active) 
 
       phosphorylase b kinase (active) 
 

phosphorylase b            phosphorylase a 
         (inactive)          (active) 
 
           glycogen    glycogen (n-1 residues)
              + 
           glucose-1-phosphate  

Figure 2. The glycogenolysis cascade. Phosphorylase b kinase also catalyzes the conversion of 
glycogen synthase from a more to a less active form (not shown). Because of these reciprocal changes, 
glycogen degradation is active when glycogen synthesis is inactive, and vice versa. 

The GSDs are all inherited in an autosomal recessive manner, with the exception of type 
IX (which has both autosomal and X-linked inheritance), and are caused by mutations in the 
genes that code for enzymes involved in the synthesis or degradation of glycogen in liver 
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and/or muscle (Table 1). The overall frequency of GSD is approximately 1 case per 20,000-
25,000 births. They are characterized by an abnormal tissue concentration and/or abnormal 
structure of the glycogen molecule. The GSDs may involve skeletal and cardiac muscle and 
liver and are referred to either by the deficient enzyme or by a number that reflects the 
historical sequence of their description. Twelve distinct types of GSD have been identified. 
They are all uncommon and some are extremely rare. Seven types of GSD account for about 
97 percent of cases [5]. Those that predominantly involve the liver will be discussed in this 
chapter: GSD 0 (≤1%), GSD I (25%), GSD III (24%), GSD IV (3%), GSD VI and IX1 (30%), 
and Fanconi-Bickel syndrome (<1%). 

Hypoglycemia is the primary manifestation of the hepatic glycogenoses, whereas 
weakness and muscle cramps are the predominant features of the muscle glycogenoses. The 
hepatic glycogen storage diseases, with the notable exception of GSD IV, are 
characteristically associated with hypoglycemia (Table 1). 
 

Table 1. Hepatic Glycogen Storage Diseases. 
 

Disorder Affected tissue Enzyme Inheritance Gene Chromosome 
Type 0 GSD Liver Glycogen synthase AR* GYS2  12p12.2 
Type Ia GSD Liver, kidney, 

intestine 
Glucose-6-phosphatase  AR G6PC 17q21  

Type Ib GSD Liver Glucose-6-phosphate 
transporter 

AR G6PT1 11q23  

Type IIIa GSD 
 

Liver, muscle, heart 
 

Glycogen debranching 
enzyme (GDE) 

AR 
 

AGL 
 

1p21  
 

Type IIIb GSD Liver Glycogen debranching 
enzyme 

AR AGL 1p21 

Type IV GSD Liver, muscle, heart Glycogen branching enzyme AR GBE1 3p12.3 
Type VI GSD Liver Glycogen phosphorylase AR PYGL 14q21-22  
Type IX GSD† Liver, erythrocytes, 

leukocytes 
Liver isoform of α subunit of 
phosphorylase kinase 

X-linked 
 

PHKA2 
 

Xp22.2 
p22.1  

Liver, muscle, 
erythrocytes, 
leukocytes 

ß subunit of liver and muscle 
phosphorylase kinase 

 

AR 
 

 

PHKB 
 

 

16q12-q13 
 

 

 

Liver Testis/liver isoform of γ 
subunit of phosphorylase 
kinase 

AR PHKG2 16p11-p12 

Fanconi-Bickel 
syndrome 
(Type XI GSD) 

Liver, kidney, 
pancreatic ß cells, 
intestine 

Glucose transporter 2** AR GLUT2 3q26.1-q26.3 

*AR autosomal recessive; sometimes designated Type VIII:  
**GLUT2 is a facilitative glucose transporter, not an enzyme. 

 
 
 
 

                                                        
1 Also designated as GSD type VIII 
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GLYCOGEN SYNTHASE DEFICIENCY  
(TYPE 0 GLYCOGEN STORAGE DISEASE, GSD 0) 

 
Type 0 glycogen storage disease is caused by mutations in the GYS2 gene which result 

in deficiency of the hepatic isoform of glycogen synthase [10]. To date, 15 different 
mutations have been documented. The only common mutation is in exon 4 (R246X) and has 
been found in patients of Italian descent both in Europe and in North America. Cases of 
GSD0 have been identified throughout Europe, North and South America. GSD0 has a 
classic autosomal recessive inheritance. 

 
 

Clinical Features 
 
Although this disorder has been classified as a GSD, this is really a misnomer because, in 

contrast to all other types of glycogenoses, which are characterized by increased tissue 
glycogen content, deficiency of glycogen synthase causes a marked decrease in liver 
glycogen content. GSD 0 is the only hepatic GSD not associated with hepatomegaly. 

Because a substantial fraction of dietary carbohydrate is normally stored in the liver as 
glycogen, inability to synthesize hepatic glycogen causes postprandial hyperglycemia after 
ingestion of a carbohydrate-containing meal. Glucose and other dietary sugars taken up by 
the liver are shunted into the glycolytic pathway (Figure 1) leading to postprandial 
hyperglycemia, hyperlacticacidemia, and hyperlipidemia [11]. Ketotic hypoglycemia 
develops with fasting [12,13]. Intact gluconeogenesis and fatty acid oxidation blunt the 
decrease in blood glucose levels in the postabsorptive period and explains why hypoglycemia 
is typically milder in this disorder than in some of the other hepatic glycogenoses. When 
fasting is more prolonged, however, severe hyperketonemia and hyperfattyacidemia inhibit 
release of alanine from skeletal muscle [14,15] leading to a reduction in precursors for 
gluconeogenesis and more severe hypoglycemia. Thus, the classical biochemical phenotype 
is alternating mild postprandial hyperglycemia and hyperlacticacidemia with fasting 
hypoglycemia and hyperketonemia (“ketotic hypoglycemia”) [11,16].  

Children with GSD 0 are usually asymptomatic during infancy, but weaning from 
overnight feeding often proves difficult and, when overnight feeding is stopped, fasting 
ketotic hypoglycemia and irritability or lethargy before breakfast is common. Despite 
hypoglycemia, patients may be relatively asymptomatic because hyperketonemia provides the 
brain with an alternative fuel [17]. Patients may be asymptomatic unless they are ill [13]. 
Postprandial hyperglycemia and glucosuria may be mistaken for early diabetes or renal 
glucosuria [16]. Most children with GSD 0 are identified incidentally when hypoglycemia is 
discovered during an evaluation for lethargy associated with a gastrointestinal illness or other 
cause of poor dietary intake. The manifestations of GSD 0 are frequently subtle and children 
may first come to medical attention because of short stature, failure to thrive, hyperlipidemia, 
or elevated hepatic transaminase levels [13]. 

Short stature and osteopenia are common in untreated children, but improve with 
prevention of hypoglycemia, lactic acidosis, and ketosis. The long-term complications 
commonly seen in the other forms of glycogen storage disease, such as hepatic adenomas, 
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cirrhosis, kidney dysfunction, and muscular abnormalities, have not been reported in 
adolescents or adults with GSD 0. There are few reports of adults with GSD 0, and the oldest 
case documented in the literature is 34 years of age [10]. All of the adults with GSD 0 have 
done well and there is reason to believe that the prognosis is excellent despite the lack of 
reported older individuals. A 26-year old woman with GSD 0 gave birth to a healthy term 
infant, but overnight hypoglycemia and ketonemia developed when supplemental 
carbohydrate was not provided in the 2nd and 3rd trimesters of pregnancy [18]. 

 
 

Diagnosis  
 
Home blood glucose and urine ketone monitoring, initially, maybe used to screen for this 

disorder because fasting hypoglycemia and ketonuria are universal in children less than 5 
years of age. If fasting ketotic hypoglycemia is demonstrated, frequent measurements of 
blood glucose, lactate, and ketones in both the fed (or after an oral glucose tolerance test) and 
fasting states (24-hour metabolic profile) show the pathognomonic biochemical disturbances 
[11,16]. It is important to note that a “typical” fasting study, which does not measure blood 
metabolite concentrations in the postprandial period, may show no obvious hormonal or 
biochemical abnormalities, leading to a misdiagnosis of “ketotic hypoglycemia” or 
“accelerated starvation” [16]. Despite the decrease in hepatic glycogen content, the glycemic 
response to glucagon is variable and, for poorly understood reasons, may even be near-
normal [12,19]. A glycemic response to glucagon does not rule out the disorder.  

In the past, the definitive diagnosis depended on performing a liver biopsy. Hepatocytes 
contain small amounts of glycogen and show moderate steatosis. The glycogen content is low 
(~0.5%; normally 1-6% wet liver weight), but not completely absent, suggesting residual 
hepatic glycogen synthase activity or the existence of an alternative pathway for glycogen 
synthesis. The diagnosis can now be confirmed non-invasively by mutational analysis of the 
GYS2 gene using DNA extracted from blood or saliva [10,13]. A few cases of biopsy proven 
GSD 0 have been diagnosed in whom no mutations could be found in GYS2. 

 
 

Management  
 
The goal of treatment is to prevent hypoglycemia and to minimize systemic acidosis by 

preventing postprandial hyperlacticacidemia and fasting hyperketonemia [20]. Fasting 
hypoglycemia, especially in young children, is prevented by a bedtime feeding of uncooked 
cornstarch (1-1.5 gram per kg) in low fat or skim milk. During the day, patients are fed 
frequently (e.g., every four hours) and the diet should contain an increased amount of protein 
to provide substrate for gluconeogenesis and proportionately less carbohydrate (complex 
starches with a low glycemic index) to minimize postprandial hyperglycemia and 
hyperlacticacidemia [13]. Exertional fatigue is common in some individuals, and glucose and 
protein supplementation often improves stamina during sports and other periods of physical 
activity. 
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GLUCOSE 6-PHOSPHATASE DEFICIENCY (TYPE 1 GLYCOGEN 

STORAGE DISEASE [GSD I]; VON GIERKE DISEASE; 
HEPATORENAL GLYCOGENOSIS) 

 
Glucose 6-phosphatase catalyzes the terminal reaction of glycogenolysis and 

gluconeogenesis, the hydrolysis of G6P to glucose and inorganic phosphate in hepatocytes 
and renal epithelial cells (Figure 1) [21]. G6Pase is a multicomponent enzyme system located 
in the endoplasmic reticulum (ER) membrane and consists of nine transmembrane spanning 
domains. The active site faces into the ER lumen [22]. Three proteins transport the substrate, 
G6P, and the products, phosphate, inorganic orthophosphate, and glucose across the ER 
membrane. G6P transporter transports G6P into the ER. Glucose is transported out of the ER 
by GLUT2 [21].  

More than 85% of patients with GSD 1 have deficient catalytic activity of the G6Pase 
system, which causes type Ia GSD (GSD Ia). More than 80 different mutations have been 
found in the gene (G6PC located on chromosome 17q21) that encodes G6Pase in patients 
with GSD Ia. The common mutations in GSD Ia are shown in Table 3. The incidence of this 
disorder is estimated to be 1 in 100,000 births. GSD Ia occurs in all ethnic groups. Common 
mutations have been found in the Ashkenazi Jewish [23], Chinese, Japanese, and Mexican 
populations. These mutations have not been found in patients with type Ib GSD (GSD Ib), 
which is caused by failure to transport G6P into the lumen of the ER owing to a mutation in 
the gene (G6PT1) that causes deficiency of the G6P transporter [24]. To date, approximately 
65 mutations in the G6PT gene have been described. Most mutations are in exon 8; 
sequencing of this exon detects 75% of mutant alleles.  
 

Table 2. Biochemical Characteristics of the Hepatic Glycogen Storage Diseases. 
 

Type At time of hypoglycemia Response to oral 
glucose 

Response to 
glucagon  
4-8 h after meal* 

Response to 
glucagon  
2 h after meal 

 Triglyceride Uric 
acid 

Lactate Glucose Lactate Glucose Lactate Glucose Lactate 

GSD-0 N N N ↑↑ ↑↑ 0-↑ 0 ↑ ↓ 
GSD-I ↑↑↑ ↑↑ ↑↑↑ ↑ ↓↓ 0 ↑↑↑ 0 ↑↑ 
GSD-III ↑ N N ↑ ↑ 0 0 ↑ 0 
GSD-VI, IX 0-↑ N N ↑ ↑ 0-↑ 0 ↑ 0 

*after meal containing carbohydrate; subjects with suspected GSD-I should not be permitted to fast for 
more than 4 hours; N normal, 0 no increase, 0-↑ variable increase, ↑ mild increase, ↑↑ moderate 
increase, ↑↑↑ marked increase, ↓ mild decrease, ↓↓ moderate decrease. 

 
 

Clinical Features  
 
GSD I is characterized by impaired production of glucose from glycogenolysis and 

gluconeogenesis resulting in severe hypoglycemia and increased production of lactic acid, 
triglyceride, and uric acid (Figure 1, Table 1). Symptoms of hypoglycemia typically occur 
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when the infant starts to sleep through the night (usually at 3-6 months of age) or when 
intercurrent illness disrupts normal feeding. The disorder may be discovered when the child 
presents with tachypnea, seizures, lethargy, or developmental delay. Untreated patients may 
have a cushingoid appearance, failure to thrive, a markedly enlarged liver, and protuberant 
abdomen. Social and cognitive development usually is not affected unless the infant suffers 
cerebral damage from recurrent hypoglycemic seizures [25].  
 

Table 3. Common mutations in GSD Ia. 
 

Mutation Base change Location of mutation Population 
R83C C326T Exon 2 Ashkenazi Jewish Eastern European 
R83H G327A Exon 2 Chinese 
130X 459insTA Exon 3 

 
Mexican 
Central American 

212X G727T Exon 5 Japanese 
Q347X C1118T Exon 5 Western European 

 
During infancy, the blood glucose concentration decreases to less than 45 mg/dL 

(2.5mmol/L) within two to three hours of a feed. Ketogenesis is impaired despite 
hyperfattyacidemia [26]. Longer intervals between feeds cause even more severe 
hypoglycemia accompanied by pronounced hyperlacticacidemia and metabolic acidosis. 
Adaptation to hypoglycemia can occur in untreated or inadequately treated patients because 
hyperlactatemia provides an alternative substrate for cerebral fuel metabolism [27]. Serum 
uric acid is increased and liver transaminases are usually mildly elevated. The serum of 
untreated patients may be cloudy or milky with very high triglyceride concentrations and 
moderately increased levels of phospholipids, total and LDL-cholesterol, whereas the HDL-
cholesterol concentration is low [28,29]. Severe hypertriglyceridemia may lead to eruptive 
xanthomata on the extensor surfaces of the extremities and buttocks and is associated with an 
increased risk of acute pancreatitis [30,31]. Paradoxically, despite their atherogenic lipid and 
lipoprotein profiles, the risk of cardiovascular disease does not appear to be increased 
[32,33]. A bleeding tendency is caused by impaired platelet function, which is secondary to 
the systemic metabolic abnormalities and is correctable by improving the metabolic state 
[34]. The numerous biochemical and hematological abnormalities observed in GSD I are 
summarized in Table 4. 

Patients with GSD Ib have similar symptoms with the addition of neutropenia and 
inflammatory bowel disease. The neutropenia is a consequence of disturbed myeloid 
maturation, and can be either cyclical or chronic. Its severity ranges from mild to complete 
agranulocytosis. Neutropenia is accompanied by functional defects of circulating neutrophils 
and monocytes and is associated with recurrent bacterial infections. Rare cases of atypical 
GSD Ib without neutropenia or recurrent bacterial infections may be caused by distinct 
mutations that leave some residual G6P transporter activity [35]. The GSD Ib phenotype 
(neutropenia, neutrophil dysfunction and recurrent infections) has recently been described in 
patients with GSD Ia who have homozygous G188R mutations of the G6Pase gene, but no 
identifiable mutations in the G6P transporter gene [36]. In a recent European Study, 
neutropenia was documented before the age of one year in two-thirds of patients, but in 18% 
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of patients was first noted between the ages of six and nine years. Most patients had 
intermittent neutropenia without any clear cyclical course [37]. Children with GSD Ib are 
prone to oral complications, including recurrent mucosal ulceration, gingivitis, and rapidly 
progressive periodontal disease. Therapy with recombinant human granulocyte colony 
stimulating factor (GCSF) improves infection-related morbidity by increasing numbers of 
circulating neutrophils and improving in vitro neutrophil function [38]. Patients with GSD Ib 
almost universally develop a Crohn’s-like inflammatory bowel disease (IBD) [39]. While the 
IBD responds to therapy with GCSF [37,40], this comorbidity continues to occur even when 
neutropenia is treated. Periodic screening of inflammatory markers is recommended. 
Colonoscopy should be performed when clinical and laboratory features suggest he presence 
of IBD. The IBD in GSD Ib may be isolated to the small intestine; consequently, a capsule 
endoscopy may reveal disease in patients in whom a colonoscopy reveals no evidence of 
bowel inflammation. 

 
Table 4. Laboratory Abnormalities in Untreated Patients with Type I GSD. 

 
• Hypoglycemia 
• Hyperlacticacidemia 
• Hyperfattyacidemia 

o mild hyperketonemia  
• Metabolic acidosis with increased anion gap  
• Hepatic transaminase (aspartate aminotransferase [AST], alanine aminotransferase [ALT]) 

levels increased  
• Hyperlipidemia  

o increased total and LDL-cholesterol 
o increased phospholipids  
o markedly increased triglycerides 
o decreased HDL-cholesterol 

• Hyperuricemia 
• Hypercalcemia 
• Inflammatory markers (erythrocyte sedimentation rate and C-reactive protein) elevated  
• Anemia 
• Thrombocytosis 
• Neutropenia (cyclic or constant)* 
• Prolonged bleeding time 

o decreased platelet adhesiveness 
o abnormal platelet aggregation 
o impaired ADP release in response to collagen and epinephrine 

• Increased glomerular filtration rate 
• Proximal renal tubular dysfunction 

o glucosuria 
o phosphaturia 
o generalized aminoaciduria 

• Distal renal tubular dysfunction 
o acidification defect 
o hypercalciuria 
o hypocitraturia 

*GSDIb 
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Proximal tubular dysfunction (glucosuria, phosphaturia, hypokalemia, and generalized 
aminoaciduria) is reversible with improved biochemical control of the disease [41]. Treated 
children usually show no significant impairment of renal function except glomerular 
hyperfiltration. Some patients have a distal renal tubular acidification defect associated with 
hypercalciuria [42]. Urinary citrate excretion normally increases with age, whereas in GSD 
Ia, there is an inverse relationship between age and citrate excretion [43]. The combination of 
low citrate excretion and hypercalciuria appears to be important in the pathogenesis of 
nephrocalcinosis and nephrolithiasis. Citrate supplementation may prevent or ameliorate 
nephrocalcinosis and the development of urinary calculi [43]. Increased albuminuria may be 
observed in adolescents. More severe renal injury with proteinuria, hypertension, and 
decreased creatinine clearance due to focal segmental glomerulosclerosis and interstitial 
fibrosis, which ultimately progresses to renal failure, may be seen in young adults [44,45]. 
Patients with persistently elevated concentrations of blood lactate, lipids and uric acid appear 
to be at increased risk of nephropathy [46]. Normalization of metabolic parameters decreases 
proteinuria, and optimal therapy from an early age may delay or prevent renal disease 
[46,47]. 

Hepatic adenomas are detectable in the majority of patients by the time they are adults 
[48]. They are usually first observed in the second and third decades of life, but may appear 
before puberty. Adenomas may undergo malignant degeneration or hemorrhage and are 
frequently associated with chronic iron resistant anemia [49]. This form of iron resistant 
anemia has been associated with large hepatic adenomas (>7 cm in diameter); hepcidin, 
which inhibits intestinal absorption of iron and macrophage recycling of iron, is 
inappropriately expressed in these adenomas. Resection of the hepatic adenoma(s) results in 
rapid correction of the anemia [47]. Ultrasonography is the preferred method of screening for 
hepatic adenomas, which appear as focal lesions. Magnetic resonance imaging provides 
greater definition when malignancy is suspected because of a worrisome change in 
sonographic appearance [50]. Serum α-fetoprotein levels are normal in patients with 
adenomas, but have been increased in some cases of hepatocellular carcinoma. Serum α-
fetoprotein is not sensitive for diagnosing hepatocellular carcinoma. A recent case series 
found normal concentrations early in the disease in 6 of 8 patients [50]. In our experience, 
continuous glucose therapy from infancy does not prevent the development of focal hepatic 
lesions and there is no difference in the rate of adenoma formation in children treated with 
cornstarch compared with those treated with continuous overnight feeds [49]. 

With patients surviving into adulthood, osteoporosis has emerged as an important cause 
of morbidity. Osteoporosis develops without abnormalities in calcium, phosphate, 
parathyroid, or vitamin D metabolism. Poor metabolic control is associated with decreased 
bone mineral content, but the etiology is multifactoral, including systemic acidosis, elevated 
cortisol concentrations, delayed pubertal development, inadequate dietary calcium, low 
vitamin D concentrations, and lack of physical exercise [51,52]. 
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Diagnosis  
 
GSD Ia and Ib are usually suspected on the basis of their characteristic clinical and 

biochemical abnormalities (Table 2) and now usually can be confirmed by mutation analysis, 
eliminating the need to perform a liver biopsy and enzyme assay [53].  

 
 

Management  
 
Treatment consists of providing a continuous dietary source of glucose to prevent blood 

glucose from falling below the threshold for glucose counterregulation, approximately 
70mg/dL (4mmol/L) [3]. A continuous source of glucose can be provided by nocturnal 
intragastric infusion (via nasogastric tube or gastrostomy) or by using uncooked (raw) 
cornstarch. An estimate of the minimum amount of glucose required can be obtained by using 
the formula to calculate the basal glucose production rate:  

 
y = 0.0014x3 - 0.214x2 + 10.411x - 9.084, 

 
where y = mg glucose per minute, and x = body weight in kg [54]. Modification of the 
amount and/or schedule of glucose is based on the results of clinical and biochemical 
monitoring. In infants, we recommend 2-3 hourly feedings of a non-lactose containing 
formula during the day and 3 hourly feedings at night to provide an amount of glucose that 
equals or exceeds the calculated glucose production rate. If nighttime feedings are 
problematic, continuous feedings of the same formula should be given with an infusion 
pump. 

Uncooked cornstarch acts as an intestinal reservoir of glucose that is slowly absorbed 
into the circulation. In many centers, cornstarch has replaced frequent daytime feedings of 
glucose (or glucose polymers) and continuous nocturnal intragastric glucose infusion. It can 
be gradually introduced at 6-12 months of age as an alternative method of glucose delivery 
[55]. The advantage of cornstarch is that it allows feeds to be more widely spaced, minimizes 
plasma glucose fluctuations and, because blood glucose levels tend to decline more slowly, 
blood lactate concentrations increase sufficiently to provide the brain with an alternative fuel. 
This decreases the risk of hypoglycemia-induced seizures. In older children, adolescents, and 
in adults, cornstarch is given in a slurry of water or artificially sweetened fluid at 3-5 hour 
intervals during the day and at 4-6 hour intervals overnight. The optimum feeding schedule 
and amounts of cornstarch for patients of different ages is determined by metabolic 
monitoring to ensure that the biochemical goals of therapy are achieved, viz., normal blood 
glucose levels and blood lactate concentrations ≤2.2 mmol/L [3,56,57]. The requirement for 
nocturnal glucose therapy is lifelong [58]. 

When hypoglycemia and hyperlacticacidemia are prevented, liver size decreases, growth 
improves, and serum uric acid, cholesterol and triglyceride concentrations are restored to near 
normal. If severe hyperuricemia persists, allopurinol should be used to lower uric acid to 
normal levels. Lipid-lowering agents (e.g., gemfibrozil) are seldom required, but are 



Joseph I. Wolfsdorf and David A. Weinstein 280 

indicated in patients when, despite optimal glucose therapy, persistent severe hyperlipidemia 
poses a significant risk of acute pancreatitis.  

Dietary fat should be restricted to about 20% of the total energy intake, equally 
distributed among monounsaturated, polyunsaturated, and saturated fats and cholesterol is 
restricted to <300 mg/day. Foods that contain fructose and galactose must be restricted. 
Carbohydrates, mostly in the form of starches, typically provide about 60-65% of the daily 
calories, of which cornstarch accounts for 30 to 45%. With glucose requirements prescribed, 
the total caloric intake is determined largely by the child’s appetite as long as the rate of 
weight gain is not excessive, taking into account that the diet must provide adequate amounts 
of protein, fat, minerals, and vitamins to support normal growth. Patients treated intensively 
from infancy attain adult heights within one standard deviation score of their target heights, 
but mild to moderate obesity is common [49,59]. 

 
 

AMYLO-1,6-GLUCOSIDASE DEFICIENCY (TYPE III 

GLYCOGEN STORAGE DISEASE; GLYCOGEN DEBRANCHING 

ENZYME [GDE] DEFICIENCY; LIMIT DEXTRINOSIS; CORI 

DISEASE; FORBES DISEASE) 
 
Release of glucose from glycogen stores requires the combined actions of glycogen 

phosphorylase and GDE, which consists of two independent catalytic activities on a single 
polypeptide chain, an oligo-1,4→1,4 glucan transferase and amylo-1,6-glucosidase. The two 
activities are determined at separate catalytic sites on the polypeptide chain and can function 
independently of each other. After phosphorylase has acted exhaustively on the outer 
branches of glycogen, four glucosyl residues remain distal to the branch point (limit dextrin). 
Transferase activity transfers three glucose residues from one short outer branch to the end of 
another thus exposing the branch-point (an α-1,6-linkage). Glucosidase then hydrolyzes the 
branch-point permitting phosphorylase access to the α-1,4-linkages. The transferred dextrin 
may be further depolymerized by phosphorylase. Full debranching enzyme activity requires 
both the transferase and glucosidase activities. In the absence of debrancher activity, 
breakdown of glycogen is arrested when the outermost branch points are reached. Only 1,4 
segments distal to the outermost branch points are accessible to phosphorylase and can yield 
glucose. This results in accumulation of an abnormal form of glycogen, phosphorylase limit 
dextrin, in affected tissues. 

A single gene (AGL) located at 1p21 with 35 exons encodes GDE in liver and muscle 
[60,61]. Differential RNA transcription results in the generation of muscle and liver isoforms, 
with different tissue-specific promoters and an alternative usage of the first exon. At least six 
transcript isoforms are produced by alternative splicing with different tissue distributions 
[60]. Both type IIIa GSD (liver and muscle) and type IIIb (liver only) have mutations in the 
same gene [62]. The incidence of GSD III is estimated to be 1 in 100,000 live births. The 
highest prevalence of GSD IIII, due to the R408X mutation, is in the Faroe Islands, [63]. 
There is an increased prevalence in the Inuit population in Canada [64]. In Israel the disease 
is common (1 in 5,400) in Sephardic Jews of North African origin who have a common 
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mutation (4,455delT) that causes deficient GDE activity in both liver and muscle [65]. In the 
U.S.A. 80-85% of patients have type IIIa. Selective loss of one of the two GDE activities, 
glucosidase (type IIIc) or transferase (type IIId), is rare. 

 
 

Clinical Features  
 
Clinical and enzymatic variability is a feature of GDE deficiency [66,67]. The disease 

may be indistinguishable from GSD-I during infancy and early childhood. Hepatomegaly, 
fasting hypoglycemia with ketosis, and hyperlipidemia are the predominant features. Serum 
transaminase levels are increased in childhood, and are typically considerably more elevated 
than in GSD I. Also, in contrast to GSD I, blood lactate and uric acid concentrations are 
normal. Untreated infants and children grow slowly and puberty is delayed. The kidneys are 
not enlarged and renal dysfunction does not occur. In type IIIa, muscle weakness is usually 
minimal and not clinically significant in childhood. Myopathy usually becomes prominent in 
the third or fourth decades of life manifesting as slowly progressive muscle weakness 
involving the large proximal muscles of the shoulders and hips [68]. Patients may also have 
involvement of the distal muscles; e.g., the small muscles of the hand and, in some cases, this 
is associated with peripheral neuropathy [69]. Limit dextrin may also accumulate in the heart 
causing a cardiomyopathy that is echocardiographically similar to idiopathic hypertrophic 
cardiomyopathy [70,71]. Hepatic adenomata occur in 25% of patients [72]. With the 
exception of myopathy, symptoms and signs characteristically ameliorate with increasing 
age. The size of the liver tends to decrease to normal during puberty; however, most patients 
show hepatic fibrosis on biopsy and, rarely, adult patients develop cirrhosis and its 
complications [73]. 

 
 

Diagnosis  
 
The principal biochemical abnormalities are shown in Table 2. Ketotic hypoglycemia 

without hyperlacticacidemia occurs with fasting. Glucagon does not elicit a glycemic 
response when given after a fast, but does when given 2 hours after a carbohydrate-rich meal. 
Elevated levels of serum creatine kinase and aldolase concentrations suggest muscle 
involvement, but normal values do not exclude myopathy. Electromyography shows 
myopathic changes and ischemic forearm muscle testing reveals a smaller than expected 
increase in blood lactate concentration. Liver histology reveals glycogen storage; fibrosis 
may be prominent, but fat infiltration is not typical. Muscle histology shows free glycogen, 
which is periodic acid Schiff (PAS) positive and digestible by diastase, and on electron 
microscopy appears as normal particles. A definitive diagnosis is obtained by demonstrating 
abnormal glycogen (limit dextrin with short outer branches) in liver and/or muscle and 
deficiency of debranching enzyme activity. Definitive subtyping of GSD III formerly 
required biopsies of both liver and muscle; however, the striking and specific association of 
exon 3 mutations with type IIIb now allows subtyping of GSD III using DNA obtained from 
blood [62]. Mutation analysis is not yet available for the diagnosis of GSD IIIa.  
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Management  
 
As in GSD I continuous provision of an adequate amount of glucose using uncooked 

cornstarch, 1.75 grams per kg at six hour intervals during both day and night, maintains 
normoglycemia, increases growth velocity, and decreases serum transaminase concentrations 
[74,75]. Continuous nocturnal feeding of a nutrient mixture consisting of glucose or glucose 
oligosaccharides, and protein or amino acids, combined with intermittent high protein 
feedings during the day may be especially beneficial for patients who have significant growth 
retardation and myopathy [76,77]. Protein can be used as a substrate for gluconeogenesis, 
which is intact in GSD III [78]. Milk products and fruit should not be restricted as galactose 
and fructose can be normally converted to glucose.  

As in GSD I, annual serum α-fetoprotein determinations and hepatic ultrasound 
examinations are obtained to screen for hepatic adenomas. Malignant transformation of 
hepatocellular adenomas is rare, but has been reported in GSD IIIa. Liver transplantation has 
been performed in patients with end-stage cirrhosis and/or carcinoma [79,80]. In the small 
number of patients who have had a liver transplant, metabolic parameters improved but 
muscle disease was not beneficially affected [79]. Patients with muscle disease should have 
intermittent cardiac evaluations, including EKGs and echocardiograms. The prognosis is 
favorable for the purely hepatic form (IIIb), but is less favorable for GSD IIIa, as severe 
myopathy and cardiomyopathy may develop even after a long period of apparent latency. 
Currently, there is no satisfactory treatment for the progressive myopathy. Exercise causes 
elevation in serum creatine kinase and aldolase concentrations and it has been suggested that 
restricting exercise may slow progression of muscle damage.  

 
 
GLYCOGEN BRANCHING ENZYME DEFICIENCY (TYPE IV 

GSD; ANDERSEN DISEASE; AMYLOPECTINOSIS) 
 
GSD IV is caused by deficient glycogen branching enzyme (GBE, amylo-1,4 to 1,6-

transglucosidase) activity. This enzyme catalyzes the transfer of α-1,4-linked glucosyl units 
from the outer end of a glycogen chain to an α-1,6 position on the same or a neighboring 
glycogen chain. Branching is essential to pack a large number of glucosyl units into a 
relatively soluble spherical molecule. GBE deficiency causes accumulation in the liver of an 
abnormal glycogen molecule with few branch points and long α-1,4-linked glucose polymers 
resembling amylopectin. The abnormal glycogen acts as a foreign body and induces cirrhosis.  

GSD IV accounts for about 3% of all cases of GSD. It is inherited as an autosomal 
recessive trait. Mutations in the same glycogen-branching enzyme gene, located on 
chromosome 3p12, are responsible for both the hepatic and neuromuscular forms of the 
disease. A genotype-phenotype correlation has been established for the more common 
mutations and may help to predict prognosis in individual cases. Absent enzyme activity is 
associated with a severe disease; milder phenotypes have residual enzyme activty [81].  
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Clinical Features  
 
GSD IV typically presents in early infancy with hepatosplenomegaly and failure to 

thrive. As non-branched glycogen is available for glycogenolysis, hypoglycemia is unusual in 
GSD IV until late in the disease when cirrhosis is advanced. The typical clinical course is 
rapidly progressive liver cirrhosis with portal hypertension, esophageal varices and ascites, 
culminating in death from liver failure usually by five years of age [82]. Hepatocellular 
carcinoma may develop [83]. Accumulation of amylopectin-like polysaccharide in cardiac 
muscle can result in a fatal cardiomyopathy.  

The less common neuromuscular form of GSD IV is clinically and genetically 
heterogeneous. Four main phenotypic variants have been described based on the age of onset 
[84]. 1. A perinatal form with fetal akinesia deformation sequence characterized by multiple 
congenital contractures, hydrops fetalis, and perinatal death [85]. 2. A congenital form with 
congenital hypotonia, muscle atrophy, and weakness, and rapid deterioration with death in 
early infancy [86,87]. 3. A late childhood-onset variant that presents with skeletal myopathy 
or cardiomyopathy [88,89]. 4. A milder adult-onset form that presents as an isolated 
myopathy or with central and peripheral nervous system involvement resulting from 
accumulation of unbranched glycogen in neuronal tissue (adult polyglucosan body disease) 
[90]. These patients have upper and lower motor neuron involvement and progressive 
dementia [91]. 

 
 

Diagnosis  
 
The diagnosis is established by demonstrating abnormal glycogen (with long outer 

chains, an amylopectin-like abnormal polysaccharide) that stains with PAS but is partially 
resistant to diastase digestion. Electron microscopy shows fibrillar aggregations of glycogen 
in addition to normal appearing glycogen arranged in a and b particles. Hepatic fibrosis and 
cirrhosis are seen in the classic form of the disease. In the neuromuscular forms, serum 
creatine kinase is elevated. Branching enzyme is deficient in liver, muscle, leukocytes, 
erythrocytes, or fibroblasts. The diagnosis is confirmed by demonstrating absent branching 
enzyme activity in skin fibroblasts. In adult polyglucosan body disease, the branching 
enzyme deficiency can only be detected in leukocytes or in a nerve biopsy. 

 
 

Treatment  
 
There is no specific treatment for GSD IV. The onset of cirrhosis can be rapid; affected 

infants should be promptly referred to a liver transplant center. For progressive liver failure, 
transplantation has been an effective treatment and has resulted in reduced glycogen storage 
in both heart and skeletal muscle [79,92]. 
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GLYCOGEN PHOSPHORYLASE DEFICIENCY (TYPE VI GSD; 
HERS DISEASE) AND PHOSPHORYLASE KINASE (PHK) 

DEFICIENCY (TYPE IX GSD)  
 
Glycogenoses caused by a reduction in liver phosphorylase activity are a heterogeneous 

group of disorders (Table 1) of which deficiency of phosphorylase b kinase (PHK), resulting 
in failure of hepatic phosphorylase activation (Figure 2), is the most common, accounting for 
about 25% of all cases of GSD [93]. Deficiency of hepatic phosphorylase itself (PYGL) is 
rare [94] except in the Mennonite community in which 0.1% of individuals have the disease 
[94,95].  

PHK stimulates glycogenolysis by phosphorylating and thereby activating glycogen 
phosphorylase (Figure 2). PHK of liver and muscle is a complex enzyme consisting of four 
subunits: α, β, γ, and δ, each encoded by a distinct gene. The holoenzyme consists of 4 copies 
of each isoform, for a final complex of 16 subunits. The disorder is genetically 
heterogeneous, with both autosomal recessive and X-linked forms (Table 1), which explains 
why there are different classifications. Mutations in three different genes of PHK subunits 
(PHKA2, PHKB and PHKG2) can result in deficient hepatic phosphorylase activity (Table 
1). 

X-linked glycogenosis (XLG), caused by mutations in the gene encoding the liver 
isoform of the PHK α subunit (PHKA2), is the most common variant (about 75% of all 
cases). Numerous different mutations in PHKA2 have been identified in XLG [96-98]. The 
enzyme is lacking in liver but is normal in muscle. In XLG subtype II, PHK activity is low in 
liver but is normal or increased in erythrocytes and leukocytes [98-100]. Autosomal liver 
disease is caused by a mutation in the catalytic g subunit encoded by PHKG2 gene at 16 p12 
[101]. These patients are at risk of a more severe fibrotic liver disease. Muscle-specific 
disease is caused by mutations in the muscle-specific α subunit (PHKA1) located at Xq13 
[102].  

Patients with glycogen phosphorylase deficiency are clinically indistinguishable from 
those with liver phosphorylase b kinase deficiency. Furthermore, mutations in PHKA2, 
PHKB, and PHKG2 all cause a similar clinical phenotype. 

 
 

Clinical Features  
 
These disorders are milder than GSD I and III and generally have a good prognosis. 

Presentation is usually in infancy or early childhood with growth retardation, hepatomegaly, 
and a protuberant abdomen. Symptomatic hypoglycemia and ketosis is unusual except with 
prolonged fasting or strenuous physical exercise. Blood lactic acid and uric acid 
concentrations are normal and metabolic acidosis is rare. Mild hypertriglyceridemia, 
hypercholesterolemia, and elevated serum transaminase levels may be present. Motor 
development may be delayed as a consequence of muscular hypotonia in the autosomal 
recessive form of the disorder with reduced enzyme activity in both muscle and liver. The 
clinical course is usually benign. Clinical and biochemical abnormalities gradually disappear 
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with increasing age. Hepatomegaly decreases at puberty and most adult patients are 
asymptomatic [103]. Patients have a growth pattern characterized by initial growth 
retardation between 2-10 years of age, a delayed pubertal growth spurt, with complete catch-
up in final height [104]. Uncommon clinical phenotypes have been described, including renal 
dysfunction with proximal renal tubular acidosis [105], central nervous system abnormalities 
(seizures, delayed cognitive and speech abilities, peripheral sensory neuropathy) [98], and 
progression to cirrhosis in childhood in the liver-specific subtype [101,106,107]. Fatal 
infantile cardiomyopathy has been described in children [108]. Myopathy presents with 
exercise intolerance, cramps, myalgias, muscle weakness, myoglobinuria and, in rare cases, 
hypotonia in young children. In the adult-onset form (autosomal inheritance), progressive 
distal muscle weakness is more prominent than proximal muscle weakness [109-111].  

 
 

Diagnosis  
 
Table 2 shows the principal biochemical abnormalities. Unlike GSD I and III, the 

response to glucagon is usually normal. Diagnosis of glycogen phosphorylase deficiency is 
possible by assaying phosphorylase activity in purified blood cell fractions. Phosphorylase 
kinase b also can be measured in leukocytes and erythrocytes. In liver PHK deficiency, 
activity of the enzyme is usually low in erythrocytes, thus allowing a biochemical diagnosis 
to be made from a blood sample. Normal phosphorylase b kinase activity in erythrocytes does 
not definitively rule out type IX GSD because PHK activity is deficient in liver, but normal 
or even increased in erythrocytes in the less common variant of liver PHK deficiency 
designated X-linked liver glycogenosis subtype II. Because phosphorylase activity is 
influenced by multiple allosteric effectors, as well as by humoral and neural signals that are 
difficult to control, it may be difficult to determine by enzymatic analysis whether a defect in 
the liver phosphorylase system is due to a deficiency of phosphorylase itself or deficiency of 
phosphorylase kinase. Furthermore, phosphorylase b kinase deficiency is accompanied by 
decreased total phosphorylase activity. For these reasons, molecular diagnosis by direct 
sequencing should be performed whenever possible [1].  

 
 

Management  
 
Prolonged fasting should be avoided. A bedtime snack may be sufficient to prevent 

morning hypoglycemia, but ketosis is prevented and patients often feel better with uncooked 
cornstarch supplementation prior to bedtime (1.5 – 2 grams/kg) [112]. Improved growth has 
also been reported in children receiving cornstarch supplementation. 
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GLUCOSE TRANSPORTER-2 DEFICIENCY (FANCONI-BICKEL 

SYNDROME; GLUT2 DEFICIENCY; GSD XI)  
 
Fanconi-Bickel syndrome (FBS) is a rare autosomal recessive disorder due to mutations 

in the GLUT2 gene located at 3q16.1-q26.3 [113]. A total of 33 mutations have been 
described. GLUT2 is a facilitative monosaccharide transporter that mediates transport of D-
glucose and, to a lesser extent, D-galactose across the cell membrane of hepatocytes, 
pancreatic ß cells, and the basolateral membrane of renal proximal tubular cells and 
enterocytes [7]. GLUT2 is different from other members of the facilitative glucose transporter 
family: it is insulin-independent and has a high Km (~ 40mmol/L), which means that glucose 
transport by pancreatic ß-cells and hepatocytes is proportional to the blood glucose 
concentration. This permits these cells to sense the prevailing glucose concentration via the 
activity of glucokinase, which in turn leads to control of insulin secretion by the pancreas and 
uptake or release of glucose by hepatocytes as required to regulate the blood glucose 
concentration [7]. 

 
 

Clinical Features  
 
The clinical syndrome was designated GSD XI, but use of this designation is no longer 

favored since the originally proposed functional defect has proven to be incorrect. FBS is a 
glycogen storage disease that shares several clinical features with both GSD 0 and GSD I. It 
was first described in a 3-year-old Swiss boy in 1949 [114] and since then more than 110 
cases have been reported from Europe, Israel, Japan, Northern Africa, the Middle East, and 
North America [115]. Deficiency of GLUT2 is characterized by glucose and galactose 
intolerance and accumulation of glycogen in the liver and kidney. As with the other GSDs, 
presentation typically is in infancy when the intervals between overnight feeds increase 
[114]. Nocturnal irritability and morning lethargy are characteristic features. Patients may 
present with chronic diarrhea (from carbohydrate malabsorption), failure to thrive, and 
developmental delay. Presence of a "moon facies" and a protuberant abdomen may lead to 
confusion with GSD I. Short stature is almost universal in FBS and persists into adulthood 
[115,116].  

Abnormal hepatocyte glucose transport and diminished glucose-stimulated insulin 
release results in postprandial hyperglycemia, which can easily be confused as early diabetes 
mellitus. Fasting hypoglycemia is due to abnormal glucose transport out of the liver, impaired 
glycogenolysis secondary to increased intracellular glucose concentrations, and renal glucose 
wasting from impaired renal proximal tubular glucose reabsorption. Some clinical features 
overlap with GSD Ia (hepatomegaly, nephromegaly, hypoglycemia); however, patients with 
GSD Ia have pronounced fasting lactic acidosis with much less pronounced ketonemia. 
Persistent glucosuria is another distinctive clinical feature that differentiates FBS from GSD 
Ia. Fasting hypoglycemia and postprandial hyperglycemia may also be confused with GSD 0. 
The absence of hepatomegaly in the latter disorder, however, is a major distinguishing 
feature.  
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In FBS there is a characteristic tubular nephropathy with glucosuria, phosphaturia, 
bicarbonate wasting, and a generalized aminoaciduria, leading to rickets [117]. Osmotic 
diuresis causes polyuria. The disorder also has been detected by finding increased blood 
levels of galactose on newborn screening for galactosemia [118,119]. 

Short stature and osteopenia are common in untreated children, but improve by 
preventing hypoglycemia, acidosis, and ketosis. Despite recurrent hypoglycemia, neurologic 
impairments and seizures are uncommon, probably due to the availability of alternative 
metabolic substrates with fasting. Hepatic adenomas have not been reported in this disorder, 
but a renal disease with focal segmental glomerulosclerosis and microalbuminuria, similar to 
that seen in GSD I, has been reported [115,120].  

 
 

 Diagnosis  
 
The diagnosis of FBS should be considered when postprandial hyperglycemia alternates 

with fasting ketotic hypoglycemia. Recommended screening tests include a glucose or 
galactose tolerance test and studies of kidney function looking for glucosuria and evidence of 
proximal tubular dysfunction. Mutation analysis can be used to confirm the diagnosis [121]. 
Liver biopsy reveals increased glycogen content without significant inflammation or fibrosis, 
but is no longer required for diagnosis. 

 
 

Management  
 
The goal of treatment is to prevent hypoglycemia, normalize plasma glucose 

concentrations, and minimize systemic acidosis. No specific treatment is available. Frequent 
small meals during the day supplemented with uncooked cornstarch, 1.5-2 gram per kg b.i.d., 
improves growth and stamina [122]. Because fructose transport into cells is facilitated by 
GLUT5, fructose can be used as an alternative source of carbohydrate. High concentrations 
of glucose, sucrose, and galactose are avoided because they exacerbate hyperglycemia and 
aggravate malabsorption. Management of the renal disease consists of supplementation of 
water, electrolytes, bicarbonate, and vitamin D. Acute decompensation can occur during 
surgery, and careful monitoring is required whenever patients are required to fast or when 
counterregulatory mechanisms are activated by stress. 
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ABSTRACT 
 
Liver transplantation (LT) is commonly used to treat acute and chronic liver failure in the 
United States. Currently, more than 4,000 LTs are performed yearly in the United States 
[1]. LT is effective for a number of metabolic liver diseases. The most common pediatric 
metabolic liver disorders treated with LT in children are α1 – Antitrypsin deficiency, 
Wilson disease, neonatal hemochromatosis, hereditary tyrosinemia, and glycogen storage 
disorders. Among adults, α1 – Antitrypsin deficiency, Wilson disease, hemochromatosis 
and increasingly, nonalcoholic fatty liver disease are the most common metabolic 
diseases treated with LT although much less common than among pediatric groups. In 
the USA, metabolic diseases account for less than 4% of adult LT and approximately 
20% of pediatric LT. The results of LT for metabolic diseases are generally excellent 
with some exceptions, notably among patients with hemochromatosis, as described 
below. Overall, adults have a 1 year survival rate of 88% and 3 year survival rate 84% 
after LT for metabolic disease [1,3]. One-year survival of 94% and 5 year survival 92% 
has been reported among children [2,3]. Among 40,000 LT in a 13 year period recorded 
in the European transplant registry, 6% were performed for metabolic diseases [26]. 
Cumulative patient survival rates were 79% at 1 year and 70% at 5 years. It is possible 
that graft and patient survival rates have improved further in recent years. In a single 
center study of LT or combined LT/kidney transplantation (KT) for metabolic diseases, 
an excellent 1 year survival rate of 92% was reported after LT and 91.8% after combined 
LT/KT [27]. Therefore, LT is a successful and frequently definitive therapy for many 
metabolic diseases associated with the liver.  
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Metabolic disorders treatable by LT may be classified into four categories: (Table 1).  
 

Table 1. Metabolic disorders treatable by liver transplantation. 
 

I. Primary metabolic defect is in the liver 
A. Liver transplantation primarily for hepatic complications 

Wilson disease 
α1 – Antitrypsin deficiency 
Hereditary tyrosinemia type 1 
Glycogen storage disease type I and IV 
Galactosemia 
Progressive familial intra-hepatic cholestasis 
Alagille’s syndrome 
Neonatal hemochromatosis 

B. Liver transplantation primarily for extra-hepatic complications 
Primary hyperoxaluria type I (with kidney co-transplantation) 
Familial hypercholesterolemia (with cardiac transplantation) 
Crigler-Najjar syndrome type I 
Urea cycle defects 
Hemophilia A and B 
Hereditary Protein C deficiency 
Familial Amyloidotic Polyneuropathy 
Hereditary protein C deficiency 

II. Primary defect is extra-hepatic 
A. Liver disease may recur after transplantation 

Hereditary Hemochromatosis 
Gaucher disease 
Familial Erythropoietic Protoporphyria 
Nonalcoholic Steatohepatitis 
Cryptogenic cirrhosis 

B. Liver transplantation curative for hepatic component of generalized disorder 
Cystic fibrosis 

Adapted with permission from Tung, BY, Kowdley, KV: Liver transplantation for Hemochromatosis, 
Wilson disease, and other metabolic disorders. Clinics in liver disease Vol 1, no 2 August 1997 
341-360 [34]. 
 
I A. Disorders in which the liver is the primary site of metabolic dysfunction and LT is 

undertaken primarily for treatment of hepatic complications. LT in this situation not only 
replaces a dysfunctional liver but also corrects the underlying metabolic disorder.  

I B. Disorders in which LT is undertaken primarily to correct the underlying metabolic 
disorder which causes severe extra-hepatic organ dysfunction while liver function is 
preserved. Simultaneous transplantation of other affected organs may also be necessary. 

II A. Disorders in which the liver is not the site of the primary metabolic defect. LT 
replaces the affected liver but in these disorders, transplantation may not be curative and 
disease may recur in the transplanted liver. 
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II B. Disorders in which liver disease is part of a generalized metabolic defect. LT is 
curative for the hepatic component of the defect but has minimal effect on the extra-hepatic 
manifestations of the disease. 

 
 

I A. PRIMARY METABOLIC DEFECT IN LIVER:  
LIVER TRANSPLANTATION PRIMARILY  

FOR HEPATIC COMPLICATIONS 
 

Wilson Disease 
 
Wilson disease (WD) is an autosomal recessive disorder of copper metabolism that leads 

to reduced biliary excretion of copper and progressive accumulation of copper in various 
tissues. The estimated prevalence is 1:30,000 to 1:55,000 depending on the method of 
analysis [4,5] with a gene frequency of 1:90 to 1:150. The WD gene ATP7B localized [24] to 
chromosome 13, encodes an intracellular copper transporting P-type ATPase that localizes 
predominantly to the trans-Golgi apparatus of hepatocytes. Over 200 mutations of ATP7B are 
reported and many patients with WD have two different mutations of the gene on each allele 
encoding the WD gene (compound heterozygotes). Defective ATP7B protein function results 
in reduced vesicular secretion of copper into bile and also reduced incorporation of copper 
into synthesized apoceruloplasmin [6-8]. The resulting copper accumulation in the liver leads 
to progressive liver dysfunction, cirrhosis and may present as fulminant liver failure. Excess 
hepatic copper is released into circulation as free serum copper which may accumulate in the 
brain, eyes, kidneys, heart, ovaries and musculoskeletal system. The clinical manifestations 
of WD are protean and include symptoms and signs of acute or chronic liver disease, as well 
as neuro-psychiatric symptoms, Kayser-Fleischer (KF) rings, kidney disease with 
hypercalciuria, aminoaciduria and nephrocalcinosis, cardiac disease, hemolytic anemia, 
infertility, amenorrhea, hypoparathyroidism, osteoporosis, osteoarthritis and 
chondrocalcinosis. The age at the time of presentation ranges from 5 years to over 80 years of 
age [9]; about 50% of patients present by 15 years of age. The diagnosis of WD is established 
by a combination of clinical, biochemical and pathological criteria. WD should be considered 
in all patients with unexplained liver disease especially in the presence of neuro-psychiatric 
symptoms. The presence of KF rings in the presence of a low serum ceruloplasmin can 
confirm the diagnosis of WD [25]. In the absence of KF rings, a low serum ceruloplasmin 
and hepatic copper content greater than 250µg/g dry weight suggest the diagnosis of WD. 
Serum free copper greater than 25µg/dl, a 24 hour urinary copper over 100µg (normal is 20–
50 µg, in untreated WD it ranges from 100 to 1000 µg) and genetic analysis for ATP7B 
mutations may also aid in diagnosis. As an adjunct, urinary copper excretion after two 500 
mg doses of D-Penicillamine 12 hours apart may provoke brisk copper excretion at 
>1600µg/24 hours in patients with WD. 
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Liver Disease 
Some degree of liver disease is noted in most patients with WD. The changes may vary 

from nonspecific changes to micro-vesicular and macro-vesicular steatosis, chronic active 
hepatitis, fibrosis and cirrhosis. Hepatocellular malignancies although uncommon, are 
reported in patients with WD [29]. Liver disease generally precedes neuro-psychiatric 
manifestations by many years. Hepatic disease may manifest as fulminant hepatic failure with 
hemolytic anemia, anorexia, malaise, nausea, abdominal and right upper quadrant pain, 
jaundice, spider angiomas, anasarca, ascites, bacterial peritonitis, esophageal varices, 
splenomegaly, malnutrition, delayed puberty, gynecomastia and amenorrhea.  

Chronic hepatitis is the most common presentation of hepatic WD and is 
indistinguishable from chronic hepatitis from other causes [10]. Clinical symptoms are 
nonspecific; jaundice and KF rings may be absent and serum ceruloplasmin may be normal or 
even elevated as an acute phase reactant. It is necessary to quantitate hepatic copper content 
since liver biopsy specimens may not show stainable copper. Progressive liver failure may 
follow rapidly without treatment but life expectancy may be normal with early diagnosis and 
initiation of copper chelation therapy [11,15]. 

Acute hepatitis and fulminant liver failure, although infrequent in adults, is the most 
common presentation of hepatic WD in children and adolescents [12,13,14] and is more 
common in females (Female: Male ratio, 5:1). Acute hepatitis may be self limited but may 
progress to fulminant hepatic failure. In the setting of acute or end-stage liver failure, the 
diagnosis of WD may be difficult to establish. Although copper quantitation in liver biopsy is 
the gold standard test, liver biopsy is usually contraindicated because of coagulopathy. 
Ceruloplasmin may be low in any cause of fulminant liver failure or may be increased into 
the normal range as an acute phase reactant. In patients presenting with fulminant hepatic 
failure, the combination of Coombs’- negative hemolytic anemia, elevated bilirubin, modest 
elevations of aminotransferases and normal to mildly elevated alkaline phosphatase levels 
should raise clinical suspicion of acute WD [13,14]. Fulminant hepatic WD may be fatal 
without transplantation [13,14,16,17]. 

 
Neuro-Psychiatric Disease 

Neuro-psychiatric symptoms and signs of WD typically follow liver disease by more than 
5 years and usually after the second decade of life. Liver disease may be asymptomatic in 
such patients. Neurological symptoms include tremor and other involuntary movements, lack 
of muscle co-ordination, micrographia, drooling, dysarthria, muscle rigidity, pseudobulbar 
palsy, dysphagia and headaches. Associated psychiatric symptoms may include insomnia, 
anxiety, depression and personality changes. Behavioral changes, especially in children, may 
accompany worsening performance in academic or athletic activities [23]. 

 
Medical Therapy 

The medical treatment of WD has been reviewed in detail in several recent publications 
[22,28]. Generally, treatment consists of therapy with Zinc or Trientine or D-Penicillamine or 
a combination of either Trientine or D-Penicillamine with Zinc [15,22]. Trientine has 
increasingly replaced D-Penicillamine as the first line chelating agent. Lifelong therapy is 
necessary to mobilize excess hepatic and systemic copper and to prevent its re-accumulation. 
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Zinc is used in patients diagnosed early without significant end organ damage or for 
maintenance therapy (in patients with end organ damage) after negative copper balance has 
been achieved with chelation therapy. Recent studies have examined Ammonium 
tetrathiomolybdate [not FDA approved] in neurological WD given that neurological 
deterioration is least with Tetrathiomolybdate (5%) in comparison to Trientine (20%) and 
Penicillamine (50%) [22,28].  

 
Liver Transplantation 

Indications for LT in WD include fulminant hepatic failure, liver dysfunction 
unresponsive to chelation therapy, advanced liver disease after non compliance with 
chelation therapy despite history of previous response to chelation therapy and presence of 
cirrhosis [16,19]. Although LT is not indicated as primary treatment of Wilsonian 
neurological disease, neuro-psychiatric manifestations of WD may improve after LT for 
decompensated or acute hepatic WD [18,19,20,21]. While awaiting LT, especially in 
fulminant hepatic failure, plasmapheresis or albumin dialysis may lower circulating copper 
released by massive hepatocellular lysis. 

Survival after LT for WD is acceptable. Bellary et al [16] reported single center results 
after LT on 39 patients, 22 with fulminant hepatic failure and 17 with chronic liver disease. 
Overall 1 year survival was 79%, 90% for those with chronic liver disease and 73% for those 
with a fulminant hepatic failure. Geissler et al [18] report six patients (three females and three 
males) who underwent LT for WD. During follow-up ranging from 3 to 7 years, all patients 
were alive with functioning allografts. Serum ceruloplasmin levels increased after 
transplantation and remained normal. Neuro-psychiatric manifestations improved 
significantly in two of these patients. Emre et al [31] report their experience between 1988 
and 2000 with 21 LTs performed in 17 patients with WD, at a mean age of 28 years (range 4-
51 years). Eleven patients had fulminant hepatic failure and six had chronic liver disease. 
Renal failure, present in 45% of patients with fulminant WD, resolved post-LT with 
supportive care. One-year patient and graft survival was 88% and 63%, respectively. Sutcliffe 
et al [32] prospectively followed 24 patients who underwent LT for WD. Indications for LT 
included acute liver failure in 15 patients, sub-acute liver failure in three, and chronic liver 
disease in six. There were three deaths, all between 1988 -1993, one of whom had multi-
organ failure before LT and died within 24 hr of surgery and two patients died within 1 year 
due to immunosuppressant-related complications. After a median follow-up of 92 months, all 
survivors had satisfactory graft function (5-year patient and graft survival, 87.5%), with 
quality-of-life scores in a majority (86%) of survivors comparable to matched controls from 
the general population. 

Living donor LT (LDLT) has also been performed for WD. Tamura et al [33] recently 
reported 5 living related liver transplants including 2 patients with fulminant hepatic failure 
and 3 with chronic liver disease. One patient died from early graft thrombosis and the 
surviving 4 patients had excellent clinical and biochemical improvement over the 2 year 
follow-up period. Wang et al [21] report a series of 22 patients between 2001 and 2003 who 
received LDLT. A total of 19 pediatric patients and 3 adults of whom 20 had chronic liver 
disease and 2 had co-existent fulminant hepatic failure received LDLT. Neurological 
manifestations were present in 9 of the 20 with chronic liver disease. Long term survivors 
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(21/22) reportedly enjoyed normal health, good quality of life, significant improvement in 
neurological symptoms after a mean follow-up period of 18.5 months (range 4–38 months).  

LT is life saving and in the long term, reverses most of the metabolic abnormalities 
associated with WD [16,21,31-33,36]. Serum ceruloplasmin and copper measurements 
normalize post-transplant and long-term copper chelation therapy is not needed. Significant 
hepatic copper re-accumulation has not been described in patients transplanted for WD. 
Kayser-Fleischer rings disappear in most, but not all, patients receiving LT. In most of the 
series described above, surviving patients with preoperative neurological symptoms had some 
degree of neurological improvement after transplantation. LT has rarely been performed for 
severe neurological WD in the absence of significant hepatic dysfunction [18-21]. However 
this remains a controversial indication for LT. 

 
 

Alpha-1-Antitrypsin Deficiency 
 
Alpha-1-antitrypsin (AAT) deficiency is an autosomal recessive disorder first described 

in the 1960s by Laurell and Eriksson in patients with severe pulmonary emphysema [62]. It 
affects 1 in 1,550 live births in Northern Europe to 1 in 2800 in North America, New Zealand 
and Australia [65]. Worldwide estimates of roughly 116 million carriers and 1.1 million 
subjects with severe AAT deficiency suggest that AAT deficiency is a prevalent but under-
recognized hereditary disorder [65]. 

AAT is a 52 kD glycoprotein secreted into blood by hepatocytes, pulmonary epithelial 

cells and phagocytes. It irreversibly inhibits a variety of serine proteases, including cathepsin 
G, and proteinase, and predominantly targets human neutrophil elastase [72]. With severe 
deficiency or absence of AAT, increased destruction of the pulmonary connective tissue 
matrix results in premature emphysema. In contrast, hepatic disease arises not from the 
deficiency of the protease inhibitor but from progressive accumulation of abnormally 
polymerized and folded AAT in the endoplasmic reticulum of hepatocytes. Low plasma 
concentrations of AAT result from this lack of secretion of AAT from hepatocytes. These 
aggregates of abnormal AAT are easily visualized by Periodic Acid–Schiff (PAS) staining 
and electron microscopy [66,72]. The nomenclature to identify AAT variants evolved from 
different techniques applied to study the protein over the last 40 years. AAT variants were 
included in an allelic Pi (protease inhibitor) system and were initially named based on their 
migration velocity in starch-gel electrophoresis as F (fast), M (medium), S (slow) or Z (very 
slow) [69]. The former Pi system was renamed PI* and subsequently, AAT variants were 
classified into three major clinically relevant categories [70,71]. 

Normal: This category includes the four most common M variants (M1 to M4) and a 
number of less common variants. AAT plasma levels are normal (85-215mg/dl) and there is 
no risk of lung or liver disease. 

Deficient: This category includes the most common Z and S variants and a number of less 
frequent variants including M-like variants with a middle migrating pattern. AAT plasma 

levels, are reduced (maximum AAT level in this group is 80mg/dl), significantly increasing 
the risk of lung or liver disease.  
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Null or QO: There is no detectable plasma AAT level, associated with an increased risk 
of developing emphysema but not liver disease. 

Of the numerous mutations that could result in a partial deficiency of AAT, the S and the 
Z mutations are most prevalent. Homozygosity for the common S mutation (Glu264Val) 
results in a 40 percent decrease in plasma AAT levels. However, homozygosity for the Z 
mutation (Glu342Lys) results in a severe (85%) deficiency of plasma AAT. ZZ homozygotes 
and SZ compound heterozygotes may develop severe emphysema while SS homozygotes do 
not develop significant disease [72].  

In the neonatal and pediatric population, AAT deficiency is now recognized as the most 
common cause of inherited liver disease and the most common genetic indication for LT 
[12]. Approximately 10% of those with AAT deficiency develop significant liver disease in 
the form of chronic active hepatitis, cryptogenic cirrhosis and portal hypertension, by their 
fourth decade of life [73]. There is also an increased risk of developing hepatocellular 
carcinoma (HCC) particularly among men [74].  

In adults, AAT deficiency must be suspected in any patient who presents with 
unexplained chronic liver disease or HCC. In neonates, liver disease first presents during 4 to 
8 weeks of age as persistent cholestatic jaundice. Most improve spontaneously and are 
asymptomatic by 1 year of age. Among symptomatic patients, jaundice, elevated serum 
aminotransferases, hepatomegaly, pruritus, hypercholesterolemia, severe liver dysfunction, 
chronic active hepatitis, cryptogenic cirrhosis, portal hypertension, splenomegaly and HCC 
may be observed. In addition, neonates may present with bleeding diathesis in the form of 
hematemesis, melena, bleeding from the umbilical stump, or bruising; however, AAT rarely 
manifests severe liver injury during infancy [73]. The diagnosis is confirmed by 
demonstrating low serum AAT levels (lower limit of normal 85 mg/dL), confirmation of an 
abnormal AAT phenotype [protease inhibitor type (PI type)] and evidence of eosinophilic, 
PAS positive, diastase-resistant globules in liver biopsy specimens. It is important to note that 
AAT level alone is insufficient to exclude or make the diagnosis because serum AAT may be 
elevated as an acute phase reactant or may be low because of decreased hepatic synthesis.  

Treatment of lung disease in AAT deficiency is supportive. Cigarette smoking 
accelerates emphysema and must be avoided. In those with progressive emphysema, 
replacement therapy with intravenous or aerosolized purified plasma or recombinant AT may 
be considered [75]. Severe emphysema from AT deficiency can be treated with lung 
transplantation [76]. 

There is no proven medical therapy for AAT deficiency-associated liver disease. 
Treatment is focused on management of complications of chronic liver disease and LT should 
be offered to patients with end stage liver disease. AAT deficiency is the most common 
inherited liver disease for which LT is performed in children. Between 1990-1999, 76 US 
centers reported 551 liver transplants for metabolic liver disease of which AAT deficiency 
was the most common indication (n=261) [2].  

Roughly 10% of children who initially present with neonatal cholestasis eventually 
require LT [73,80] with the mean age at LT ranging from 4.6 to 10.6 years [80-84]. Although 
early reports of 57% 1-year survival post LT for AAT deficiency were disappointing, more 
recent reports reflect excellent prognosis with 94% 1-year and 92% 5-year survival [81-85].  
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LT has also been performed for adults with AAT deficiency. In a series of 22 adults 
transplanted for AAT deficiency, the following AAT phenotype patterns were observed: three 
were PIZZ; nine-PIMZ; three-PIMM; two PIMS; and one-PISZ; AAT phenotype was not 
reported in 4 patients. Although liver biopsy revealed periodic acid-Schiff-positive, diastase-
resistant globules suggestive of AAT accumulation in all patients, 10 patients also had 
significant alcohol history and two had evidence of chronic viral hepatitis. Overall post LT 1-
year survival was 68% and improved to 73% for those transplanted after 1990 [80]. In an 
earlier series of eight PIZZ and two PIMZ adults, post LT 1-year survival was 60% [81]. 

LT cures AAT deficiency; the AAT phenotype changes to that of the donor after LT and 
serum levels of AAT improve to the normal range [82,89]. In one case where a recipient 
acquired a PIZZ phenotype via a liver transplant from an asymptomatic PIZZ donor, the 
recipient remained asymptomatic over a 6 year follow-up period although a delayed rise of 
liver enzymes in a cholestatic pattern, chronic portal hepatitis and fibrosis associated with 
AAT deposits were noted [90]. The effects of LT on pulmonary function have not been 
studied in detail. Over a 1-6 year follow-up, post-LT forced expiratory volume in 1 second 
(FEV1)/forced vital capacity (FVC) ratio greater than 70% was noted in 8 of 10 patients, but 
comparative pre-transplant pulmonary function testing and smoking history were not reported 
[80]. Hepatocyte transplantation has been studied in mouse models and AAT deficiency may 
be a good candidate for further studies of gene replacement therapy in the future [73]. 

 
 

Hereditary Tyrosinemia Type I 
 
Tyrosinemia type I (TT1) is an autosomal recessive disorder and the most common 

disease caused by defects in tyrosine metabolism. A mutation in the gene for fumaryl 
acetoacetate hydrolase (FAH), the terminal enzyme catalyzing tyrosine degradation, causes 
FAH deficiency and results in accumulation of the intermediate metabolites maleyl- and 
fumaryl- acetoacetate which are hepatotoxic. Secondary metabolites such as 
succinylacetoacetate and succinylacetone may have both local and systemic adverse effects 
including the inhibition of porphobilinogen synthase and porphyria- like neurologic crises 
[91,92]. 

The clinical presentation is variable, even within the same family [91-93]. Acute liver 
failure with jaundice, ascites, coagulopathy, encephalopathy and hypoglycemia due to liver 
failure or hyperinsulinemia, is a common presentation in infants within the first 6 months of 
life. Older infants may have failure to thrive, hypotonia, rickets, coagulopathy and 
hepatosplenomegaly. After infancy, chronic liver disease, cardiomyopathy, renal failure or a 
porphyria-like neurologic crisis with self mutilation may occur. Renal tubular dysfunction 
and hypophosphatemic rickets may manifest at any age. Liver disease leads to cirrhosis and 
hepatocellular dysplasia with a high incidence of HCC.  

Serum aminotransferases, bilirubin, and alpha fetoprotein are elevated and plasma 
tyrosine, phenylalanine and methionine are usually more than 3 times normal. Urinary 
succinyl acetone may be elevated and renal tubular dysfunction may cause aminoaciduria and 
phosphaturia. Radiographs may reveal hypophosphatemic rickets and echocardiography may 
show hypertrophic cardiomyopathy. Liver biopsy findings are nonspecific and may 
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demonstrate steatosis, increased iron and cirrhosis. Hepatocyte dysplasia is common and 
HCC may frequently be present on radiologic imaging or in explant livers [97-99].  

Prognosis and survival improve with older age at onset of symptoms; infants presenting 
within the first 2 months of life have only a 30% 1-year survival, while 1-year survival is 
75% for those presenting from 2 to 6 months, and greater than 90% for those presenting after 
6 months of age [93]. Dietary restriction of phenylalanine and tyrosine along with supportive 
measures can ameliorate the symptoms and some improvement of hepatic and renal function 
can be expected. Oral administration of 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-
cyclohexanedione (NTBC), an inhibitor of 4-Hydroxy phenylpyruvate dioxygenase in the 
tyrosine catabolic pathway prevents formation of maleylacetoacetate and fumarylacetoacetate 
and their conversion to more toxic metabolites. NTBC therapy has greatly improved 
outcomes in TT1 with some children showing normal growth up to 12 years. There may be a 
decreased need for or delay of LT in TT1 patients treated with NTBC and diet but long-term 
results of NTBC therapy, especially regarding risk of HCC, are yet to be reported [94,99].  

Indications of LT in TT1 include acute liver failure, decompensated chronic liver 
disease, evidence of hepatic dysplasia or HCC or impaired quality of life. LT for TT1 has 
been successfully undertaken in several centers, but may be complicated by the presence of 
HCC [95-97,99,100]. The prevalence of HCC has been reported to be as high as 25% to 50% 
in TT1 liver explants [97,98]. Most urinary and serum markers of abnormal tyrosine 
metabolism return to normal after transplantation, but proximal renal tubular dysfunction may 
persist due to ongoing renal expression of abnormal FAH [95,96,99,100]. In one report of 3 
patients, hypertrophic cardiomyopathy resolved and refractory hypoglycemia resolved in one 
patient [100]. Phenylalanine and tyrosine restriction is not necessary after LT and quality of 
life improves in survivors. Murine models of TT1 suggest that gene therapy or hepatocyte 
transplantation may have promise for the treatment of TT1 in the future [101,102]. 

 
 

Glycogen Storage Diseases 
 
Hepatic glycogen storage diseases (GSD) are an uncommon group of inherited enzyme 

deficiency diseases which affect the metabolism of glycogen to glucose. Excess glycogen 
accumulates in the liver, cardiac and skeletal muscle, kidney, intestines and brain. Diagnosis 
is based on clinical features and demonstration of specific enzyme deficiency. Types I, III 
and IV, which are inherited in an autosomal recessive pattern, are associated with significant 
liver disease.  

 
TYPE I (von Gierke’s disease) 

Glucose-6-phosphatase (G-6-P) is a hepatic microsomal enzyme, also expressed in the 
renal tubular epithelium, intestinal mucosa and pancreas. Mutation(s) in the G-6-P gene result 
in deficiency of the enzyme and glycogen accumulation in the above organs. Affected 
individuals are dependent on continuous exogenous carbohydrate and infants usually present 
with fasting hypoglycemia, failure to thrive and growth retardation, lactic acidosis, 
hyperlipidemia, hyperuricemia and hypoglycemic seizures.  
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Glycogen overload causes hepatomegaly, hyperbilirubinemia and mildly elevated serum 
aminotransferase levels. Liver biopsy reveals glycogen accumulation and steatosis but no 
fibrosis. Histochemical stains for G-6-P are negative and the enzyme is not detectable in the 
liver. Hepatic adenomas with potential for malignant transformation, are common (up to 
50%), especially in children surviving beyond the first decade. Osteoporosis, renal 
dysfunction and renal calculi are late complications.  

Medical management consists of frequent daytime feeding, continuous nocturnal enteral 
glucose feeds, and use of oral uncooked starch which releases slowly in the intestines. 
Normal to near normal growth and development can be achieved despite hepatomegaly, 
dyslipidemia and other abnormalities.  

LT is indicated for patients not responsive to medical therapy, and those with progressive 
liver disease or hepatic masses [103,104,109]. Several reports of LT for GSD I report 
excellent prognosis with correction of the underlying metabolic defect. Metabolic parameters, 
hepatic glycogen stores, and patient growth all improve after LT [105-109]. Two reports of 
combined liver and kidney transplants for GSD I also report good post transplant outcomes 
[110,111]. Liu et al reported four children with GSD I and one with GSD III who underwent 
living related liver transplant (LDLT) after which hypoglycemia, hyperlipidemia and acidosis 
resolved, liver function tests normalized and biochemical abnormalities improved 
dramatically. Renal function remained normal and all five patients were stable during follow-
up periods ranging from 2.2 to 5.5 years [112]. Although short term outcomes post LT appear 
uniformly good, the long term may be complicated by chronic rejection and immune 
suppression related nephropathy [104]. Muraca et al report hepatocyte transplantation via a 
portal-vein catheter in a 47-year-old woman with GSD I induced severe hypoglycemia; 9 
months after transplantation, hypoglycemia resolved and the patient was on a normal diet. 
Thus, hepatocyte transplantation may be an alternative to LT in the future for patients with 
GSD I without HCC [113]. 

 
TYPE III 

GSD III results in abnormally structured glycogen due to amylo-1-6-glucosidase 
(debrancher enzyme) deficiency. The metabolic defect is milder because other mechanisms of 
gluconeogenesis are functional and the kidneys are spared. In contrast to GSD I, hepatic 
fibrosis and cirrhosis and skeletal- and cardio-myopathy may develop in the long term. 
Clinical manifestations and medical management are similar to GSD I except for the need for 
increased dietary protein intake to provide amino acids for gluconeogenesis. The few reports 
of LT for GSD III have described good post LT outcomes [103,112]. 

 
TYPE IV (Andersen's Disease) 

GSD IV is a rare condition caused by a deficiency of the branching enzyme α-1,4-α-1,6-
glucosyltransferase, leading to accumulation of amylopectin-like, abnormally shaped diastase 
resistant glycogen [114].  

Clinical manifestations of hepatosplenomegaly, cirrhosis, and death from hepatic failure 
are seen early in childhood and LT may be necessary within the first 5 years of life. Extra-
hepatic accumulation of abnormal glycogen may lead to cardiomyopathy and neuromuscular 
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disease. Indications for LT include progressive or decompensated liver disease and acute 
liver failure. LT reverses hepatic disease but extra-hepatic disease may continue to progress. 

Fatal cardiomyopathy 9 months after LT was reported in one patient; postmortem 
evaluations of the heart and brain revealed significant amylopectin accumulation, suggesting 
progressive extra-hepatic disease despite LT [115]. In another series, [106] two of the seven 
patients who underwent transplantation for GSD IV died, one from bowel perforation and the 
other from hepatic artery thrombosis. The remaining five survivors (71%) were stable after 
16 to 73 month follow-up periods. One patient showed decreased endomyocardial 
amylopectin; none of the surviving patients had further cardiac or neuromuscular 
complications. In contrast, 4 of 13 GSD type IV patients treated with LT because of 
progressive liver cirrhosis and liver failure, died. Most of the patients (12/13) developed 
neuromuscular or cardiac complications during follow-up [103]. Collectively, these data 
suggest that LT benefits GSD IV but there is a significant risk of delayed extra-hepatic 
complications. Therefore, candidates for LT must be selected with careful pre-transplant 
cardiac evaluation. 

 
 

Galactosemia 
 
Galactosemia is a rare (1:40,000 live births) autosomal recessive disorder secondary to 

deficiency of galactose-1-phosphate uridyl transferase (GALT). Following the initiation of 
milk feeds in infants with GALT deficiency, galactose and galactose-1-phosphate accumulate 
in the liver, kidney, lens, and other organs. The disease may manifest in the first few days of 
life with severe hypoglycemia, encephalopathy, progressive jaundice and liver failure. 
Cataracts are frequently seen in neonates, and failure to thrive, anemia, gram-negative sepsis, 
coagulopathy, retarded psychomotor and mental development, hepatomegaly, cirrhosis, and 
HCC may develop. Learning and growth retardation is more common in girls for unclear 
reasons; 75% develop ovarian failure [125]. The presence of reducing substances in urine 
without glycosuria and demonstration of reduced GALT activity in red blood cells confirms 
the diagnosis. Liver biopsy may show steatosis, periportal bile duct proliferation and hepatic 
fibrosis and cirrhosis, even as early as at birth. Early diagnosis is important since institution 
of a lifelong galactose-free diet may prevent disease progression. In the absence of cirrhosis, 
liver function improves on a galactose free diet. LT should be considered in patients with 
fulminant hepatic failure, HCC or decompensated cirrhosis. LT appeared to be curative with 
absence of galactosemia following galactose challenge, and no other complications of 
galactosemia during a 6 month follow-up period [126]. 

 
 

Progressive Familial Intrahepatic Cholestasis (PFIC) 
 
PFIC includes a group of diseases with persistent intra-hepatic cholestatic jaundice, 

pruritus, hepatomegaly and developmental delay.  
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Byler’s Disease (PFIC Type 1) 
 
First described in 1969 in an Amish family [127]. Byler's disease (BD) is a rare (1:90,000 

live births) autosomal recessive syndrome which causes severe intra-hepatic cholestasis 
progressing to biliary cirrhosis, chronic liver failure and death, usually during the first decade 
of life. Another group of children with familial cholestasis had normal gamma glutamyl 
transferase (GGT) and progressed to cirrhosis [128]. The affected gene ATP8B1 codes for a 
P-type ATPase. In affected patients, bile salt secretion from biliary canaliculi is decreased 
and bile salt reuptake from the ileum is increased [133]. Clinical features include jaundice, 
hepatosplenomegaly, growth retardation, and severe pruritus. Serum aminotransferases and 
alkaline phosphatase are elevated and GGT may be normal or high. Liver biopsy reveals 
severe cholestasis and fibrosis or cirrhosis.  

Ismail et al compared medical therapy (ursodeoxycholic acid) to LT or partial external 
biliary diversion in 46 children with BD[129]. Medical therapy resulted in clinical and 
biochemical improvement in only 10% of patients. With comparable success rates of 80% for 
both the surgical techniques, the authors recommend biliary diversion for those without 
cirrhosis. Although improvement is noted with biliary diversion, [129,130] LT is the only 
therapeutic option once cirrhosis has developed. 

Torri, et al reported findings in 12 patients with BD who underwent LT [131]. Median 
age was 1.32 years (range 0-13), and median post transplant follow-up was 670 days. Two 
patients (16.6%) died despite re-transplantation for portal and caval thrombosis in one patient 
and primary graft dysfunction in the other. The remaining patients were alive with excellent 
actuarial patient and graft survivals of 83% at 1 year and 83% at 5 years.  

Soubrane et al [132] report 14 LTs for BD with only one post-operative death after re-
transplantation for arterial thrombosis. Among the 13 survivors, graft function, growth, and 
quality of life were good over an average follow-up period of 17 months (range 6-36 
months). Recurrent Byler’s disease has not been reported post transplantation and overall, 
survival after LT is excellent. 

PFIC Type 2 and PFIC Type 3 have similar clinical features and are managed similar to 
PFIC Type 1 [133]. 

 
 

Alagille’s Syndrome 
 
Alagille's syndrome (AGS) [134] is a rare (1 in 100,000 live births) autosomal dominant, 

disorder. The affected gene in AGS is Jagged1 (JAG1) on chromosome 20p12; phenotypic 
expression is highly variable, even within families [135-137]. There is multisystem 
involvement, characterized by cholestasis and a marked reduction in the number of the 
interlobular bile ducts, along with cardiac, renal, facial, ocular, cutaneous, pancreatic, skeletal 
and neuro-developmental abnormalities.  

Bile duct paucity, which progresses over time, is considered the most dominant feature of 
AGS and is seen in 80-85% of patients. Hyperbilirubinemia in neonates may resolve later in 
childhood, although severe pruritus may develop in infants even in the absence of jaundice. 
Hepatic synthetic function is usually preserved despite elevated serum aminotransferases, 



Liver Transplantation for Metabolic Disease 309

alkaline phosphatase and GGT; however, 20% of children with AGS develop cirrhosis and 
hepatic failure. Cardiovascular disease predicts increased mortality [138]; the most common 
anomaly is pulmonary artery stenosis followed by tetralogy of Fallot and other intracardiac 
and peripheral vascular lesions.  

A characteristic facies, [139] severe hypercholesterolemia and hypertriglyceridemia, 
resulting in cutaneous xanthomas, renal abnormalities, CNS anomalies including fatal 
intracranial hemorrhage, ocular abnormalities, skeletal disease with a characteristic finding of 
sagittal cleft or butterfly vertebrae are all described. Severe growth retardation results from 
poor nutrition, severe vomiting, recurrent aspiration pneumonia, steatorrhea and fat 
malabsorption due to pancreatic insufficiency. Diagnosis of AGS requires demonstration of 
bile duct paucity associated with at least three of five major criteria: cholestasis, 
characteristic facies, cardiac anomalies, vertebral anomalies, ocular anomalies. In the first 6 
months of age, when ductopenia may be absent, three or four clinical features are sufficient to 
make the diagnosis. Testing for JAG1 mutations can be performed in probands and family 
members. 

Treatment consists of maintaining adequate nutrition including medium chain 
triglycerides and fat soluble vitamin supplementation. Pruritus, the most significant symptom, 
can be ameliorated with selective use of antihistamines, cholestyramine, rifampin, or 
ursodeoxycholic acid. Medical therapy and external biliary diversion may help relieve 
symptoms and postpone LT [140]. 

LT is indicated in AGS for end stage liver disease, portal hypertension, and severe 
intractable pruritus and disabling complications prior to development of hepatic failure. LT is 
associated with higher perioperative risks in patients with AGS, in part due to coexistent 
severe cardiovascular anomalies. Preoperative cardiac management may improve outcomes 
[141-143]. Potential donors for living related transplantation should be screened thoroughly 
because of likelihood of subclinical AGS in relatives.  

Survival following LT has varied from 57% to 100% and in long term follow-up up to 9 
years, no evidence of recurrent liver disease following LT was seen [141-143]. Cardona, et al 
[141] reported LT in 12 patients for AGS with all 11 survivors leading normal lives during 
follow-up between 14 months and 5 1/2 years post LT. Pruritus and xanthomas resolved and 
skeletal growth improved. Tzakis AG, et al [142] reported LT in 23 children with AGS; 13 
(57%) of the children survived between 2-9 years post LT with normal liver function. Three 
of the fatalities were due severe comorbid cardiovascular disease. Recently, Maldini, et al 
[143] reported post LT outcomes in 21 AGS patients with a median age 1.95 years (range, 
0.7-16.7) at transplantation. With a median follow-up period of 919 days, 18 recipients 
survived post LT with an actuarial survival rate of 90% at 1 year and 80% at 5 years. 

 
 

Neonatal Hemochromatosis 
 
Neonatal hemochromatosis (NH) is a rare, severe non-HFE related disorder characterized 

by hepatic and extra-hepatic siderosis, manifesting within the first few days of life. NH may 
present as acute liver failure. The etiology is unknown although infection, genetic-metabolic 
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disease, toxic insults and possible gestational allo-immune disease have all been proposed as 
contributing to NH [87,116,119]. 

Iron overload can be identified by demonstration of elevated serum ferritin and 
transferrin-iron saturation (TS). Demonstration of high tissue iron by magnetic resonance 
imaging or histologic evidence of siderosis in salivary glands can be confirmatory. 
Postmortem examination reveals hepatocellular collapse, extensive hepatic fibrosis, and 
siderosis in the liver, heart, kidney, pancreas, and thyroid. 

Therapy with antioxidants (vitamin E, N-acetylcysteine, selenium, prostaglandin E1, and 
desferrioxamine) may temporize the disease course [117]. In a report of 14 infants treated 
with an antioxidant “cocktail”, 5 survived to transplantation and 3 were alive 1 year post 
transplantation [118]. 

Medical therapy is not curative and urgent LT appears to be the only definitive treatment. 
Although the post LT survival is not as favorable as with other diagnoses, [19, 87] this form 
of therapy may be life-saving [120-123]. Transplantation results in a gradual reduction of 
systemic iron overload. In one case, there was no re-accumulation of hepatic iron and serial 
biopsies of buccal mucosa revealed reduction of excess peripheral siderosis over a 5 month 
follow-up period [123]. However, in another case, iron accumulation was noted in the 
allograft 7 days after LT and the infant died of cardiac arrhythmias on postoperative day 62 
[124]. Autopsy showed hepatic and extra-hepatic siderosis and the rapid iron overloading of 
the graft was thought to be due to redistribution of excess body iron.  

 
 

I B. PRIMARY METABOLIC DEFECT IS IN THE LIVER: 
LIVER TRANSPLANTATION PRIMARILY  
FOR EXTRAHEPATIC COMPLICATIONS 

 
Primary Hyperoxaluria Type I 

 
The primary hyperoxalurias (PHs) are rare autosomal recessive disorders in which 

deficiency of hepatic alanine: glyoxylate aminotransferase (AGT) (PH type I) or glyoxylate 
reductase/hydroxypyruvate reductase (GRHPR) (PH type II) results in excess oxalate 
production by the liver. Excess oxalate is excreted by the kidneys, leading to high urinary 
oxalate concentrations, calcium oxalate nephrolithiasis and nephrocalcinosis, recurrent 
urinary tract infections and, if untreated, renal failure in late childhood to early adulthood. 
Once renal function reduces to less than 50% of normal, plasma oxalate concentration rises 
and progressive systemic oxalosis may occur, with oxalate deposition in skeletal and cardiac 
muscle, cardiac conduction system, bone, arteries, ocular and nervous tissue, causing 
significant morbidity and death. Genetic and phenotypic heterogeneity is noted and diagnosis 
and therapy must be established early to prevent complications [144-147]. Supportive 
medical treatment consists of high fluid and low calcium and oxalate intake, supplemented by 
pyridoxine, and citrate, orthophosphate or magnesium oxide. Hemodialysis may not be 
adequate to remove overwhelming oxalate production [147,148]. 
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Once the diagnosis of PH is established, LT should be considered to prevent significant 
renal dysfunction. Now considered the definitive treatment for end stage renal failure in PH 
type I, combined liver–kidney transplantation replaces the deficient enzyme, correcting the 
underlying defect and hence preventing failure of the transplanted kidney [147,152,153]. 
Jamieson [153] recently reported long term, multi-center results from the European PH1 
transplant registry. 127 liver transplants were performed in 117 PH type I patients between 
1984 and 2004; 75 transplants were either whole or reduced LTs with simultaneous or 
delayed kidney grafts, 25 were whole or reduced LTs without kidney transplants, and 10 of 
the 127 LTs were retransplants. The mean age at which a diagnosis was made was 8.8 +/- 9.5 
years, the duration on dialysis was 3.2 +/- 3.2 years (range 0-14.4 years), and transplantation 
was performed at 16.5 +/- 11.4 years. One-, 5- and 10- year patient survival rates were 86%, 
80% and 69%, respectively, and, liver graft survival rates were 80%, 72% and 60%. Millan et 
al, [152] reported 100% patient and graft survival in 6 infants with PH type I who underwent 
simultaneous liver-kidney transplantation. Mean age at diagnosis was at 5.2+/-3.3 months, 
mean follow-up period was 6.4+/-1.7 years. Stable long-term kidney allograft function was 
reported in all patients; skeletal growth and neuro-developmental scores improved after 
transplantation. Following LT, high urine output must be maintained and renal function must 
be monitored closely due to mobilization of systemic oxalosis and high renal oxalate load. 
With oxalate mobilization, major improvement is seen in oxalate loaded tissues including 
skeletal and cardiac muscle, bone, skin and kidneys [150]. In a mouse model of PH type I, 
hepatocyte transplantation after hepatic irradiation resulted in decrease in hyperoxaluria and 
thus may be a potential therapeutic mode in humans in the future [154]. 

 
 

Familial Homozygous Hypercholesterolemia 
 
Familial homozygous hypercholesterolemia is an autosomal recessive disease caused by 

a deficiency or reduction in the expression of low-density lipoprotein receptors due to a 
mutant low-density lipoprotein (LDL) receptor gene on chromosome 19. LDL receptors are 
expressed predominantly (50-75%) in the liver. Hypercholesterolemia, cutaneous xanthomata 
and cerebrovascular and ischemic heart disease ensue in childhood or adolescence. With 
severe deficiency (less than 2% of normal LDL receptor activity), cardiovascular death 
occurs within the first decade of life. In less severe cases (2% to 30% of normal LDL receptor 
activity), fatal cardiovascular complications develop in adolescence to the third decade of 
life. Hypercholesterolemia must be treated with a low-fat diet, statin drugs, cholestyramine, 
nicotinic acid, benzafibrate and LDL aphersis and ileal bypass in some cases. In selected 
patients, LT may be undertaken to preempt advanced atherosclerosis [159,160,162,166]. LT 
prior to development of cardiovascular complications replaces a majority of the LDL 
receptors, decreases plasma cholesterol, may significantly clear xanthomas and may prevent 
cardiovascular morbidity and mortality. Shotri et al [166], report long term results in 4 
patients after LT for familial hypercholesterolemia. Two patients remained well 11 years and 
4 years post LT, one patient had a fatal myocardial infarction 2 years after LT and a third 
patient required 3 LTs but was alive 12 years later. Serum cholesterol normalized in all 
patients. There are rare reports of LT with simultaneous coronary artery bypass grafting 
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[163], or shortly after heart transplantation [164]. If advanced heart disease is noted, a 
combined heart-LT is indicated as the best solution to correct the underlying defect and 
prevent morbidity in the heart graft [165]. 

 
 

Criggler-Najjar Syndrome Type I 
 
Crigler-Najjar (CN-I) syndrome type I is an autosomal recessive disorder due to an 

absence of bilirubin uridine-diphosphate glucoronyl transferase that results in severe 
unconjugated hyperbilirubinemia in the neonate. 

Soon after birth, exchange transfusions for 12-16 hours/day followed by phototherapy are 
acceptable in infants. This transforms un-conjugated bilirubin into water-soluble fragments 
and is efficacious in resolving jaundice. Over time and with older children, such treatment is 
less acceptable because of its impact on lifestyle and is less effective. Children are physically 
and mentally normal until they develop kernicterus, which can precipitate without warning 
and cause irreversible neurologic damage. Van der Veere et al [156] reported results of a 
world registry of 57 patients with Crigler-Najjar syndrome type I. 21 patients received liver 
transplants at a mean age of 9.1 years. Five of eight patients with significant preoperative 
neurologic disease had no significant neurologic improvement after transplantation. LT 
corrects the underlying metabolic defect, is curative with no recurrence after transplantation, 
and in a jaundiced but otherwise healthy child with CN-I, must be undertaken to preempt the 
development of irreversible neurologic damage [84,155-157]. Auxiliary LT is possible and 
may have the added utility of sparing the native liver for the potential of future gene therapy 
or hepatocyte transplantation [158]. 

 
 

Urea Cycle Defects 
 

Ornithine Transcarbamylase Deficiency 
Deficiencies of urea cycle enzymes may lead to severe, fatal, hyperammonemic 

encephalopathy. Several enzyme deficiencies have been characterized; ornithine 
transcarbamylase (OT) deficiency is the most common of these, and is discussed here as a 
representative disorder. Being X-linked (gene locus Xp21), it is a semi dominant disease with 
variable phenotypic expression and affects both males and females. OT is a mitochondrial 
enzyme, operative in the synthesis of citrulline from ornithine and carbamyl-phosphate and 
hence in the detoxification of ammonia. It is predominantly (80%) active in the liver and is 
also present in intestinal mucosa.  

In the hemizygous male [167] OT deficiency results in profound elevation in ammonia 
and glutamine, and depletion of arginine and citrulline. Severe hyperammonemia in the 
neonate is a common presentation and causes coma and irreversible brain injury and can be 
fatal unless promptly and aggressively treated. Those who survive the neonatal period and 
those with late onset of symptoms may suffer mental retardation, cerebral palsy and seizures. 
The clinical presentation is variable among heterozygous OT deficient females with clinical 
symptoms presenting in the first two years of life or around puberty. However, even females 
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with mild disease initially are at high risk for irreversible neurologic damage; 15% develop 
severe hyperammonemia and may have severe mental retardation [168-170]. 

Initial treatment in females and supportive treatment in males consists of a low-protein 
diet supplemented with essential amino acids and either sodium benzoate or sodium 
phenylbutyrate to achieve a net deficit of nitrogenous waste by decreasing urea synthesis and 
increasing nitrogen-waste excretion. However, in one review of medical therapy for OT 
deficiency in 32 females (age 1- to 17-years) 23 patients had at least 1 hospitalization for 
hyperammonemia and 16% had intellectual decline during therapy [168]. Another report 
described fatal postpartum hyperammonemia in a 25-year-old OT deficient woman despite 
medical therapy into adulthood [170].  

LT is the only definitive treatment leading to long-term survival for male OT deficient 
hemizygotes. In females, the need for LT is dictated by symptom severity and response to 
medical therapy. The frequency and duration of hyperammonemic episodes impacts on the 
individual patients’ intellectual development and neurologic function [167].  

LT for urea cycle enzyme deficiencies is associated with prompt reduction in serum 
ammonia levels, improvement in plasma amino acid profiles and variable neurologic 
improvement [171-175]. Whitington et al [175] described the results of LT in 16 patients; 10 
were OT deficient, 3 were carbamylphosphate synthase deficient and 3 had citrullinemia. 
Fourteen (87.5%) patients survived with follow-up ranging from 11 months to 6 years and 
none required retransplantation. The two deceased patients were twin boys with OT 
deficiency and severe neurologic impairment. One death occurred within a week after LT and 
the other twin with profound brain damage succumbed to pneumonia 9 months after LT. 
Ammonia levels became normal in all survivors. Post LT, almost no developmental 
improvement was seen in 6 moderately impaired children; 4 mildly impaired children were 
functional with mild disabilities and 4 patients who were normal pre-LT had normal 
development and function. LT should therefore be performed in patients with 
hyperammonemic urea cycle defects prior to the onset of neurologic dysfunction.  

 
 

Hemophilia 
 
Hemophilia A and B are X-linked recessive disorders and are caused by deficiency of 

coagulant factor VIII and factor IX respectively. Clinical manifestations include spontaneous 
bleeding, especially into joints and soft tissues causing significant morbidity. Pooled factor 
concentrate infusions although life saving, have been complicated by infection with hepatitis 
B and C, and HIV. Recombinant factors VII and IX are now available and gene therapy is 
being explored [176,177]. Although LT in hemophiliacs is usually performed for end-stage 
liver disease due to HBV or HCV, the underlying condition is also cured because of normal 
coagulation factor synthesis by the donor liver [179-183]. Factor VIII or factor IX levels 
increase dramatically within the first day post-transplant and remain normal over extended 
follow-up [179]. With peri-operative coagulant factor replacement, LT can be safely 
performed without significant bleeding complications [178-183]. Wilde, et al reported 
outcomes of LT in hemophiliacs with chronic hepatitis C infection [183]. Eleven patients 
underwent LT with supplemental factor concentrate infusion. Nine patients were alive a 
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median of 5 years post LT (6 months to 11 years). One patient died 6 years post LT due to a 
myocardial infarction and the other died of liver failure from recurrent hepatitis C. The 
outcome of LT in hemophiliacs is good and is associated with relatively little morbidity.  

 
 

Amyloidosis 
 
Amyloidosis is an uncommon disease resulting from tissue deposits of an insoluble 

fibrillar protein. The diagnosis can be confirmed by demonstration of apple-green 
birefringence on polarization microscopy after Congo red staining. Deposition of amyloid 
material in various tissues can lead to variable disease expression [192-194]. Classification is 
based on identification of the precursor protein; the incidence, management options and 
prognosis depend on the underlying etiology [192-194].  

 
Familial Amyloidotic Polyneuropathy 

Familial Amyloidotic Polyneuropathy (FAP) is a hereditary amyloidosis due to 
accumulation of one of the FAP-related mutated proteins: amyloidogenic transthyretin 
(ATTR), apolipoprotein A-I or gelsolin. Worldwide, FAP due to mutated transthyretin 
(ATTR-FAP) is the most common. Transthyretin (TTR) is a protein of unknown function, 
predominantly synthesized in the liver. It circulates in the blood stream bound to thyroxine or 
to a retinol binding protein-Vitamin A complex. The TTR gene locus is 18q12.1 and 
mutations in TTR results in an abnormally folding transthyretin which deposits systemically 
as amyloid fibrils [77,79]. ATTR-FAP due to a Val30Met mutation in transthyretin was first 
described by Andrade in 1952 [78]. Since then more than 100 different mutations in the TTR 
gene were identified, with a worldwide distribution [79]. 

ATTR-FAP is an autosomal dominant disorder with varied clinical manifestations, even 
among patients with the same mutation in the TTR gene. ATTR-FAP is classified into 
neuropathic, oculoleptomeningeal and cardiac forms based on clinical phenotype. Clinical 
manifestations, thought to be due to deposition of abnormal amyloid fibrils, are protean and 
include sensorimotor and autonomic polyneuropathy, ocular amyloidosis, cerebral amyloid 
angiopathy, gastrointestinal dysmotility, cardiac dysfunction and arrythmias, renal 
dysfunction and anemia [77]. In autopsy findings [64], amyloid fibril deposits in the nervous 
system were predominant in the peripheral nerves, anterior and posterior roots of the spinal 
cord, spinal ganglia, autonomic nervous system and the choroid plexus. Decrease in 
myelinated and unmyelinated nerve fibers was associated with degenerative changes in 
Schwann cells. Amyloid deposits were also frequent in the cardiovascular system and the 
cardiac conduction system, the gastrointestinal system, the kidneys and the thyroid. 
Diagnosis is established based on clinical and pathologic findings and confirmed by genetic 
testing.  

FAP disease manifestations are progressive, disabling and fatal if untreated. Because 
ATTR is predominantly synthesized in the liver, LT for ATTR-FAP eliminates ATTR 
production and is presently the only known curative treatment [35,63]. Since disease 
manifestations are mostly irreversible and may advance rapidly, LT is recommended at the 
onset of first symptoms and before involvement of neurologic, cardiac, renal or 
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gastrointestinal systems. Several recent series reported good outcomes post LT 
[35,207,208,211]. Adams, et al [207] report overall 1- and 5- years survival rates of 82% and 
60% respectively. Recent data [35] from the Familial Amyloidotic Polyneuropathy World 
Transplant Registry report 579 LTs for 539 patients with FAP between 1991-2000 and 60 
LTs for FAP in 2003. An excellent overall 5-year survival of 77% was observed which is 
comparable to post-LT survival for other chronic liver disorders. Among the deceased, death 
occurred mainly from cardiac complications (39%) [35]. Post-LT, circulating mutant 
transthyretin is absent and neuropathy improves [206-208,211].  

Because the manifestations of FAP occur late and the FAP liver is morphologically and 
functionally normal, the explant FAP liver is thought to be appropriate for sequential 
transplantation into a non-FAP patient with end stage liver disease [30,35,209,210]. There 
was no increase in risk to the donors of FAP livers when compared to patients with FAP 
whose livers were not used for transplantation. Although mutant TTR was present in 
circulation and FAP manifestations may possibly develop in the recipient of an FAP liver, 
symptoms of FAP were not reported to this point [30,35,209,210].  

 
 

Hereditary Protein C Deficiency 
 
Protein C (PC) is a vitamin K-dependent plasma protein that prevents formation of blood 

clots by degrading activated factors Va and VIIIa in the coagulation cascade when activated 
by a thrombin-thrombomodulin complex on capillary endothelium [229]. A deficiency in 
protein C thus results in a hypercoagulable state. PC deficiency may be acquired or inherited 
as an autosomal dominant disorder; homozygous, heterozygous and compound heterozygous 
states have been described. The penetrance is variable. Homozygous PC deficiency usually 
presents in the neonatal period as severe fatal purpura fulminans, disseminated intravascular 
coagulation (DIC) and thromboembolism. Heterozygotes may present with purpura 
fulminans, venous thrombosis and/or pulmonary embolism. Inherited PC deficiency may 
present later in adulthood. Protein C concentrates or fresh frozen plasma are used for acute 
and short term treatment in deficient states but are impractical in the long term, in part 
because of the short half life of protein C [230]. Warfarin, heparin or low molecular weight 
heparins are also effective to prevent thrombosis but carry a risk of bleeding [230]. When 
medical treatments fails, LT is indicated for severely symptomatic homozygous protein C 
deficiency [231,232] LT results in normalization of protein C levels and reverses the 
hypercoaguble state [231].  

 
 

II A. PRIMARY DEFECT IS EXTRAHEPATIC: LIVER DISEASE 

MAY RECUR AFTER TRANSPLANTATION 
 

Hereditary Hemochromatosis 
 
Hemochromatosis is a disease that results from excessive deposition of iron in various 

tissues, particularly in the liver. Cellular toxicity from excess iron leads to structural damage 
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and functional insufficiency. The Online Mendelian Inheritance database classifies Primary 
Iron-Overload disorders into four subtypes [37,38]. Classic Hereditary Hemochromatosis 
(HH) or “Type 1” or HFE related hemochromatosis is the most common form. Clinical 
disease generally presents in middle age and phenotypic expression is milder in women 
compared to men. Other types of Hereditary Hemochromatosis include “Type 2” or Juvenile 
Hereditary Hemochromatosis. This form of HH is characterized by severe phenotypic 
expression in the second and third decade of life; men and women are affected equally. Type 
2 HH is associated with mutations in Hemojuvelin or Hepcidin; “Type 3” HH is associated 
with mutations in Transferrin receptor 2. “Type 4” HH form of inherited iron overload has 
also been called “Ferroportin disease”. The following section will focus on the features, 
diagnosis, management and LT in classical or HFE-associated HH. HH was identified as an 
inherited, autosomal recessive disorder closely linked to the Major Histocompatibility 
complex HLA-A3 locus [40]. Feder, JN et al [41] reported the discovery of the candidate 
hemochromatosis ‘HFE’ gene in 1996. HH is among the most common inherited disorders. It 
is estimated that the phenotypic prevalence is 1:400 and genotypic prevalence is 1:200 in 
individuals of northern European ancestry [42]. HFE related hemochromatosis is 
characterized by a homozygous substitution of cysteine to tyrosine at residue 282 of the HFE 
protein (C282Y). Over 85% of those with phenotypic HH are homozygous for C282Y. A 
second mutation H63D in the HFE gene may increase disease susceptibility in compound 
heterozygotes (C282Y/H63D). 

The clinical presentation of HH is variable ranging from an incidental diagnosis, to 
weakness and lethargy, arthralgias and arthritis, or advanced disease characterized by 
diabetes mellitus, liver disease, hypogonadism, cardiac disease (heart failure, arrhythmias), 
hypothyroidism [42]. Chronic liver disease with or without cirrhosis is common and 
decreased life expectancy and HCC are associated with cirrhosis. The diagnosis and 
management of HH, which has been reviewed recently [39,42,43] is based on history and 
physical examination, family history and supported by laboratory, imaging and HFE gene 
testing. The initial screening test is a serum transferrin-iron saturation (TS); if TS is >45%, a 
repeat fasting measurement should be done along with a serum ferritin level. This is followed 
by HFE gene testing and in selected patients, with liver biopsy. It is important to recognize 
that in the setting of end-stage liver disease, serum TS may frequently be elevated in the 
absence of HFE-hemochromatosis. Furthermore, the majority of patients with end-stage liver 
disease who have otherwise unexplained marked hepatic iron overload do not have HFE-
hemochromatosis [58,59,149]. In addition, liver biopsy is not optimal in patients with 
advanced cirrhosis due to increased risk of complications and the marked heterogeneity in 
iron deposition within the liver in this setting may lead to sampling variability in tissue iron 
measurement [88]. New methods for non-invasive measurement of hepatic iron content are 
being developed, such as MRI and susceptometry and may be much more helpful in cirrhotic 
patients being evaluated for HH.  

The mainstay of medical treatment is weekly phlebotomy of 500 ml of blood (0.25g iron) 
until serum ferritin is ≤ 50µg/L. Maintenance therapy after adequate iron depletion generally 
requires approximately 4-12 phlebotomies per year. Early diagnosis and phlebotomy therapy 
prior to development of cirrhosis is associated with normal life expectancy. Despite the high 
frequency of HFE mutations, advanced liver disease requiring transplantation for HFE-
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associated HH is unusual [45,46,50]. However, if cirrhosis is present at the time of diagnosis, 
despite adequate phlebotomy therapy, life expectancy is diminished and there remains an 
increased risk of HCC [44,48]. LT is the only effective treatment for patients with 
decompensated cirrhosis secondary to HH and those found to have small HCC [19]. Iron 
depletion via phlebotomy may improve post transplantation survival and must be attempted 
in these patients before transplantation. Patients undergoing LT for HFE-HH have a 
significantly decreased survival compared to patients with other diagnoses [48-53]. 
Furthermore, some studies suggest that significant hepatic iron overload from any cause is 
associated with decreased survival after transplantation [49,51,54,55]. 

Prior to identification of the HFE gene, several studies reported results of LT for 
hemochromatosis. Pillay et al initially reported a 83% post LT survival for greater than six 
months in patients with end stage HH liver disease after iron depletion therapy [56]. A 
subsequent analysis of LT data reported to Medicare revealed a 54% 1 year survival an 43% 
5 year survival after LT for HH, both significantly lower than LT for other indications. This 
study included pediatric patients and patients with other causes of iron overload in the 
hemochromatosis group [50]. This was similar to findings from the Pitt-UNOS Liver 
Transplant Registry where 1- and 5- year survivals of 65% and 56% were noted after LT for 
HH [12]. Kowdley et al [48] reported results of LT for a presumed diagnosis of hereditary 
hemochromatosis in 37 patients from 5 LT centers. This cohort had a higher than expected 
prevalence of HCC, and 1- and 5-year survivals were similar to that reported by Kilpe et al 
[50]. More recently, Brandhagen et al [49] compared long term patient and graft survival and 
LT complications in 41 patients who had iron overload evidenced by a hepatic iron index of 
greater than 1.9 with 41 matched LT recipients without increased hepatic iron. Post LT 5-
year patient survival was significantly lower in cases with hepatic iron overload compared to 
matched controls without iron excess (48% vs. 77%; P = .045). The reduced survival was 
attributable mainly to fatal infections in patients with iron overload (24% vs. 7%; P = .03). 
Notably however, only 4 of the 41 patients with iron overload were C282Y homozygotes. 
Other studies [54,57] also suggest that most patients with hepatic iron overload in the setting 
of end-stage cirrhosis do not have HFE-HH. 

Although hepatic iron overload in the setting of end-stage liver disease appears most 
common among patients with chronic hepatitis C and alcoholic liver disease, it has also been 
described among patients with other types of end-stage liver disease [58,59]. Some authors 
have suggested that hepatic iron overload is associated with a poor outcome after LT 
regardless of the presence or absence of HFE mutations [54,59]. A recent study assessed post 
LT outcomes in 22 patients with HH. HH patients had relatively poor outcomes following 
transplantation with 1-, 3-, and 5- year survivals of 72%, 62% and 55% respectively [60]. 

In a recent large multi-center study, Kowdley et al examined the prevalence of HFE 
mutations in liver transplant recipients with known or suspected hepatic iron overload and the 
relationship between HFE genotype and survival after LT [53]. HFE-HH was noted in 12.8% 
of patients of whom 14 were C282Y homozygotes (7.2%) and 11 were C282Y/H63D 
compound heterozygotes (5.6%). Post LT survival was significantly lower among patients 
with HH (1-, 3-, and 5-year survival rates of 64%, 48%, 34%, respectively) compared with 
other genotypes. After adjustment for age, United Network for Organ Sharing (UNOS) status, 
year of transplantation, and either elevated hepatic iron index or hepatic iron concentration, 
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patients with HH had a hazard ratio for death of 2.6 (P = .002). Non-HH patients with hepatic 
iron overload also had significantly decreased survival when compared with those without 
hepatic iron overload.  

The available data suggest that in patients with hepatic iron overload, post-LT short term 
mortality is predominantly due to bacterial, and fungal infections and cardiac complications, 
while long term survival is affected by recurrent HCC and cholangiocarcinoma or cardiac 
complications [48,51,53,60,61,199].  

A few studies which examined iron re-accumulation in the transplanted liver in patients 
with iron overload have found conflicting results. Some studies reported no significant iron 
loading in the transplanted liver and others the opposite [60]. It is also not clear whether iron 
accumulation or mobilization occurs after transplantation of an HFE-HH liver into a wild-
type individual [60]. 

 
 

Gaucher Disease 
 
Gaucher disease (GD) is a rare autosomal recessive disorder resulting in deficiency of the 

enzyme glucocerebrosidase in leukocytes, bone marrow, hepatocytes and aminocytes. It is 
highly prevalent in Ashkenazi Jews and the most common of lysosomal storage disorders. It 
is inherited in an autosomal recessive pattern, and results in accumulation of 
glucosylceramide within lysosomes of reticuloendothelial cells. The majority of patients 
(99%) have non-neuronopathic disease (type 1), which is characterized by 
hepatosplenomegaly, pulmonary disease, pancytopenia and osteolytic lesions due to 
infiltration by Gaucher’s cells. Hematologic and other malignancies including rare instances 
of HCC [187] have been reported. GD may rarely present in infancy with acute liver failure 
but more commonly presents in late childhood with the above manifestations. Brain 
involvement is seen in GD types 2 and 3. Although hepatocytes are not part of the storage 
disorder, the liver is universally involved in GD type 1 and elevated aminotransferases are a 
common feature. Uncommonly, liver failure, cirrhosis, portal hypertension and severe hepatic 
fibrosis are reported [184-186]. Diagnosis is made by demonstrating large multinucleated 
Gaucher’s cells in marrow aspirate and confirmed by enzyme assay. Gaucher’s cells are also 
found around hepatic central veins obstructing the sinusoids.  

In the few reported cases of LT [189-191] for hepatic complications of GD type I, liver 
function improved, but, glucocerebrosidase activity may not return to normal [191], and 
Gaucher cells may re-accumulate in the liver [190]. One patient with GD type 1 who 
underwent LT for HCC sustained remission of her Gaucher’s disease and was medically 
stable without enzyme supplementation 2 1/2 years post LT [186]. With over 4,300 people 
currently under treatment, the standard of care for GD type 1 is enzyme replacement therapy 
with macrophage-targeted recombinant glucocerebrosidase (Imiglucerase) [188]. 
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Erythropoietic Protoporphyria 
 
The porphyrias are a varied and uncommon group of genetic or acquired disorders due to 

defects of enzymes in the heme biosynthesis pathway. Erythropoietic or Erythrohepatic 
Protoporphyria (EPP) is caused by deficiency of the enzyme ferrochelatase which catalyzes 
the terminal step of heme synthesis. [47] EPP is an autosomal dominant disorder with 
variable penetrance even within individual families. Photosensitivity is the predominant 
manifestation of EPP. Accumulation of protoporphyrin in skin and dermal blood vessels 
leads to acute cutaneous erythema with burning and itching. If sun exposure is prolonged, 
formation of bullae and vesicles and increased skin fragility resulting from mild trauma to 
light exposed skin is noted. EPP patients must be monitored for liver disease and those with 
erythrocyte protoporphyrin levels over 1500mcg/dL and elevated liver enzymes must be 
considered for liver biopsy. Optimal medical therapy is not well defined and may include 
erythrocyte transfusion, intravenous heme, high dose beta carotene, oral charcoal, oral 
cholestyramine or oral chenodeoxycholic acid.  

In approximately 10% of patients with EPP, protoporphyrin accumulation may lead to 
chemical liver injury and severe liver disease. When excess protoporphyrin produced in the 
bone marrow exceeds the limit of biliary canalicular excretion, protoporphyrin accumulates 
in the liver resulting in local toxicity, cholestasis, nodular cirrhosis and pigmented gallstones 
associated with hemolysis. Progressive liver disease, cirrhosis, and hepatic failure may 
develop, necessitating LT [68,86]. Several reports of LT for EPP have shown favorable 
prognosis [67,68,86,178]. 

Ferrochelatase deficiency is unchanged and excess protoporphyrin production in the 
bone marrow continues after LT. Protoporphyrin levels in erythrocytes and in feces remain 
elevated after LT [67,68,178]. Recurrent, progressive liver injury is noted after LT and is 
treated as discussed above and selected patients may be considered for retransplantation 
when indicated [68,202]. Neurologic dysfunction and hemolysis may complicate the 
perioperative period due to high serum protoporphyrin levels and splanchnic bed exposure to 
operating room lights [86,200]. Preoperative plasmapheresis, erythrocyte transfusion and 
filters to remove 400-nm wavelength from operating room lights are recommended [201]. 

 
 

Nonalcoholic Steatohepatitis 
 
NonAlcoholic SteatoHepatitis (NASH) is a unique syndrome in which histopathologic 

findings are similar to alcoholic hepatitis despite an absence of history of alcohol abuse in 
affected patients [212]. It is commonly associated with metabolic syndrome (obesity, 
dyslipidemia and insulin resistance/diabetes mellitus type 2) [213,214] or following jejuno-
ileal bypass surgery for morbid obesity. The true prevalence of NASH is difficult to 
determine as the diagnosis is based on liver histology but is believed to range in the United 
States from 3% in the general population to more than 40% in morbidly obese patients 
[215,216]. The diagnosis is frequently made in patients referred for evaluation of elevated 
serum aminotransferases. Symptoms are nonspecific and may include right upper abdominal 
pain and fatigue. Exclusion of other etiologies for liver disease and presence of characteristic 
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histology findings on liver biopsy are necessary to establish a diagnosis of NASH. Liver 
histology may range from macrovesicular steatosis without necroinflammation or fibrosis 
(NAFLD) to steatosis in addition to ballooning degeneration of hepatocytes, 
necroinflammation, and variable degrees of fibrosis (NASH) [199]. 

The pathogenesis, natural history and prognosis of NASH are being actively studied at 
present. There are several excellent recent reviews providing an overview of NAFLD/NASH 
[196-198]. Briefly, it has been suggested that insulin resistance is the first step in this process, 
leading to hepatic steatosis; increased oxidative stress in the liver via a number of possible 
pathways may subsequently lead to necro-inflammatory changes and fibrosis. At the time of 
initial biopsy, 30-40% of patients with NASH have advanced hepatic fibrosis and 10-15% 
have cirrhosis [216,219-221]. Over time, a significant percentage of patients with NASH 
have progressive disease including worsening cirrhosis and portal hypertension and liver 
related death in 20% of cirrhotic NASH patients [222]. In late stages of the disease, steatosis 
may not be apparent on histology leaving a picture of “bland” or undifferentiated cirrhosis 
(cryptogenic cirrhosis). It is now being recognized that a significant proportion of patients 
with cryptogenic cirrhosis likely have “burned out” NASH, given that a high proportion of 
these patients have type 2 diabetes, obesity and other features of the metabolic syndrome 
[151,195]. Steatosis and NASH has also been described more commonly among patients after 
LT for cryptogenic cirrhosis compared to other diagnoses [225,226]. An increased prevalence 
of HCC in patients with NASH is also reported [223-224]. In one study, 6.9% of HCC cases 
were seen in patients with cryptogenic cirrhosis and clinical features of NASH [223], 
although in another study there was no progression of NASH cirrhosis to HCC in 23 patients 
over 5 years [222].  

Medical therapy is not curative but may have some benefit in improvement of 
steatohepatitis. Therapy is aimed at improving insulin sensitivity via weight loss and 
medications (thiazolidinediones and metformin), decreasing oxidative injury (Vitamin E, 
Betaine) and treating dyslipidemia (gemfibrozil, atorvastatin). 

LT is indicated for and is routinely performed in patients with decompensated cirrhosis 
attributed to NASH. In one series reported by Charlton et al 2.9% of liver transplants from 
1993-1998 at Mayo Clinic were for end stage liver disease due to NASH. This proportion 
likely underestimates the proportion of patients progressing from NASH to decompensated 
liver disease requiring LT, given that many are classified as “cryptogenic”. Following LT, a 
high incidence of recurrence of steatosis and steatohepatitis with progression to cirrhosis and 
decompensated liver disease is well documented in numerous studies [221,227]. In the series 
[221] by Charlton et al, recurrent steatosis was noted in 60% of those who underwent LT for 
NASH in contrast to 15% of those with alcoholic liver disease, 15% of those with hepatitis C 
and 5% of those with cholestatic liver disease. Steatohepatitis recurred in 33% of transplant 
recipients with NASH, and progressed to cirrhosis in 12.5% [221]. 

The recurrence of NASH following LT clearly demonstrates that LT does not cure the 
metabolic defect in NASH. Predisposing factors such as obesity, diabetes and dyslipidemia 
must be aggressively treated and in selected cases, gastric bypass or bariatric surgery may be 
beneficial [228]. 
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II B. PRIMARY DEFECT IS EXTRAHEPATIC: LIVER 

TRANSPLANTATION CURATIVE FOR HEPATIC COMPONENT OF 

GENERALIZED DISORDER 
 

Cystic Fibrosis 
 
Cystic fibrosis (CF) is a common autosomal recessive disorder, affecting approximately 1 

in 3000 live Caucasian births. The genetic defect is a mutant cystic fibrosis transmembrane 
regulator (CFTR) gene on chromosome 7, which codes for a CAMP-dependent chloride 
channel on the apical membranes of epithelial cells lining the airways, pancreatic ducts, 
biliary tree, sweat ducts, intestines, and vas deferens. More than 1,000 mutations have been 
described with varied phenotype and penetrance. Depending on the criteria used to define 
liver disease, the reported prevalence of CF-associated liver disease (CF-LD) widely ranges 
from 2 to 68% in children and adolescents. CF-LD generally manifests within the first decade 
of life with increasing prevalence until the age of 12-14 years. In two recent long term 
longitudinal studies, approximately 27%-41% of CF patients developed CF-LD [233,234]. 
22% of those with CF-LD progressed to cirrhosis [233]. The overall incidence of advanced 
CF-LD in patients with CF is estimated at 1.9% -7.8% [233,234]. Presentation of advanced 
CF-LD liver disease is less common beyond 12-14 years of age [233, 234]. Livers from 2 
adults with CF without CF-LD, who died from complications post lung transplantation were 
successfully transplanted with recipients surviving over 4 years [237]. 

The absence of apical membrane CFTR in bile duct epithelial cells results in obstruction 
of hepatic bile ductules by abnormal mucoid secretions or inspissated proteinaceous bile 
[235]. Common bile duct obstruction may result from pancreatic fibrosis or sclerosing 
cholangitis. The histologic features are characterized by periductular inflammation and focal 
biliary cirrhosis with preserved liver function, which may progress to mulilobular cirrhosis, 
followed by hepatosplenomegaly, portal hypertension, ascites, variceal bleeding and liver 
failure. The presence of portal hypertension indicates a poor prognosis, as the mean survival 
after diagnosis is 4.5 years [236]. CF-LD correlates with a history of meconium ileus and 
with pancreatic insufficiency [233,234] and in some studies, with severe CFTR mutations. 
With better outcomes in pulmonary CF, life expectancy has increased and advanced CF-LD 
is more prevalent and is now considered the second leading cause of death in these patients.  

Standard medical therapy in CF-LD consists of high-dose ursodeoxycholic acid to 
counter effects of cholestasis and nutritional support supplemented by pancreatic enzymes 
and fat soluble vitamins. LT is the only curative therapy for advanced CF-LD. Significant 
portal hypertension is associated with progressive decline in pulmonary function[240] and it 
is important to evaluate CF-LD patients early for LT, before the onset of hepatocellular 
decompensation [205,238,240,241-245]. Genyk et al [238] suggest a scoring system to 
identify patients for referral to LT. Transjugular intra-hepatic portosystemic shunt (TIPSS) or 
portosystemic shunt surgery in children are useful temporizing measures in patients with 
compensated CF cirrhosis with refractory variceal bleeding or in those with contraindications 
for LT [242,243].  



Narendra Siddaiah and Kris V. Kowdley 322 

Although LT for CF-LD was initially feared to be complicated by significant peri- and 
post-operative pulmonary morbidity and mortality, several studies report very good outcomes 
[239,244-246]. It is of paramount importance to assess, aggressively treat and stabilize lung 
function in CF with chest physiotherapy, nebulized bronchodilators, nebulized DNAse, 
nutritional support and antibiotics when indicated. These measures should be continued post 
LT. Candidates for isolated LT should have stable lung function with forced vital capacity 
(FVC) ≥ 75% of predicted value, and forced expiratory volume in one second (FEV1) ≥ 70%. 
Although lung colonization with multi-drug resistant bacterial organisms may be a 
contraindication for isolated LT in many centers, Aspergillus lung colonization, treated with 
antifungal therapy is not considered an absolute contraindication for LT [203,248]. 

Combined lung-liver or heart-lung-liver should be considered in patients 
[217,218,240,241,245,246] with severe pulmonary disease, hypercarbia, frequent pulmonary 
infection, colonization with multi-drug resistant organisms, extensive pulmonary fibrosis, 
hepatopulmonary syndrome or severe pulmonary hypertension. A combined lung-liver or 
heart-lung-liver may result in the liver exerting an immunotolerant effect with a theoretically 
lower likelihood of rejection of grafted lung or heart. Recipients of combined lung–liver 
transplants showed a favorable short term prognosis [217,218] while heart–lung–liver triple 
transplant recipients tend to be older and have a poor short term prognosis [218,248]. 

Following LT, prognosis is comparable to LT for other indications and appears to be 
better in pediatric patients [247] compared to adults. Overall, a long-term survival of 75% has 
been reported with improvement of lung function, quality of life, nutritional status and bone 
mineralization [204,205,239,240,244-246,247]. Short term and long term morbidity and 
mortality in patients with CF-LD after LT is predominantly related to pulmonary infections, 
sepsis and worsening lung function [203-206,238,240-247]. However, overall lung function 
improves likely due to a combination of improved nutrition, improved lung mechanics due to 
resolution of ascites and correction of hepatopulmonary syndrome induced hypoxemia 
[239,240,244,246,247,248]. Furthermore, it is possible that airway inflammation may be 
ameliorated by immunosuppressive medications.  

A higher incidence of biliary complications is noted in CF-LD patients with duct-to-duct 
biliary anastomosis during LT; therefore Roux-en-Y choledocho-jejunostomy is preferred for 
biliary reconstruction [245]. However, a Roux-en-Y choledocho-jejunostomy may be 
associated with malabsorption because of a shorter bowel length. The standard 
immunouppressive regimen following LT includes anti-IL-2 monoclonal antibody, tacrolimus 
(FK506), and prednisone. In those with uncontrolled or worsening diabetes mellitus 
microemulsified cyclosporine may be substituted for tacrolimus.  
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