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PREFACE

Many of the chapters within this volume were first published almost two decades

ago. Since then, these basic algorithms have not changed. However, what has

changed is the huge increase in computer speed and ease of use along with the

corresponding decrease in the costs. The increase in computer speed has made the

use of some algorithms common that were almost never used in biochemistry

laboratories two decades ago. During the past two decades, the training of the

majority of senior M.D.s and Ph.D.s in clinical or basic disciplines at academic

research and medical centers has not kept pace with advanced coursework in

mathematics, numerical analysis, statistics, or computer science.

Nevertheless, the use of computers and computational methods has become

ubiquitous in biological and biomedical research. One primary reason is the

emphasis being placed on computers and computational methods within the

National Institutes of Health (NIH) Roadmap. Another factor is the increased

level of mathematical and computational sophistication among researchers, par-

ticularly among junior scientists, students, journal reviewers and NIH Study

Section members. Yet another is the rapid advances in computer hardware and

software that make these methods far more accessible to the rank-and-file mem-

bers of the research community.

There exists a general perception that the applications of computers and com-

puter methods in biological and biomedical research are either basic statistical

analysis or the searching of DNA sequence data bases. While these are important

applications, they only scratch the surface of the current and potential applications

of computers and computer methods in biomedical research. The various chapters

within this volume include a wide variety of applications that extend far beyond

this limited perception. The chapters within this volume are basically in chrono-

logical order of original publication in Methods in Enzymology volumes 210, 240,

321, 383, 384, 454, and 467. This chronological order also provides a general

progression from basic numerical methods to more specific biochemical and

biomedical applications.

xv
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Use of Least-Squares Techniques in
Biochemistry1

Michael L. Johnson
University of Virginia Health System
Charlottesville, VA, USA
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I. Update

This chapter was originally published (Johnson, 1992) under the title ‘‘Why,

When, and How Biochemists Should Use Least-Squares’’ and this descriptive title

clearly states the purpose of this chapter. This chapter emphasizes the underlying

assumptions and philosophy of least-squares fitting of nonlinear equations to

experimental data.

In the last two decades, the basic algorithms have not changed. Most are based

on the Gauss-Newton algorithm. However, what has changed is the huge increase

1 This article was originally published as ‘‘Why, When, and How Biochemists Should Use Least

Squares’’ in Analytical Biochemistry, Volume 206 (1992). Reprinted with permission from Academic

Press.
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Copyright 2010, Elsevier Inc. All rights reserved. 1 DOI: 10.1016/B978-0-12-384997-7.00001-7



in computer speed and ease of use along with the corresponding orders of magni-

tude decrease in cost. These factors have combined to make the least-squares

fitting of nonlinear equations to experimental data a common task in all modern

research laboratories. Many of the available software packages will perform the

required least-squares fits, but fail to address subjects such as goodness-of-fit, joint

confidence intervals, and correlation within the estimated parameters. This chapter

provides an introduction to these subjects.

The increase in computer speed has made some algorithms possible that were

almost never used in biochemistry laboratories two decades ago. One such algo-

rithm is the use of bootstraps (Chernick, 1999) for the determination of parameter

confidence intervals. If this chapter were being written today (Johnson, 2008),

I would have stressed their use.

II. Introduction

There are relatively few methods available for the analysis of experimental data

in the biochemical laboratory. Graphical methods and least-squares (regression)

methods are by far the most common. Unfortunately, both classes of analysis

methods are commonly misused. The purpose of this chapter is to explain why,

when, and how a biochemist should use least-squares techniques and what confi-

dence can be assigned to the resulting estimated parameters.

One classic group of biochemical experiments involves measuring the response

of a system to an external perturbation. Temperature-jump experiments perturb

the chemical equilibrium of a solution by rapidly increasing the temperature of the

solution and subsequently monitoring an observable, like absorbance, as a func-

tion of time. Here, the absorbance is the observable (i.e., the variable) that is

dependent on the experiment, and time is the variable that can be independently

controlled by the experimental protocol.

Another example of this general class is the ligand-binding titration experiment.

The investigator measures the amount of a ligand bound (the dependent variable)

by fluorescence, absorbance, or radioactive counting. To do so, the investigator

titrates the ligand concentration (the independent variable). Note that the ligand

concentrations might be either the total or the free ligand concentration, depend-

ing on the experimental protocol.

In these examples, and all others of this class, the investigator has measured a

response caused by a perturbation of the system. The next step is to obtain the

parameters of the system that characterize the chemical processes by ‘‘analyzing’’

the data. In the above examples, these parameters, the desired answers, might be

the relaxation half-lives or macroscopic binding constants. Alternatively, the

desired parameters might be the microscopic forward and reverse reaction rates

of the biochemical system.

Analysis of these data requires that the biochemist assume a mathematical rela-

tionship between the observed quantities, the dependent variables, and the

2 Michael L. Johnson



independent variables. This relationship is the fitting function. In the past, analysis of

relaxation experiments, such as temperature jump, assumed that the mathematical

relationship was a single exponential decay. Based on this assumption, the investiga-

torwould commonlyperforma logarithmic transformationof the dependent variable

and create a graph of, for example, the logarithm of absorbance as a function of time.

If the original assumption of a single exponential process is correct, then the graph

will be a straight line with a slope related to the relaxation rate of the chemical

process. A single class of binding sites is a common assumption for ligand binding

experiments. This, in turn, implied that themathematical relationship for the amount

bound as a function of free, or unbound, ligand was a rectangular hyperbola.

A consequence of this mathematical relationship is that various transformations

of the data, such as a Scatchard plot, will yield a straight line with a slope related

to the binding affinity. It was quickly realized that the assumption of a single

biochemical process was generally not valid. Generalizations of these graphical

procedures for consideration ofmultiple processes were attempted but with generally

poor results.

The desired result of the analysis of any experimental data is to obtain the set of

parameters of the biochemical reaction with the maximum likelihood (ML), high-

est probability, of being correct. This is the most critical lesson of this review.

We do not care what the slope of a log plot is; we want the relaxation rate constants

with the ML of being correct. We do not care what the slope of a Scatchard plot is;

we want the ligand binding constants with the highest probability of being correct.

Does a Scatchard plot, or a logarithmic plot, yield parameter values with the ML

of being correct? Generally, they do not (Johnson and Frasier, 2010). These methods

are mathematically correct if the experimental data contain no experimental uncer-

tainties. They fail because they do not correctly consider the experimental uncer-

tainties present in all experimental data. Why then were these graphical methods

developed and commonly reported? The evaluation of the parameters with the ML

of being correct requires a high-speed digital computer to perform the calculations,

but the development of the graphical methods occurred before high-speed digital

computers were commonly available to the biochemical researcher. At that stage

graphical methods were the only practical ones for the analysis of the experimental

data. Should these methods still be used? Theymay aid the investigator in visualizing

the data, but the methods should not be used for determining parameter values.

The most common alternative to graphical analysis in use in the biochemical

laboratory today is nonlinear least-squares (NLLS). To use a NLLS method, an

investigator must assume a functional form for the mathematical relationship

between the dependent and independent variables of the experiments in terms of

a series of desired parameters. This functional form is not restricted to a form that

can be transformed into a straight line, as with the graphical procedures. NLLS is a

process of ‘‘fitting’’ the experimental data to almost any functional form by

evaluating an optimal set of parameters for the fitting function.

Does a NLLS method yield parameter values with the highest probability of

being correct? It may, if the NLLS analysis procedure is correctly formulated and

1. Nonlinear Least-Squares 3



correctly used (Johnson and Faunt, 2010; Johnson and Frasier, 2010; Straume

et al., 1992).

III. Nonlinear Least-Squares

NLLS refers to a group of different mathematical algorithms that perform a

‘‘best-fit’’ of a fitting function to a set of experimental data. The objective of this

best-fit operation is to obtain a set of ‘‘optimal’’ parameters for the fitting function

such that the fitting function will correctly describe the original data and average

out the experimental uncertainties. NLLS is a special case of a more general class

of parameter estimation procedures known as ML techniques. For linear and

NLLS procedures, the definition of best-fit is that the weighted sum of the squares

of the difference between the dependent variables and the fitting function (WSSR)

is a minimumwhen evaluated at the optimal parameter values and the independent

variables. These differences are the deviations and/or the residuals:

WSSRðaÞ ¼
Xn
i¼1

Yi � FðXi; aÞ
si

� �2

¼
Xn
i¼1

ri

si

� �2

ð1Þ

where the weighted sum of the squares of the residuals, WSSR, is a function of the

parameters, represented here as the vector a, and the n data point, XiYi. The si
refers to the statistical weight of the particular data point. This statistical weight is

Xi

ri

Y
i

Fig. 1 Graphical representation of the residuals, ri, of a least-squares parameter estimation proce-

dure. It is the weighted sum of the squares of these residues, WSSR, that is minimized by the least-

squares process. Note that the residuals are perpendicular to the X axis, not perpendicular to the fitted

curve or the Y axis. From Johnson and Frasier (2010) with permission.
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the standard error of the particular Yi observation. For an unweighted analysis all

the si values are identical and usually set to 1. The ri values in Eq. (1) are

graphically depicted in Fig. 1. It is the weighted sum of the squares of the vertical

distances that are minimized, not of the horizontal or perpendicular distances.

The temperature-jump experiment mentioned above is a useful example for

defining some terms used in the discussion of NLLS. In the classic Eigen tempera-

ture-jump apparatus, a sample solution is rapidly heated while the absorbance of

the solution is recorded as a function of time. Here, the absorbance (A) is the

dependent variable Yi. Time is the independent variable Xi. In the example pre-

sented in Fig. 1, there are only a single dependent and a single independent

variable. NLLS is equally valid for experiments with multiple dependent and/or

independent variables. The analysis of these data requires a specific form for the

mathematical relationship that is used to predict the absorbance as a function of

time for a set of parameters that are to be determined by the analysis procedure.

For the simplest temperature-jump experiments, this mathematical relationship,

the fitting function, is of the form

A ¼ ðA0 � A1Þe�K �time þ A1 ð2Þ
where the parameters to be estimated by NLLS are the chemical relaxation rate K,

the initial absorbance (after the temperature jump but before any relaxation has

occurred) A0, and the absorbance after the relaxation process is complete (i.e.,

infinite time)A1. More complex relaxation processes can be analyzed with a fitting

function that is a summation of several exponential terms.

There are many different NLLS algorithms: the Nelder-Mead (Caceci and

Cacheris, 1984; Nelder and Mead, 1965), Gauss-Newton (Johnson and Faunt,

2010; Johnson and Frasier, 2010; Straume et al., 1992), Marquardt-Levenberg

(Marquardt, 1963), and steepest-descent (Bevington, 1969; Johnson and Frasier,

2010), among others. The actual mathematical details of these algorithms are

discussed elsewhere and are not repeated here (Bevington, 1969; Caceci and

Cacheris, 1984; Johnson and Faunt, 2010; Johnson and Frasier, 2010; Marquardt,

1963; Nelder and Mead, 1965; Straume et al., 1992). For some fitting problems, a

particular one of these algorithms may be preferable, whereas other problems may

call for a different algorithm (Bevington, 1969; Johnson and Faunt, 2010; Johnson

and Frasier, 2010; Straume et al., 1992). For most parameter estimation problems,

these algorithms have many common features. All the algorithms will find a set of

parameters a that minimize the weighted sum of the squares of the deviations

between the fitting function and the data [WSSR(a) in Eq. (1)]. When correctly

used, all the algorithms will yield the same optimal parameter values. All the

algorithms require the user to provide initial estimates of the parameter values,

and they all work by an iterative process of using the initial estimate of the

parameters to provide a better estimate of the parameters. The algorithms then

iteratively use the better estimate of the parameters as the initial estimate and

return an even better estimate, until the parameter values do not change within

1. Nonlinear Least-Squares 5



some specified limit. The validity and usefulness of all the algorithms are based on

the same set of assumptions. Does this ‘‘least-squares best-fit’’ provide parameter

values with theML of being correct? Only sometimes will the parameters estimated

by NLLS correspond to the desired ML estimates.

Linear least-squares (LLS) is a special case of NLLS. Technically, for LLS the

second, and higher, derivatives of the fitting function with respect to the para-

meters are all zero, whereas for NLLS these derivatives are not zero. An example of

a linear fitting function is a simple polynomial equation like Y ¼ A þ BX. The

practical difference between LLS and NLLS is that if the second, and higher,

derivatives are all zero then the Gauss-Newton algorithm will require only a single

iteration for any initial ‘‘guesses’’ of the fitting parameter values. This, in turn,

means that for LLS, the required initial values of the fitting parameters can all be

zero. The polynomial least-squares equations found in almost every textbook on

this subject (Chemical Rubber Co., 2010) can be derived from the Gauss-Newton

NLLS method by assuming that the initial parameter values are zero and

performing only a single iteration. Consequently, the restrictions and limitations

of NLLS all apply to LLS, and NLLS can always be used instead of LLS.

Therefore, only NLLS is discussed here.

IV. Why Use NLLS Analysis Procedures?

There is only one valid reason for using a NLLS analysis procedure: when

correctly applied, NLLS will yield parameter values with the highest probability,

theML, of being correct. When NLLS cannot be correctly applied, it should not be

used.

Some have claimed that least-squares are always valid because least-squares

methods will always provide a set of parameters that correspond to a minimum in

the variance-of-fit.2 Why would we want a minimum variance-of-fit, that is, a

minimum WSSR? We desire the parameters with the highest probability of being

correct. The parameter values corresponding to the minimum variance-of-fit are

not necessarily the parameter values with the highest probability of being correct.

The next section discusses the assumptions required for the parameters

corresponding to a minimum variance-of-fit to have the highest probability of

being correct. The assumptions outlined are sufficient to ensure that a least-squares

procedure will yield parameter values with the highest probability of being correct.

For an arbitrary fitting function, these assumptions are also necessary to

2 Variance-of-fit is the average of the weighted squares of the differences between the data points and

the fitting function, as shown in Fig. 1. The variance-of-fit is calculated as the WSSR, from Eq. (1),

divided by the number of data points. Thus, a minimum variance-of-fit corresponds to a minimum

WSSR, that is, a least-squares minimum. The variance-of-fit is a commonly used, and abused, measure

of the quality of a fit. It is generally, and sometimes incorrectly, assumed that the lower the variance-of-

fit, the better is the fit of the data.
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demonstrate the relationship between ML methods and least-squares methods.

However, for a few specific fitting functions, it can be demonstrated that one or

more of these assumptions are not required.

V. When to Use NLLS Analysis Procedures

Again, there is only one valid reason to use a NLLS analysis procedure: only if

NLLS can be correctly applied to the data. The algebraic demonstration that

NLLS will yield a set of estimated parameters that have the ML of being correct

for an arbitrary fitting function requires a series of assumptions about the char-

acteristics of the experimental data (Bates and Watts, 1988; Johnson and Faunt,

2010; Johnson and Frasier, 2010; Straume et al., 1992). Specifically, it is the

characteristics of the experimental uncertainties contained in the experimental

data that must be assumed. Therefore, if these assumptions are valid, then NLLS

should be used. Conversely, if these assumptions are invalid, then NLLS should

generally not be used. The remainder of this section concentrates on these assump-

tions and their consequences. Several assumptions listed below are interrelated and

are corollaries of other assumptions. Most of the assumptions apply to NLLS and

to almost every other method of data analysis.

A. Assumption 1: No Experimental Uncertainty

The demonstration that NLLS is a ML method requires the assumption that the

independent variables contain no experimental uncertainty. In practical terms, this

assumption means that the precision of the independent variables is much better

than the precision of the dependent variables. It is this assumption that allows

NLLS to minimize a function of the vertical deviations shown in Fig. 1. For the

temperature-jump experiment, this assumption is that the time measurement is

significantly more precise than the absorbance measurement. Here, the experimen-

tal protocol can clearly be designed such that this assumption is reasonable. Note

that a Scatchard analysis generally violates this assumption (Johnson and Faunt,

2010; Johnson and Frasier, 2010; Straume et al., 1992). For Scatchard plots, the

experimental uncertainties have been transformed such that they are no longer

vertical. Consequently, if an investigator represents ligand binding data as a

Scatchard plot, then it is usually not valid to apply LLS to calculate the best

slope of the plot. ML methods other than NLLS that can be used for the analysis

of experimental data with uncertainties in the independent variables are described

elsewhere (Acton, 1959; Bajzer and Prendergast, 2010; Bard, 1974; Bates and

Watts, 1988; Johnson, 1985).
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B. Assumption 2: Gaussian Uncertainties

The demonstration that NLLS is a ML method also requires the assumption

that the experimental uncertainties of the dependent variable must follow a

Gaussian (i.e., a random or bell-shaped) distribution with a mean of zero. This

means that if the experiment is performed thousands of times, the distributions of

values of the individual data points are Gaussian distributions.

This assumption is usually reasonable for the experimental data as collected by

the experimenter. In biochemistry, only two types of experimental uncertainty

distributions are usually observed: Gaussian and Poisson distributions (Bevington,

1969). Radioactive, photon counting, and similar experiments yield Poisson un-

certainty distributions. If the number of counts is high, these Poisson distributions

can be closely approximated by Gaussian distributions (Bevington, 1969; Johnson

and Faunt, 2010; Johnson and Frasier, 2010; Straume et al., 1992). Almost every

other source of uncertainty in biochemical work will yield a Gaussian distribution.

Sample handling and preparation uncertainties such as pipetting, weighing, and

dilution will yield a Gaussian distribution.

The investigator should not perform any nonlinear transformations of the

dependent variables, the Y axis, that will alter the distribution of uncertainties

between the collection of the data and the analysis of the data (Johnson and Faunt,

2010; Johnson and Frasier, 2010; Johnson, 1985; Straume et al., 1992). A nonlinear

transformation refers to a transformation of the variable other than a simple

addition or multiplication. Logarithms, exponentials, powers, and inverses are

examples of nonlinear transformations. In the previously described temperature-

jump experiment, the original data probably contain a Gaussian distribution of

experimental uncertainties in the absorbance and comparatively little uncertainty

in the time values. Owing to the complexity of the NLLS fitting process, an

investigator might prefer to create a plot of the logarithm of the absorbance as a

function of time and then subsequently evaluate the slope of the resulting straight

line by LLS. There are several reasons why this is not a statistically valid proce-

dure, but at this point consider the distribution of uncertainties in the dependent

variable. The logarithmic transformation of the dependent variable changes the

form of the distribution of experimental uncertainties on the absorbance. The

logarithmic transformation of a Gaussian is not a Gaussian (Johnson and

Faunt, 2010; Johnson and Frasier, 2010; Straume et al., 1992). If the experimental

uncertainty distribution is not a Gaussian then LLS cannot be used to evaluate the

parameters of the straight line. This problem cannot be corrected by ‘‘appropriate

weighting factors’’ (Johnson and Faunt, 2010; Johnson and Frasier, 2010; Straume

et al., 1992). Consequently, the logarithmic transformation of the data has created

a fitting equation of a significantly simpler form but, in the process, has precluded

the use of LLS for the analysis.

The commonly used reciprocal plots, such as the Lineweaver-Burk plot, also

violate the assumption of a Gaussian distribution of experimental uncertainties.

The original enzyme velocities probably follow a Gaussian distribution, but the
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inverse of the velocities used in the Lineweaver-Burk plot generally does not

contain a Gaussian distribution of experimental uncertainties. Consequently, the

reciprocal plots generate a fitting equation of a simpler form and create a distribu-

tion of uncertainties that precludes the use of least-squares as an analysis method.

An investigator should not perform nonlinear transformations of the dependent

variables before proceeding with the analysis of the data (Johnson and Faunt,

2010; Johnson and Frasier, 2010; Johnson, 1985; Straume et al., 1992) if the

original data contain Gaussian uncertainties. However, transformations of the

dependent variable are valid if the transformations are performed to convert a

non-Gaussian distribution of experimental uncertainties to a Gaussian distribu-

tion of experimental uncertainties. This is the only statistically valid reason to

perform nonlinear transformations of the dependent variables. The reverse hemo-

lytic plaque assay (Leong et al., 1985) is an example of the type of experiment

where the original distribution of uncertainties is a skewed distribution that is

approximately an exponential of a Gaussian. For this experimental protocol, it is

best to perform a logarithmic transformation of the dependent variable, namely,

the plaque size. For the reverse hemolytic plaque assay, this nonlinear transforma-

tion will transform the distribution of experimental uncertainties such that they are

approximately Gaussian.

The LLS and NLLS techniques allow transformations of the independent vari-

ables, that is, the X axis (Johnson, 1985). This is because NLLS assumes that no

experimental uncertainty exists in the independent variables.

It is also possible to convert an experimental protocol that yields experimental

uncertainty distributions that are not Gaussian to a protocol that yields a Gaussian

distribution by replicate measurements of the experimental data points. The central

limit theorem of calculus states that the mean of a group of numbers will have a

Gaussian uncertainty distribution even if the individual replicates have uncertainty

distributions that are not Gaussian (Mathews and Walker, 1970). Therefore, the

mean of a group of replicate measurements will have a more Gaussian-like distribu-

tion than the individual replicates. Consider a standard radioactively labeled hor-

mone binding experiment. Usually the amount of bound hormone is determined by

radioactive counting with relatively low numbers of counts. Therefore, the distribu-

tion of experimental uncertainties in the amount bound should follow a Poisson

distribution. These experiments are usually performed as a series of replicate experi-

ments at each hormone concentration, with the means used for the analysis of the

data. According to the central limit theorem these mean values will tend to have a

Gaussian distribution, rather than a Poisson distribution. Therefore, NLLS can be

used to estimate parameters from the mean values of an experiment of this type.

This does not mean that hormone binding experiments should be performed as a

series of replicates. Given a choice between 10 data points measured in triplicate

and 30 individual data points, it is better to measure the 30 individual data points

at different hormone concentrations and count the radioactivity of each data point

long enough that the Poisson distribution of uncertainties can be approximated

as a Gaussian distribution. Some experimenters feel that having the triplicates

1. Nonlinear Least-Squares 9



will allow an obvious bad point to be eliminated. Although this is true, having

30 singlet observations of hormone binding would also allow an obvious bad point

to be eliminated as the observations must consistently follow a smooth binding

isotherm. What is gained by more singlet observations is the ability to evaluate

how well the calculated curve actually describes the data, that is, the ability to

evaluate the ‘‘goodness-of-fit’’ and test the hypothesis that the fitting equation is

consistent with the experimental data.

If the experimental protocol cannot be altered, or the data manipulated, to create

a Gaussian distribution of experimental uncertainties, then the NLLS method

should generally not be used. The reader is referred to the more generalMLmethods

that can be formulated without the assumption of a Gaussian distribution (Acton,

1959; Bajzer and Prendergast, 2010; Bard, 1974; Bates and Watts, 1988; Johnson

and Faunt, 2010; Johnson and Frasier, 2010; Straume et al., 1992).

It is assumed that no systematic uncertainties exist within the data. Any type of

systematic uncertainty would require either a non-Gaussian distribution of uncer-

tainties or a nonzeromeanof the uncertainties. Thus, this assumption is a corollary of

Assumption 2 which states that the experimental uncertainties are Gaussian with a

mean of zero. However, it is treated separately here because of its consequences.

Consider the logarithmic plot of the temperature-jump experiment. For this plot, it

is the logarithm of the difference between the absorbance and the final absorbance

(Ai –A1) that is plotted.Here, the value ofA1must be estimated first, the logarithms

of the differences calculated, and then the slope determined. Small errors in the

determination of A1 will create systematic uncertainties in the values of the loga-

rithms and will be reflected as a systematic error in the evaluation of the slope.Thus

systematic errors will appear in the evaluation of the relaxation rate constants

(Johnson and Faunt, 2010; Johnson and Frasier, 2010; Straume et al., 1992).

Table I and Figs. 2 and 3 present an example of this problem. Figure 2 presents

a synthetic data set. Table I presents the results of three NLLS analyses of this data

with different assumed values for A1. Case 4 in Table I is an analysis of these

datawithA1 as anadditional estimated variable. Figure 3 presents the corresponding

logarithmic plots with two different assumed values for A1. There is no method by

which the least-squares process can detect systematic uncertainties, or be modified to

consider systematic uncertainties, like those shown in Fig. 3. These systematic errors

Table I
Least-Squares Analysis of Data in Fig. 2a

Case A0 – A1 K A1

1 10.0 (9.6, 10.4) 1.00 (0.94, 1.06) 0.50b

2 9.7 (9.3, 10.2) 1.14 (1.07, 1.22) 1.00b

3 10.3 (9.9, 10.7) 0.89 (0.84, 0.95) 0.00b

4 9.9 (9.4, 10.3) 1.08 (0.90, 1.25) 0.78 (0.10, 1.42)

aValues in parentheses are the �1 SD joint confidence intervals for these parameters. See text for

details.
bThese values were assumed for the analysis of this case.
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cannot be corrected by appropriate weighting factors. As far as the least-squares

parameter estimation procedure is concerned, systematic uncertainties simply do not

exist. Systematic uncertainties should be eliminated by changing the data collection

protocol.
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Fig. 3 Logarithmic plots of the data shown in Fig. 2. The lower set of data points was generated by

assuming A1 is equal to 1.0 (case 2 in Table I), and the upper set of points was generated by assuming

that A1 is equal to 0.0 (case 3 in Table I). Note that the resulting slopes are distinctly different. From

Johnson and Frasier (2010) with permission.
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Fig. 2 Synthetic data set with pseudorandom experimental uncertainty added. The data were gener-

ated with A0 ¼ 10.5, A1 ¼ 0.5, and a decay rate K ¼ 1.0. Definitions are the same as those for Eq. (2).

Pseudorandom noise was added with a standard deviation of 0.26. The solid lines correspond to cases

2 and 3 in Table I. From Johnson and Frasier (2010) with permission.
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This general type of problem occurs whenever a parameter is estimated and then

assumed to be correct for subsequent analysis steps. The subsequent analysis does

not include any possibility of considering the consequences of the uncertainties of

the previous steps. The entire analysis should be performed by a single-step

multiple-parameter estimation process like NLLS that considers the joint uncer-

tainties of the parameters simultaneously.

The validity of the use of NLLS is also dependent on the assumption that the

fitting function [e.g., Eq. (2)] is the correct mathematical description of the nonran-

dom processes contained within the data. Stated another way, NLLS assumes that

the dependent variables of the data can be described as the sum of the random

(Gaussian) experimental noise and the fitting function evaluated at the

corresponding independent variables and the optimal parameter values. The second

assumption and both of its corollaries are simply different statements of the require-

ment that the residuals be a measure of the random uncertainties of the data.

A self-evident, but commonly overlooked, consequence of this assumption is

that an incorrect fitting equation will result in the estimated parameters having no

physical meaning. For example, consider the binding of oxygen to human hemo-

globin. Human hemoglobin exists in solution as an ab dimer that self-associates to

form a a2b2 tetramer (Johnson and Ackers, 1977; Johnson and Lassiter, 1990). The

dimer binds two oxygens, and the tetramer binds four oxygens. Until relatively

recently, the most common fitting equation for the analysis of oxygen binding to

human hemoglobin contained only four parameters, namely, the four Adair bind-

ing constants of the tetrameric hemoglobin (Johnson and Ackers, 1977; Johnson

and Lassiter, 1990). The assumption was that the hemoglobin concentration was

high enough to preclude the formation of the dimeric species. Thus, the conse-

quences of the dissociation of the tetramer into dimers and the binding of oxygen

by the dimers were neglected. It has been shown that a fitting equation that neglects

the dimeric species will yield incorrect answers for the Adair binding constants

even at the hemoglobin concentrations found within red blood cells (Johnson and

Ackers, 1977; Johnson and Lassiter, 1990). For other examples of this type, the

reader is referred to Johnson and Frasier (2010). The lesson is that parameters

estimated by any curve fitting procedure are dependent on the assumed form of the

fitting equation. The presentation, or publication, of parameters determined by

these methods should always include a statement about the assumed molecular

mechanism.

One further comment about the nature of the fitting function is in order.

All least-squares algorithms require that the fitting function be continuous at

each of the data points. Furthermore, most least-squares algorithms also require

that the first derivatives of the fitting function with respect to all of the parameters

being estimated be continuous at each of the data points. The fitting functions can

have discontinuities as long as they do not coincide with the experimental data.
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C. Assumption 3: Independent Observations

For a NLLS procedure to produce parameter values with the highest probability

of being correct, the individual data points must be independent observations. This

is a standard statistical assumption for almost every type of statistical and mathe-

matical analysis. A common source of data points with uncertainties that are not

independent occurs wherever data are collected by an automated data acquisition

system with a time response that is slow compared to the time between the data

points. When data are collected in this manner, the instrument response will cause

an apparent serial correlation between successive data points; in other words, if

one data point contains a random uncertainty, then the subsequent data points will

have a tendency to have an uncertainty in the same direction.

The best method to approach the analysis of data that has been perturbed by the

response characteristics of an instrument is to include the instrument response

function in the analysis procedure. An approach of this type is used for the analysis

of time-correlated single-photon counting (TCSPC) fluorescence lifetime measure-

ments. If the fluorescent molecules are instantaneously excited, then the fluores-

cence intensity as a function of time is the intensity decay law, I(t). The form of I(t)

can differ depending on the particular mechanism for fluorescence emission; the

exact form is not important for this discussion. The problem is that the fluorescent

molecules cannot be instantaneously excited by the instrument. The flash lamp or

laser pulse has a finite width. The data collected by the instrument contain

information about the intensity decay, I(t), and about the time dependence of the

intensity of the excitation lamp, L(t). The correct fitting function for TCSPC data

is a combination of the lamp intensity function and the intensity decay function.

The correct combination of these two functions is the convolution integral of the

two functions, L(t) � I(t). By fitting to the convolution integral, the systematic

uncertainties, introduced because of the finite pulse width of the excitation lamp,

are included in the fitting function. The convolution integral correctly describes the

experimental data and, thus, allows the use NLLS for the analysis of the data.

D. Assumption 4: Large Number of Data Points

There must be sufficient data points to provide a good random sampling of the

random experimental uncertainties. This assumption is not actually required to

demonstrate that least-squares provide a ML estimate of the parameter values.

This assumption is, however, required for the assignment of realistic measures of

the accuracy/precision of the estimated parameters. The theroetical minimum

number of data points is equal to the number of parameters being simultaneously

estimated. Because each data point contains experimental uncertainty, significantly

more data points than the minimum are required. The system is ‘‘overdetermined’’

when more than the minimum number of data points is used. Unfortunately, there

is no method to access the actual number of data points required to provide a good

random sampling of the experimental uncertainties.
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Experimental data should never be smoothed. Data smoothing is commonly,

and incorrectly, used to improve the quality of experimental data. However, once

the experimental data have been smoothed, it is impossible to obtain a good

random sampling of the random experimental uncertainties of the original data.

Furthermore, all smoothing algorithms will perturb the information within the

data as well as remove noise from the data. Improving the quality of the experi-

mental data is equivalent to increasing the information content of the data.

However, the process of smoothing experimental data does not add information

to the experimental data. The smoothed experimental data actually contain less

information than the original data because of the perturbations caused by the

smoothing process. The only method to increase the information content of an

experimental data set is to collect more experimental data.

When the experimental uncertainties contained within a data set are consistent

with the above assumptions, it is appropriate to use a NLLS procedure for the

analysis of the data. Conversely, NLLS should probably not be used if these

assumptions are not satisfied. A ML method probably can be formulated for

experimental data with almost any distribution of uncertainties in the dependent

and independent variables (Johnson, 1985).

VI. What Confidence Can Be Assigned to Results
of NLLS Analysis?

There are two steps required for the analysis of experimental data by NLLS or

any other method. The first is to find the set of parameters with the ML of being

correct, and the second is to find realistic measures of the accuracy of those

parameters. When we determined that the relative mass ratio, Mr, of a protein is

90,000, what does this number mean? If the accuracy of the determination is

�80,000, then we know relatively little. However, if the accuracy is �1000, we

might be able to use the Mr to increase our understanding of the protein.

A functional measure of the accuracy of the determined values is actually more

important than the optimal values. If we knew that the Mr was probably between

89,000 and 91,000, would we care if the value with the highest probability of being

correct was 90,000 or 90,001? An investigator should always provide a realistic

measure of the precision of the determined values when such values are reported.

This section discusses the determination of confidence intervals for parameters

determined by NLLS methods. The confidence intervals are a measure of the

precision to which a group of parameters can simultaneously be determined

from a limited set of data. Confidence intervals are measures of the precision of

the measurement based on a single set of data. If the assumptions required are

valid, these confidence intervals will also provide a good measure of the absolute

accuracy of the determined parameters.
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It should be clear that there is no exact theory for the evaluation of confidence

intervals for nonlinear fitting equations. All the methods are extensions of the

methods developed for LLS and, therefore, require a linear fitting equation. These

methods all assume that the fitting equation can be approximated as a first-order

series expansion in the estimated parameters. This assumption is always valid for

linear fitting equations. For nonlinear fitting equations, this assumption is usually

reasonable for small perturbations of the parameter values from the corresponding

minimum least-squares values.

There are several approximate methods for the evaluation of the confidence

intervals of simultaneously estimated parameters that can be used with NLLS

methods. The most commonly used one, the ‘‘asymptotic standard errors’’ (John-

son and Faunt, 2010; Johnson and Frasier, 2010), is both the easiest to calculate

and by far the least accurate for most applications. Asymptotic standard errors

nearly always provide underestimates of the actual confidence limits of the deter-

mined parameters. It is the use of the asymptotic standard errors that is responsi-

ble for the perception among many investigators that the confidence intervals

reported by NLLS procedures are so inaccurate that they cannot be used for any

practical purpose. This perception is correct because almost every commonly

available least-squares analysis program either reports no measure of the precision

of the determined parameters or reports the values of the asymptotic standard

errors. There are many other published methods that provide realistic estimates of

the confidence intervals of parameters determined by NLLS methods. The reason

that these other methods are rarely used is that they are significantly more

complex and require significantly more computer time for evaluation. They also

require a considerably more complex computer program.

Most NLLS procedures require, or provide for, the evaluation of the ‘‘informa-

tion matrix.’’ The information matrix is the basis for most methods commonly

used for the evaluation of the confidence intervals, or the precision, of determined

parameters. This information matrix is also called the Hessian matrix, H. The

individual j, k elements of the matrix are defined as

Hj;k ¼
Xn
i¼1

1

si2
@FðXi; aÞ

@aj
� @FðXi; aÞ

@ak

� �
ð3Þ

where the summation is over the n data points. F(Xi, a) is the fitting function

evaluated at a particular independent variable Xi and optimal estimate of the

fitting parameters a. The J and k subscripts refer to particular fitting parameters,

that is, particular elements of the a vector and the H matrix.

The variance-covariance matrix is evaluated by multiplying the inverse of the

Hessian matrix by the variance of the random uncertainties of the experimental

data. Usually the variance of the residuals (variance-of-fit) is assumed to be a

reliable estimate of the true variance of random experimental uncertainties of the

data. This is Assumption 4 from the previous section. This is true only in the

asymptote as the number of data points approaches infinity. In this context,
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infinity is simply enough data points to provide a good random sampling of the

experimental uncertainties of the data. The inverse ofH times the variance-of-fit is

the asymptotic variance-covariance matrix, AVC. The diagonal elements of the

AVCmatrix are the squares of the asymptotic standard errors of the corresponding

simultaneously estimated parameters. The off-diagonal elements of AVC are the

covariances of the parameters.

Most NLLS procedures report the asymptotic standard errors of the parameters

as the measure of the confidence, the precision, of the estimated parameters. Three

assumptions were made to obtain these confidence estimates: we assumed that

the fitting equation was linear; that the number of data points is near infinite; and

that the covariance terms can be neglected. The first is probably a reasonable

assumption. The second may be a reasonable assumption. The third assumption is

usually unreasonable. When parameters are simultaneously determined by NLLS,

they will usually have a significant covariance. The consequence of neglecting the

covariances is that the confidence intervals will significantly underestimate the

actual range of the confidence intervals for the simultaneously determined para-

meters. Consequently, the resulting measures of the precision of the determined

parameters that neglect the covariance are not reasonable. The reader should

question the validity of computer programs that report the asymptotic standard

errors of determined parameters without also reporting the corresponding

covariances.

The assumption that the covariance terms can be neglected is equivalent to

assuming that the fitting parameters are all orthogonal. Parameters are mathemat-

ically orthogonal if the corresponding off-diagonal elements of the inverse

of the Hessian matrix are zero; that is, if the cross-correlation and covariance of

the parameters are zero. Operationally, if the parameters are orthogonal, then the

evaluation of the parameters does not depend on the values of the other para-

meters. This means that the values of the parameters can be evaluated separately,

and a simultaneous NLLS procedure is not required. Note that the orthogonality

of fitting parameters is dependent on both the actual form of the fitting equation

and the individual data points being fit. For example, a Fourier series is an

orthogonal equation, but the Fourier coefficients are orthogonal only if there are

2m þ 1 equally spaced data points per primary period of the sine and cosine

function.

A Fourier analysis is one of the few cases that a biochemist is likely to encounter

in which these assumptions are valid. A Fourier analysis is equivalent to a least-

squares fit of the experimental data to the function

Yi ¼
Xm
l¼0

al cosine
2pXil

period

� �
þ bl sine

2pXil

period

� �� �
ð4Þ

where the parameters to be estimated are the coefficients of the sine and cosine

terms, al and bl, and b0 is fixed at zero. There are 2m þ 1 parameters estimated in a

Fourier analysis. Because all the second derivatives of Y with respect to the
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parameters to be estimated are zero, this is a linear fitting problem. If the data

points are equally spaced in the independent variable X, if the number of

data points is equal to the number of estimated parameters n ¼ 2m þ 1, and if

the period is equal to (nþ 1)/n times the difference between the largest and smallest

independent variable, then the off-diagonal elements of the inverse Hessian matrix

H are zero and the parameters are orthogonal. If these assumptions about the

spacing of the data points are not met, then the coefficients from a Fourier analysis

will not be orthogonal even though the basis functions are orthogonal. If a classic

Fourier series analysis is performed without these assumptions being met, then it

will yield incorrect estimates of the Fourier coefficients. For almost every other

fitting equation (including a simple straight line like Y ¼ A þ BX), the parameters

will not be orthogonal.3

If the fitting equation is not orthogonal in the parameters, the covariance terms

will be nonzero and cannot be neglected for the estimation of the uncertainties of

the estimated parameters. If the covariances cannot be neglected, then the asymp-

totic standard errors do not provide the investigator with reasonable estimates of

the uncertainties of the fitted parameters. The consequence of neglecting the

covariances is that the confidence intervals for the determined parameters will be

significantly underestimated. This underestimate can commonly be a factor of two

or three. Thus the investigator might significantly underestimate the standard

errors of the determined parameters and reach incorrect conclusions about the

significance of the results. Asymptotic standard errors should not be used as an

estimate of the confidence of parameters determined by either LLS or NLLS.

What, then, can be used to evaluate confidence intervals of simultaneously

determined parameters? Monte Carlo methods are the very best, but they require

a tremendous amount of computer time (Straume and Johnson, 2010a) and,

therefore, are usually impractical and are not discussed here. One could create a

large grid of all combinations of the fitting parameters and then search for where

the increase of the variance is statistically significant. These grid search methods

will usually provide good estimates of the regions of the parameter grid where the

parameters are not significantly different. These regions are the joint confidence

regions for the parameters and can usually be approximated as a multidimensional

ellipse. Figure 4 presents a typical elliptically shaped confidence region obtained by

a grid search. Because grid search methods also require a large amount of computer

time, they are generally not used.

3 Note that orthogonal forms of simple polynomial equations like Y ¼ A þ BX can be created by a

transformation of the independent variables, X (Bevington, 1969; Acton, 1959). The transformed

equation is of the form Y ¼ a þ B(X – b), where b ¼ (
P

Xi)/N and a 6¼ A. Note that it is b that

makes the equation orthogonal and that the value of b is not determined by the form of the equation;

b is determined by the distribution of values of the independent variable, Xj. This is similar to a Fourier

series in that the parameters are orthogonal only if the distribution of the independent variable is

correct, even though the sine and cosine basic functions are orthogonal!
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The question of what increase in the variance (or WSSR) is statistically signifi-

cant provides the groundwork for the following discussion. The standard defini-

tion of statistical significance in this context is

WSSRða0Þ
WSSRðaÞ ¼ 1þ p

n� p
Fðp; n� p; 1� PROBÞ ð5Þ

where p is the number of parameters being simultaneously estimated, n is the

number of data points, and F is the upper 1 – PROB quantile for Fisher’s F

distribution with p and n – p degrees of freedom (Bates andWatts, 1988). Equation

(5) can be used to compare the probability, PROB, that any set of parameters ά is

statistically different from the optimal parameters a. The validity of Eq. (5) is based
on two assumptions. It assumes that the observations are independent and, there-

fore, that the number of degrees of freedom for the problem is n – p. It also assumes

a linear fitting equation. The derivation of the right-hand side of Eq. (5) requires

that the WSSR at any point ά be the sum of the WSSR at the point a and a WSSR

arising from the change of the parameters from a to ά. This separation of the

WSSR into component parts is valid only for linear equations. However, the

assumption that the fitting equation is approximately linear for small changes in

a is usually reasonable.

The functional form of the elliptically shaped joint confidence region is available

for linear equations (Bard, 1974; Bates and Watts, 1988; Box, 1960; Johnson and

0.8

1.2

1.3

1.3
K0.80.7

0.7

Fig. 4 Examples of 68% (�1 SE), 95% (�2 SE), and 99% (�3 SE) confidence contours. This is the

result of a two-parameter estimation problem taken from Johnson and Faunt (2010) with permission.

In this least-squares problem the two parameters were K and A0 – A1 with definitions as for Eq. (2).

Note that these confidence regions are almost elliptically shaped and that the axes of the ellipse do not

correspond to the parameter axes. The rotations of the ellipse axes are a measure of the covariance

between the fitted parameters.
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Faunt, 2010; Johnson and Frasier, 2010; Straume et al., 1992). The joint confidence

region for a particular PROB is the ellipsoid ά

ð a0 �aÞTHTHð a0 �aÞ � ps2Fðp; n� p; 1� PROBÞ ð6Þ
where

s2 ¼ WSSRðaÞ
n� p

ð7Þ

and the other variables are as previously defined. The derivation of Eq. (6) makes

the assumption that the parameters are not orthogonal. Equation (6) models the

variance as a quadratic shaped space near the point of minimum variance where

the parameters have the ML of being correct. Therefore, the joint confidence

intervals derived from Eq. (6) only make the assumption that the fitting equation

is linear. This assumption is usually reasonable for small perturbations of the

estimated parameters. The use of Eqs. (6) and (7) for the evaluation of the joint

confidence intervals provides a significantly better estimate of the precision of the

determined parameters than the asymptotic standard errors.

Equations (6) and (7) predict the quadratic shape of the variance space from the

Hessian matrix evaluated at a. This is possible because of the assumption of a linear

fitting equation.Mypreference is to use Eq. (5) for an actual search for all parameters

ά corresponding to any desired probability (Johnson and Faunt, 2010; Johnson and

Frasier, 2010; Straume et al., 1992). This search can be limited to specific directions

from the optimal values a to save computer time. If p parameters are being estimated,

the search can be limited to 4p direction. First, each ai is searched in both directions,

while holding the remaining aj terms, i 6¼ j, at their optimal values. Second, Eqs. (6)

and (7) are used to evaluate the directions of the axes of the multidimensional ellipse

of the joint confidence intervals. The ellipse axes are also searched in both directions

for values of ά that are different at the sameprobability levels. The evaluation of these

directions simply involves the rotation of the coordinate system such that the off-

diagonal elements of the inverse of the Hessian matrix in the new coordinate system

are all zero (Johnson and Faunt, 2010; Johnson and Frasier, 2010). In this new

coordinate system, the new parameters are orthogonal. The joint confidence regions

are the extreme values of the statistically acceptable parameters found by the search.

The search for statistically significant sets of parameters ά eliminates some, but not

all, of the consequences of the assumption that the fitting equation is linear. There-

fore, this searchprocedurewill provide joint confidence intervals that aremoreprecise

than the joint confidence intervals predicted by Eqs. (6) and (7).

Another more accurate and more time consuming procedure is to search each of

the parameters in both directions, much like the search described in the previous

paragraph. The primary difference is that at each point within each of the searches

an additional least squares procedure is performed to evaluate all of the other model

parameters (Bates and Watts, 1988). For example, consider the case of the fit of

Eq. (2) to a set of data. The primary parameter estimation will determine the optimal
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(ML) values of A0, A1, and K. Then to determine the confidence region for each of

these parameters, each is searched in both directions for a significant increase in the

weighted sum-of-squared residuals, WSSR, as given by Eq. (8). Specifically, for the

search along the K axis, the value of the WSSR is evaluated by fixing K at a series of

specific values and then performing additional parameter estimations to determine

A0 andA1 that are conditional on the specific value ofK.Note that for each of these

searches the WSSR reflects the consequence of the variation of a specific single

parameter. Thus, Eq. (8) is analogous to Eq. (5) except for p being equal to 1.

WSSRða0Þ
WSSRðaÞ ¼ 1þ 1

n� 1
Fð1; n� 1; 1� PROBÞ ð8Þ

It is interesting that the joint confidence intervals for nonlinear problems are not

symmetrical. Suppose that we have determined a free energy change for some

biochemical process. Further, suppose that we have evaluated the joint confidence

region for this free energy change and that it is symmetrical. We can then express the

value of the free energy change as some value plus orminus a value of the uncertainty.

Ifwewant to express the value of the corresponding equilibrium constant also,we can

perform the appropriate nonlinear transformation. However, when we attempt to

transform the joint confidence interval of the free energy change into a joint confi-

dence interval for the equilibrium constant, we find that the interval is no longer

symmetrical and cannot be expressed as plus or minus a single value. A careful

examination of Fig. 4 and Table I shows that the elliptically shaped confidence region

is not quite symmetrical and/or not centered at the optimal values a. Therefore, the
reader should question the validity of any NLLS computer program that provides a

symmetrical estimate of the confidence intervals of the determined parameters.

VII. Conclusions

Our choice of methods for the analysis of experimental data is extremely limited.

The methods that are available always make assumptions about the nature of the

experimental data being analyzed. An investigator needs to be aware of the

requirements placed on the data by these assumptions before collecting the data.

It is while the experiment is being designed that the data collection protocol can

most readily be altered to be compatible with the available data analysis methods.

When publishing results, a realistic measure of the precision of the determined

values should accompany the published values. These are essential for the reader to

evaluate the significance of the values reported. Asymptotic standard errors should

not be used as an estimate of the confidence of parameters simultaneously deter-

mined by either LLS or NLLS. Joint confidence intervals are preferred as they are

more accurate than asymptotic standard errors.

Some investigators consider the results of a computer analysis as gospel. Compu-

ters are not oracles, however, and computer programmers sometimes make
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inappropriate assumptions. Programmers commonly use approximations to speed

either the programming or the time of execution of programs, and they do make

mistakes. Some computer programs are correct for one application, but when used

for different applications the methods no longer apply. It is necessary to be aware of

the assumptions made by the programmer about the nature of the experimental data

being analyzed, and one must be aware of the basic assumptions of the method of

analysis. The investigator must always question the applicability of any method of

analysis for each particular problem. After results are obtained from a computer the

next question should be, ‘‘Does this result have any physical meaning?’’ Do not

assume that the values are correct because they come from a computer analysis of

the data.

Whenever possible, investigators should devise methods to ‘‘test’’ their analysis

programs. The tests might be with real sets of data that have known answers,

for example, measuring the fluorescence lifetime of a compound with a known

lifetime. These tests also might involve simulated experiments with realistic amounts

of pseudorandom experimental uncertainties added (Johnson and Faunt, 2010;

Johnson and Frasier, 2010; Straume and Johnson, 2010a; Straume et al., 1992).

The need to include realistic experimental uncertainties in simulated data cannot

be overemphasized. Many analysis methods work well for test cases without experi-

mental noise and fail with even small amounts of experimental noise present.

This chapter has attempted to present the basic ideas and assumptions of linear

and NLLS analysis methods. It does not include the rigorous mathematical

descriptions of the methods, nor does it include a discussion of topics like the

propagation of errors based on joint confidence intervals (Johnson and Faunt,

2010; Johnson and Frasier, 2010; Straume et al., 1992), analysis of the randomness

of residuals (Straume and Johnson, 2010b; Straume et al., 1992), goodness-of-fit

criteria (Straume and Johnson, 2010b; Straume et al., 1992), global analysis

(Johnson and Faunt, 2010; Johnson and Frasier, 2010; Straume et al., 1992),

weighting functions (Di Cera, 2010), and the advantages of alternate sets of fitting

parameters (Johnson and Faunt, 2010; Johnson and Frasier, 2010; Straume et al.,

1992). For the actual methods, the reader is referred to other articles (Caceci and

Cacheris, 1984; Johnson and Faunt, 2010; Johnson and Frasier, 2010; Johnson,

1985; Leong et al., 1985; Marquardt, 1963; Nelder and Mead, 1965; Straume

and Johnson, 2010a,b; Straume et al., 1992). More complete general discussions

of these topics are available for the beginner (Acton, 1959; Bevington, 1969;

Caceci and Cacheris, 1984; Johnson and Faunt, 2010; Johnson and Frasier,

2010; Johnson, 1985; Leong et al., 1985; Straume and Johnson, 2010a,b; Straume

et al., 1992; Di Cera, 2010) and for the mathematician (Bard, 1974; Bates and

Watts, 1988).
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Parameter estimates from linear models enjoy all sorts of important useful

properties. For example, if the response is assumed to be well described by a

model of the form

f ðx;bÞ ¼ b0 þ b1x1 þ b2x2

where b0, b1, and b2 are parameters and x1 and x2 are factors, then one can derive

exact expressions for the unique least-squares estimates of the parameters and for

regions of plausibility, such as joint andmarginal confidence regions. These expres-

sions are helpful in assessing howwell we ‘‘know’’ a parameter andwhether amodel

may be simplified, for example, by removing one or more parameters/factors, or

whether a parameter can be assumed to have a particular value, and so on.

For models in which the parameters appear nonlinearly, for example, a

compartment model,

f ðt; uÞ ¼ y1expð�y2tÞ þ y3expð�y4tÞ

ESSENTIAL NUMERICAL COMPUTER METHODS
Copyright # 1994 by Elsevier Inc. All rights reserved. 23 DOI: 10.1016/B978-0-12-384997-7.00002-9



none of the properties enjoyed by linear models pertain; it is not even possible to

derive expressions for the least-squares estimates of the parameters, let alone exact

regions of plausibility. The most common approach to stating plausibility regions

for parameters and for deciding whether a nonlinear model can be simplified is to

use linear approximation confidence regions. Unfortunately, linear approximation

regions can be extremely misleading.

In this chapter, we present improved procedures for assessing how well we know

nonlinear parameters. The methods require some extra computing after the model

has been fitted to a data set, but the computing is efficient and easily accomplished.

I. Introduction

Fitting nonlinear models to data relies heavily on procedures used to fit linear

models. Accordingly, we begin with a brief review of fitting linear models, including

how to assess the quality of parameter estimates for such fits.We then discuss fitting

nonlinear models and application of linear model methods for assessing the quality

of parameter estimates for nonlinear models. Finally, we discuss a more accurate

and valid procedure for characterizing the behavior of estimates of parameters in

nonlinear models, illustrating the approach and the insights it gives using a model

for frontal elution affinity chromatography and a compartment model.

A. Linear Regression: An ELISA Example

The activity of a monoclonal antibody was determined as a function of antibody

concentration using an enzyme-linked immunosorbent assay (ELISA). The assay

response (optical density) and antibody concentration (ng/ml) are listed in Table I

and plotted in Fig. 1. As can be seen from the plot, the response shows some

tendency to increasing variance at higher doses, but we ignore this in development

of the model. For these data, the straight-line model

f ðxn;bÞ ¼ b1 þ b2xn ð1Þ
is seen to be appropriate, where f(xn, b) is the absorbance (optical density) and x is

the antibody concentration (ng/ml).

A formal statistical treatment for fitting a linear model is to assume a set of data

consisting of N values of P factors, xnp, n ¼ 1, 2, . . ., N, p ¼ 1, 2, . . ., P, and the

corresponding values of a response, yn. The model can be written in matrix form as

Y ¼ Xbþ Z ð2Þ
where Y is the N � 1 vector of random variables representing the responses, Yn, X

is theN � P derivative matrix, b is the P� 1 vector of unknown parameter values,

and Z is the vector of random variables representing the noise infecting the data.

The noise for each case is assumed to be normally distributed with mean 0 and

variance s2, and independent from case to case. The quantity Xb is called the
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expectation function, and the model is termed linear because the derivative of the

expectation function with respect to any parameter does not depend on any of the

parameters (Bates and Watts, 1988). The straight-line model [Eq. (1)] is easily seen

to be linear because @f/@b1 ¼ 1 and @f/@b2 ¼ xn, and neither of these involves any

parameters.

Classical statistical analysis (Draper and Smith, 1981) shows that for a linear

model, the least squares estimates of b, given data y, are

b̂ ¼ ðXTXÞ�1
XTy ð3Þ

where b̂ ¼ ðb̂1; b̂2; . . . ; b̂PÞT . The least squares estimator can also be shown to be

normally distributed with expected value b and variance-covariance matrix

(XTX)�1s2. It follows that parameter bp has estimated standard error

seðb̂pÞ ¼ s½fðXTXÞ�1gpp�1=2 ð4Þ

Dose (ng/ml)
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Fig. 1 Plot of absorbance versus antibody concentration for ELISA study.

Table I
Absorbance and Antibody Concentration for Elisa Study

Dose (ng/ml) Absorbance Dose (ng/ml) Absorbance

10 0.041 80 0.340

10 0.043 80 0.347

20 0.081 100 0.402

20 0.087 100 0.407

40 0.185 150 0.671

40 0.187 150 0.690

60 0.267 200 0.853

60 0.269 200 0.878
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where s2 ¼ SðbÞ=ðN � PÞ is the variance estimate given by the minimum sum of

squares divided by the degrees of freedom,N – P, and so a 1 – a confidence interval is

b̂p � tðN � P; a=2Þseðb̂pÞ ð5Þ
where t(N – P; a/2) is the value that isolates an area a/2 under the right tail of the

Student"s t distribution withN – P degrees of freedom. Furthermore, a (1 – a) joint
parameter inference region for all the parameters is given by

ðb� b̂ÞTXTXðb� b̂Þ � Ps2FðP;N � P; aÞ ð6Þ
where F(P, N – P; a) is the value which isolates an area a under the right tail of

Fisher"s F distribution with P and N – P degrees of freedom.

For the absorbance data, the residual variance is s2 ¼ 3.18 � 10�4 with 14

degrees of freedom. Parameter summary statistics are given in Table II, and joint

confidence regions are ellipses, as shown in Fig. 2.

B. Nonlinear Regression

Data on the elution volume of the human immunodeficiency virus (HIV) protein

p24gag as a function of the soluble protein concentration were presented in Rosé

et al. (1992) The analytical affinity chromatography data are listed in Table III and

plotted in Fig. 3.

The model proposed for the elution volume as a function of the soluble p24gag

concentration is

f ðx; uÞ ¼ y1
f1þ 4=½ð1þ 8x=y2Þ1=2 � 1�gx

ð7Þ

where x is the soluble p24gag concentration and y1 and y2 are the unknown

parameters. The model is nonlinear because at least one of the derivatives with

respect to the parameters involves at least one of the parameters (Bates and Watts,

1988), for example,

@f

@y1
¼ y1

f1þ 4=½ð1þ 8x=y2Þ1=2 � 1�gx
For a nonlinear model with expectation function f(xn, u), a formal statistical

analysis involves writing the model for the nth case as

Table II
Parameter Summary for ELISA Model

Parameter Estimate Standard error Correlation

b1 � 10�4 –9.04 74.7

b2 � 10�3 4.37 0.73 –0.80
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Yn ¼ f ðxn;uÞ þ Zn ð8Þ
where u ¼ (y1, . . ., yP)

T is a P � 1 parameter vector. As for the linear model

[Eq. (2)], the disturbances Zn are assumed to be normally distributed with mean 0,

constant variance, s2, and independent from case to case.

Unlike the linear model [Eq. (2)], no analytical results exist for the estimates and

their distributions—there is not even an explicit solution for the least squares

estimates. Instead, we must resort to iterative techniques to achieve convergence

to û. Once convergence has been achieved, the properties of the estimates are

usually assumed to be well represented by linear approximations evaluated at the

least squares estimates û. For example, the linear approximation variance-covariance

matrix is taken to be (VTV)�1s2, whereV¼ @h/@uT is the derivativematrix with rows

@f(xn, u)/@u
T evaluated at û, and s2 ¼ SðŷÞ=ðN � PÞ is the variance estimate.

The linear approximation standard error for the parameter yp is, by analogy

with Eq. (4),

−8
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Fig. 2 Joint 60%, 80%, 90%, 95%, and 99% inference regions for b1 and b2 for the absorbance data.
The straight lines are profile trace plots, which intersect the inference regions where the tangents to the

curves are vertical and horizontal.

Table III
Net Retarded Elution Volume and Soluble p24gag Concentration

p24gag concentration

(mM)

Elution volume

(�10�4 l)

p24gag concentration

(mM)

Elution volume

(�10�4 l)

0.141 7.30 8.27 4.59

0.282 7.12 16.8 3.55

0.652 6.47 36.5 2.30

1.54 6.05 91.0 0.167

3.20 5.63
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seðŷpÞ ¼ s½fðVTVÞ�1gpp�1=2 ð9Þ
and a linear approximation (1 – a) marginal confidence interval is, by analogy with

Eq. (5),

ŷp � tðN � P; a=2ÞseðŷpÞ: ð10Þ
.

Finally, a linear approximation (1 – a) joint parameter inference region for the

parameters is taken to be

ðu� ûÞTVTVðu� ûÞ � Ps2FðP;N � P; aÞ ð11Þ
which corresponds to Eq. (6).

For the elution data, convergence to the least squares estimates was obtained

with a residual variance of s2 ¼ 2.08 � 10�9 with 7 degrees of freedom. The least

squares estimates and some linear approximation summary statistics are given in

Table IV. The parameter correlation estimate is 0.99.

C. Profile Plots and Profile Traces

The methods presented so far rely on statistical theory which is too dependent on

the linear model. By removing this restriction, we are able to recognize that, in the

situation where the noise is normally distributed with constant variance, all the

important information about the parameters is embodied in the sum of squares

function

0 20 40

p24 × 10−6M

60 80
0

2

4

V
e−

V
0

×
10

−4
 li

te
rs 6

8

100

Fig. 3 Plot of net retarded elution volume versus soluble p24gag concentration.
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SðuÞ ¼
XN
n¼1

½yn � f ðxn; uÞ�2 ð12Þ

which, for a given data set, depends only on the parameters. Consequently an

informative and meaningful description of the sum of squares surface provides all

the inferential information about the parameters.

The important features of a sum of squares function are (1) the location of the

minimum, given by the least squares estimates û, (2) the value of the minimum,

SðûÞ, and (3) the behavior near the minimum. For the special case of a linear

model, these quantities can all be specified analytically: (1) the location of the

minimum is b̂ ¼ ðXTXÞ�1
XTy, (2) the value of the minimum is Sðb̂Þ ¼

yTy� b̂
T
XTXb̂, and (3) the behavior is SðbÞ ¼ Sðb̂Þ þ ðb� b̂ÞTXTXðb� b̂Þ.

Consequently, parameter inference regions are concentric ellipsoids corresponding

to specific levels of the sum of squares (e.g., see Fig. 2). In particular, a joint (1 – a)
inference region corresponds to the contour specified by S(u) ¼ SF, where

SF ¼ SðûÞ 1þ P

N � P
FðP;N � P; aÞ

� �
: ð13Þ

A marginal (1 – a) inference interval for parameter yp can also be determined

from the sum of squares surface, because the end points correspond to two special

points on the contour specified by S(u) ¼ St, where

St ¼ SðûÞ 1þ t2ðN � P; a=2Þ
N � P

� �
: ð14Þ

At these special points, the other parameters are at their conditional minimum

values, say, euðypÞ.
As discussed in the introduction, we cannot write an explicit expression for the

least squares estimates for a nonlinear model, but we can determine the location of

the minimum, û, and the value at the minimum, SðûÞ, using an iterative procedure.

The remaining two tasks are to describe the behavior near the minimum and to

express the behavior in terms of parameter joint and marginal inference regions.

The first of these tasks can be done very efficiently by profiling the sum of squares

surface (Bates and Watts, 1988); the second simply requires determining the values

Table IV
Linear Approximation Parameter Summary for Elution Example

Parameter Estimate

Linear approximation

Standard error

99% Region Likelihood: 99% region

Lower Upper Lower Upper

y1 � 10�8 2.16 0.39 0.80 3.52 1.18 4.07

y2 � 10�5 3.00 0.61 0.88 5.12 1.51 6.11
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of the parameters at which the profile sum of squares correspond to the critical

values of St and SF.

D. Profiling

1. Calculations

Profiling a sum of squares surface involves the following calculations: (1) Select

the profile parameter yp. Specify the increment D ¼ 0:1� seðŷpÞ. (2) Initialize

yp ¼ ŷp and euðypÞ ¼ û. (3) Increment yp ¼ yp þ D. Use previous euðypÞ as starting
value. Converge to euðypÞ, the profile trace vector. Store yp, euðypÞ, and eSðypÞ, the
profile sum of squares. Repeat (3) as ‘‘necessary.’’ (4) Set D ¼ –D. Go to (2). When

finished with parameter yp, go to (1) and repeat until all parameters are profiled.

For two parameters, the calculations involve incrementing from ŷ1 a small

positive amount, converging to ey2, storing y1, ey2, and eS, incrementing y1 again,

converging to ey2, storing y1, ey2, and eS, and so on, until enough information has

been obtained to allow calculation of the 99% likelihood interval upper end point.

Then return to ŷ1 and increment from there in small negative amounts, repeating

the calculations until enough information has been obtained to allow calculation

of the 99% likelihood interval lower end point. Then return to û and profile on y2,
first using positive increments and then negative increments.

2. Converting to Likelihood Regions

Expressing the behavior of the sum of squares surface in terms of parameter

inference regions involves finding the values of yp which produce a profile sum of

squares equal to the critical value St defined in Eq. (14). This could be done by

plotting eSðypÞ versus yp and then finding the values yp where eSðypÞ ¼ St, but a

more informative approach is as follows:

1. Convert parameter values yp to studentized values:

dðypÞ ¼ ðyp � ŷpÞ=seðŷpÞ ð15Þ
2. Convert values of the profile sum of squares to profile t values equal to the

square root of the ‘‘relative excess’’ sum of squares:

tðypÞ ¼ sgnðyp � ŷpÞf½eSðypÞ � SðûÞ�=s2g1=2 ð16Þ
3. Plot the profile t values t(yp) versus d(yp).
4. The points defining a (1 – a) marginal interval correspond to the points where

tðypÞ ¼ �tðN � P; a=2Þ ð17Þ
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Therefore, an exact likelihood interval is obtained by refracting the critical value

�t(N –P; a/2) on the vertical scale through the profile t curve onto the horizontal
scale.

5. Finally, convert from d to y to express the likelihood interval end points in

terms of the original parameters.

The transformations in steps 1 and 2 are advantageous because it is then easy to

compare parameters from the same model and data set or from different models

and different data sets. It is also easy to see how nonlinear the behavior of a

parameter is because, if we used profiling to investigate a model which is linear in

the parameters, the profile t plot would be a straight line at 45� through the origin.

Therefore, departures of a profile t plot from the 45� reference line reveal how

nonlinear that parameter is. More important, however, is the fact that exact

marginal likelihood intervals can be calculated—there is no need to rely on linear

approximations.

E. Profile t Plots for Elution Data

Profile t plots for the parameters y1 and y2 for the elution data and model are

given in the figures on the diagonal of Fig. 4. The tau (t) curves lie below the linear

reference lines, indicating that the sum of squares surface falls steeply as the

parameter value approaches the least-squares estimate from below and rises slowly

as the parameter value increases above the least-squares estimate.

Exact likelihood intervals can be obtained by refracting the value of the confi-

dence coefficient, t(N – P, a/2), on the vertical (t) scale through the point on the

profile t curve onto the horizontal (d) scale, then converting from d to y. For
this example with N – P ¼ 7, to obtain a 99% likelihood interval we find

t(7, 0.005) ¼ 3.50, and so refraction of �3.50 onto the horizontal axis through the

t(y1) curve gives d(y1) ¼ (–2.28, þ5.35). These convert to end points (1.18, 4.07),

which are very different from the (symmetric) linear approximation interval (0.80,

3.52). Similarly, for y2, the exact interval is (1.51, 6.11), which is very different from

the linear approximation interval (0.88, 5.12).

F. Profile Trace Plots

Further useful meaningful information can be obtained from pairwise plots of the

components of the trace vector euðypÞ versus the profile parameter yp, that is, a plot ofeyqðeypÞ versus yp and ofeypðyqÞ versus yq on the same figure. For a linearmodel, a trace

plot of ebqðbpÞ versus bp will be a straight line through the origin with slope given by

the correlation between the parameters [derived from the appropriate element of the

matrix (XTX)�1; see, e.g., Fig. 2]. Note that the profile trace values correspond to

points where the sum of squares contours have vertical or horizontal tangents.

For a nonlinear model, the traces will be curved but will still intersect parameter

joint likelihood contours at points of vertical and horizontal tangency. This
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information, together with information from the profile t plots, can be used to obtain

accurate sketches of the joint regions, as described by Bates and Watts (1988) The

traces and sketches reveal useful information about interdependence of the parameter

estimates caused by the form of the expectation function, the experimental design

used in the investigation, and the actual data values obtained. Such information can

provide valuable insights for inference and for model building, as shown below.

A profile trace plot for the parameters y1 and y2 for the elution data and model is

given in the off-diagonal plot of Fig. 4. The solid intersecting curves are the profile

traces, and the solid and dashed closed curves correspond to 60, 80, 90, 95, and

99% joint likelihood regions. The profile traces are quite straight, but they lie on

top of one another for y < ŷ and are very close together for y > ŷ. The closeness of
the profile traces is expected, because of the large linear approximation correlation

coefficient. The joint regions are fairly elliptical but are nonsymmetric about the

least squares point.
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For this model and data set, the parameters show little nonlinear interaction,

because the joint regions are essentially ellipses which are squashed in for y < ŷ and

stretched out for y > ŷ. In other examples (see, e.g., Bates andWatts, 1988) the joint

regions are curved as well as differentially extended, so the interdependence between

the parameters changes as the parameters deviate from the least squares values. In

other words, the sum of squares surface is curved as well as nonparabolic.

G. Tetracycline Metabolism

Data on the metabolism of tetracycline were presented by Wagner (1967) In this

experiment, a tetracycline compound was administered orally to a subject, and the

concentration of tetracycline hydrochloride in the serum (mg/ml) was measured

over a period of 16 h. The data are plotted in Fig. 5.

A two-compartment model with delay was fitted in the form

f ðt; uÞ ¼ y3y1fexp½�y1ðt� t0Þ� � exp½�y2ðt� t0Þ�g
y2 � y1

: ð18Þ

The parameters y1 and y2 are transfer coefficients, and the parameter y3 corre-
sponds to an initial concentration. To ensure positive values for these parameters,

we let fp ¼ ln(yp), with p ¼ 1, 2. Summary statistics for the f parameters are given

in Table V. The residuals for this model were well behaved, indicating a good fit.

Profile plots for the parameters are given in Fig. 6.

Because there are only 5 degrees of freedom for the residual variance, the critical

values for t(N –P, a/2) andF(2,N –P; a) are very large fora¼ 0.10, 0.05, and 0.01, and

so it is not possible to determine the 90%, 95%, and 99% joint inference regions.

The profile t plots show that the parameters behave fairly linearly up to about the 95%

level [t(5, 0.025)¼ 2.57]. The upper end point of the 99% likelihood interval for f1 is

0
0.0

0.5

Te
tr

ac
yc

lin
 c

on
c.

 (
mg

/m
l)

1.0

1.5

15 205 10

Time (h)

Fig. 5 Plot of tetracycline hydrochloride concentration vesus time.
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not defined, nor are the lower 99% end points for f2 and f3. The profile trace plots

show fairly linear association between the parameters, and there is very strong associ-

ation between the (ln) transfer coefficient f2 and the (ln) initial concentration f3.

Table V
Linear Approximation Parameter Summary for Tetracycline Model

Parameter Estimate Standard error Correlation

f1 –1.91 0.097

f2 –0.334 0.176 –0.86

f3 2.31 0.198 –0.92, 0.99

t0 0.412 0.095 –0.54, 0.81, 0.77

Fig. 6 Profile plots for the parameters in the tetracycline compartment model. On the diagonal plots

the solid line is the profile t function and the dashed line is the linear reference. On the off-diagonal

profile trace plots, the solid and dashed closed curves denote the 60% and 80% joint likelihood regions.
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II. Discussion

Profile plots can be extremely useful in nonlinear model building as they remove

the gross dangers involved when using linear approximation standard errors and

confidence regions. Computing the values for the profile t and profile trace plots is

extremely efficient because excellent starting estimates are available (the values

from the previous convergence), and because the dimension of the nonlinear

problem is reduced (P – 1). The plots are especially informative when laid out in

the form of a matrix.

The plots provide important meaningful information about the estimation situa-

tion, in particular the extent to which linear approximation statistics can be relied

on. If the profile t plots and the profile trace plots are nearly straight, then one can

summarize the situation nicely with the linear approximation statistics; if not, then

perhaps uniparameter transformations can be used such that the new parameters

exhibit near linear behavior and, again, a few numbers can be used to summarize the

situation for the new parameters. For example, for the tetracycline model, the ln(rate

constants) and ln(initial concentration) parameters (f) are quite well behaved,

whereas the original (y ¼ exp(f)) parameters are very badly behaved.

If the parameter estimates are highly nonlinear, then it is best to use the profile

t and trace plots to summarize the estimation situation, possibly after a linearizing

reformulation. The profile plots will always provide accurate marginal and pair-

wise likelihood regions for the parameters to the extent allowed by the model, the

data, and the experimental design.

Profiling also provides insights into the estimation situation by revealing how

the experimental design could be improved. For example, the design for the

tetracycline experiment would be improved by simply increasing the number of

observation points to increase the degrees of freedom for residuals. Increasing N

from 9 to 14 in such a study would probably not require much effort, but the

degrees of freedom for residuals would be doubled, thereby reducing the critical

values for t(N – P, 0.005) and F(2, N – P; 0.01) from 4.03 and 13.3 to 3.17 and 7.56

(down about 20% and 40%), respectively. This would dramatically improve the

precision with which the parameters could be specified.

Finally, profiling is not limited to the uniresponse situation with normal

(Gaussian) noise because the general form for a profile t function is

t2 ¼ �2
N � P

N

� �
ðlog likelihood ratioÞ ð19Þ

and therefore, it can be used in any situation for which a likelihood function can be

derived for the parameters, for example, time series analysis (Lam andWatts, 1991),

and for logistic regression in which the response is proportion surviving. Other

applications of profiling are given by Bates and Watts (1990) and Watts (1994).
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I. Update

Many currently available software packages provide investigators who have a

limited mathematics, numerical analysis, and computer skills with the ability to

perform least-squares fits of nonlinear equations to experimental data. However,

many of these do not provide the user with simple methods for addressing the

question: Do the equation and estimated parameters provide a good description of

the experimental observations?

ESSENTIAL NUMERICAL COMPUTER METHODS
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Many investigators assume that if the computer fits the equation to the data, then it

must be a good fit! But consider the simple example of fitting a straight line to data

which are actually a sine wave. In this case, the computer will return an intercept and

slope of zero, and will provide a terrible description of the underlying sine wave. This

chapter addresses several standard approaches for the analysis of goodness-of-fit.

It is the goodness-of-fit methods which allow the user to perform hypothesis

testing. If hypothesis based fitting equations and parameters can provide a good

description of the experimental data, then the hypothesis is consistent with the

data. Conversely, if hypothesis based fitting equations and parameters cannot

provide a good description of the experimental data, then either the hypothesis is

wrong or the data are bad (Johnson, 2010, 1992).

II. Introduction

Parameter-estimation procedures provide quantitation of experimental data in

terms of model parameters characteristic of some mathematical description of the

relationship between an observable (the dependent variable) and experimental vari-

ables [the independent variable(s)]. Processes such as least-squares minimization

procedures (Johnson and Faunt, 1992; Johnson and Frasier, 1985) will produce the

maximum likelihood model parameter values based on minimization of the sum of

squared residuals (i.e., the sum of the squares of the differences between the observed

values and the corresponding theoretical values calculated by the model employed to

analyze the data). There are assumptions regarding the properties of experimental

uncertainty distributions contained in the data that are implicit to the validity of the

least-squares method of parameter estimation, and the reader is referred to Johnson

and Faunt (1992) and Johnson and Frasier (1985) for amore detailed discussion. The

widespread availability of computer hardware and software (particularly that imple-

menting parameter-estimation algorithms such as least-squares) translates into com-

monplace implementation of parameter-estimation algorithms and, on occasion,

perhaps a not-close-enough look at the appropriateness of particular mathematical

models as applied to some experimental data.

Of course, just how critical a determination of the appropriateness of fit of a

model is required will vary depending on the significance of the data, the phenom-

enon, and the interpretation being considered. When looking at simple, routine

analytical applications (e.g., linear or polynomial empirical fits of protein assay

standard curves, or perhaps analysis for single-exponential decay in kinetic enzyme

assays for first-order rate constant estimates to use for defining specific activities

during steps of purification procedures), it may not be particularly important to

examine carefully the quality of fit produced by the model used to analyze the data.

An empirical or ‘‘lower-order’’ estimate of the behavior of some system property in

these cases is fully sufficient to achieve the goals of the analysis. However, when

quantitatively modeling detailed aspects of biomolecular properties, particularly

when asking more advanced theoretical models to account for experimental data
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of ever increasing quality (i.e., more highly determined data), many sophisticated

numerical methods and complex mathematical modeling techniques are often

implemented. In these cases, a careful eye must be directed toward consideration

of the ability of the model to characterize the available experimentally determined

system properties reliably, sometimes to quite exquisite levels of determination.

To perform these types of detailed analyses (and, in principle, for any analysis),

data must be generated by experimental protocols that provide data (1) possessing

experimental uncertainties that are randomly distributed and (2) free of systematic

behavior not fully accounted for by the mathematical model employed in analysis.

A mathematical model must be defined to describe the dependence of the observ-

able on the independent variable(s) under experimental control. The definition of

an appropriate mathematical model involves considerations of how to transform

the experimentally observed system behavior into a mathematical description that

permits physical interpretation of the model parameter values. In this way, infor-

mation about the biomolecular phenomena underlying the system response is

quantitatively defined. Suchmodeling efforts can become quite specific when addres-

singmolecular level interpretations of the functional, structural, and thermodynamic

properties of biological systems.

Ongoing biochemical and biophysical studies to elucidate the molecular and ther-

modynamic foundations of macromolecular structure-function relationships have

been producing data from experiments designed to test, to ever finer levels of detail,

behavior predicted or theorized to exist as based onmodeling efforts.All complemen-

tary experimental information available about a particular system must be

incorporated into comprehensive mathematical models to account fully for all the

known properties of a system. Therefore, data regarding structural properties, func-

tional properties, influences of experimental conditions (e.g., ionic strength, pH, and

ligand concentration), and any other specifically relevant system variables must, in

principle, all be consistentwitha commonmodeldescriptiveof the systemunder study

to be comprehensively valid. Approximations in data analysis applications such as

these are therefore no longer tolerable so as to achieve an accurate and precise

characterization of biochemical or biophysical properties. Neither are approxima-

tions necessary given the recent increases in computational capacity in terms of

hardware capabilities as well as software availability and theoretical advancements.

Analyses of better determined experimental data sometimes indicate deficiencies in

current interpretativemodels, thereby prompting a closer look at the system and how

it is best modeled mathematically. The consideration of residuals (the differences

between observed and calculated dependent variable values) becomes a very impor-

tant element in the overall data analysis process in cases where attempts to model

detailed molecular system properties mathematically are being pursued.

The significance of subtle behavior in residuals may suggest the presence of a

significant system property that is overlooked by the current mathematical model.

But a more fundamental role served by examination of residuals is in providing

information on which to base a judgment about the appropriateness of a particular

mathematical description of system behavior as a function of some independent,
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experimental variable(s). If an examination of the residuals obtained from a parame-

ter-estimation procedure on some experimental data yields the conclusion that the

data are reliably characterized by the mathematical model (i.e., that a good fit to

the data is obtainedpossessing nounaccounted for residual systematic behavior in the

data), this is not to say that this represents justification for necessarily accepting

the model as correct. Rather, it indicates that the model employed is sufficient to

characterize the behavior of the experimental data. This is the same as saying that the

data considered provide no reason to reject the current model as unacceptable. The

residuals for a case in which a ‘‘good fit’’ is obtained then, in principle, represent the

experimental uncertainty distribution for the data set. However, if an examination of

the residuals indicates inconsistencies between the data and the behavior predicted by

the analysis, then the current model may correctly be rejected and considered unac-

ceptable (unless some other source for the residual systematic behavior is identified).

When considering residuals, a qualitative approach is often the most revealing and

informative. For example, generating plots to represent visually trends and correla-

tionsprovides adirect andoftenunambiguousbasis for a judgmenton thevalidityofa

fit. Of course, quantitative methods to test more rigorously particular properties of

residuals sometimes must be considered in order to quantitate the statistical signifi-

canceof conclusions drawnas a result of data analysis. Someof the availablemethods

for considering residuals will be discussed belowwith the aid of illustrative examples.

III. Scatter Diagram Residual Plots

Visualizing residuals is commonly performed by generating scatter diagrams

(Armitage, 1977a). Residuals may be plotted as a function of various experimental

variables to permit convenient identification of trends that may not have been

accounted for by the analytical model. Residuals are most commonly plotted as a

function of either the values of the independent variable(s) (e.g., time in kinetic

experiments or ligand concentration in ligand binding experiments) or the calculated

values of the dependent variable (i.e., the values of the experimental observable

calculated from the model). However, residual plots versus some other functional

relationship of the independent variable(s) or some other potentially significant

variable that was not explicitly considered in the original model may also provide

information about important relationships that have not been previously identified.

In Fig. 1 is presented a simulated scatter diagram to illustrate the type of

information potentially provided by visual inspection of residual plots. The circles

represent pseudo-Gaussian distributed residuals with a standard deviation of 1.0

and a mean of 0.0. The points denoted by crosses represent similar bandwidth

noise as seen in the pseudo-Gaussian distributed points but possessing higher-

order structure superimposed on them. Visual inspection of such plots permits

ready identification of deficiencies in the ability of an analytical model to describe

adequately the behavior of experimental data if nonrandom residuals are obvious-

ly present (e.g., as in the residuals represented by the crosses in Fig. 1). This type of
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observation would suggest that there exists some systematic behavior in the data

(as a function of the variable against which the residuals were plotted) that was not

well accounted for by the model employed in analysis.

An examination of the trend in residuals as a function of some particular

variable space may even provide information about the type of quantitative

relationship that must be accommodated by the analytical model that currently is

not. However, correctly accounting for any newly incorporated relationships

into currently existing analytical models requires re-evaluation of the data set(s)

originally considered. This is necessary so as to simultaneously estimate values for

all the model parameters characteristic of the model, both previously existing and

newly incorporated. Quantifying phenomena originally omitted from consideration

by a model must not be attempted by analyzing the resulting residuals. Correlation

amongparametersmust be accommodated during a parameter-estimation procedure

so as to produce the true best-fit parameter values that accurately characterize the

interdependence between parameters of themodel and between these parameters and

the properties of the data being analyzed (the dependence of the experimental

observable on the independent experimental variables as well as on the distribution

of experimental uncertainty in the data).

IV. Cumulative Probability Distributions of Residuals

Another visual method for examining residuals involves generating a cumulative

frequency plot (Bard, 1974). The information provided by this form of consideration

of residuals is related to the randomness of the distribution of residual values. The

process requires that the residuals be ordered and numbered sequentially such that
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Fig. 1 Scatter diagrams for two sets of synthetic residuals generated to demonstrate a normally

distributed set of residuals and another that exhibits a trend in the behavior of the residual values as

a function of residual number (presented as an arbitrary index in this example).
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r1 < r2 < r3 < . . . < rn

where ri is the ith residual value. A quantity Pi is then defined such that

Pi ¼ ði � 0:5Þ=n:
Here, Pi, the cumulative probability, represents a statistical estimate of the

theoretical probability of finding the ith residual (out of n total residuals) with a

value of ri if they are distributed randomly (i.e., Gaussian or normally distributed

residuals). A graph of the standard normal deviate, or Z-value (which represents

the number of standard deviations from the mean), corresponding to the cumula-

tive probability Pi versus the values of the ordered residuals will then produce a

straight line of points, all of which will be very near the theoretical cumulative

probability line if the residuals are distributed randomly. The Z-values

corresponding to particular levels of probability may be obtained from tabulations

in statistics books or calculated directly by appropriate integration of the function

defining Gaussian distributed probability.

The cumulative probability plots corresponding to the two sets of simulated

residuals presented in Fig. 1 are shown in Fig. 2. The points for the pseudorandom

residuals (circles) form a linear array with all points in close proximity to the

theoretical line. The slope of this line is 1.0 in the manner plotted in this graph,

corresponding to a standard deviation of 1.0 for this particular distribution of

residuals. The points for the distribution exhibiting residual structure in the scatter

diagram of Fig. 1 (crossed points) can be seen to generally follow along their

theoretical line (with a slope of 2.5 corresponding to an apparent standard devia-

tion of 2.5); however, they show systematic behavior and occasionally deviate
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Fig. 2 Cumulative frequency plots for the two sets of residuals presented in Fig. 1. The ordered

residual values are plotted relative to the Z-value (corresponding to the number of estimated standard

deviations from the mean, in this case zero) characteristic of Gaussian distributed residuals. The

estimated standard deviations are 1.0 and 2.5 for the Gaussian and nonrandom residuals, respectively,

as reflected in the slopes of the theoretical lines.
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considerably from the line (relative to the near superposition for the pseudoran-

domly distributed residuals). This level of deviation in a cumulative probability

plot suggests that the data are not well characterized by the model used to describe

their behavior because the resulting residuals clearly exhibit nonrandom behavior.

V. x2 Statistic: Quantifying Observed Versus Expected
Frequencies of Residual Values

To assess the properties of distributions of residuals more quantitatively, one

may generate a discrete, theoretical residual probability distribution (based on an

assumption of randomly distributed residuals) and compare the distribution of

observed residual values with these expected frequencies (Armitage, 1977b; Daniel,

1978). A histogram is in effect created in which the range of residual values is

divided into a number of intervals such that at least one residual (out the n total

residuals being considered) is expected to exist in each interval. The expected

frequencies are then compared to the observed frequencies by the relationship

w2 ¼ S½ðOi � EiÞ2=Ei�
which is summed over each interval considered. Here, Oi represents the observed

number of residuals possessing values within the range defined by interval i.

Analogously, Ei is the expected number of residuals in this interval if the residuals

are randomly distributed. The value of this calculated parameter will be distributed

approximately as the w2 statistic (for the desired level of confidence and the number

of degrees of freedom). The significance of the w2 statistic is that it represents a

method for quantifying the probability that the distribution of residuals being

considered is not random.

When the w2 statistic is applied to the residual distributions presented in Fig. 1

(see Table I), we find that the pseudo-Gaussian residual distribution produces a

w2 value of 1.326, whereas that which possessed residual structure had a w2 value of
7.344. In this case, nine intervals were considered, the central seven being finite

with a width of one-half the (apparent, in the case of the nonrandom residuals)

standard deviation, with the two extreme intervals considering the remaining

probability out to �1. For a total of 25 residuals, this choice of interval width

and number produced expected frequencies of at least one for each of the intervals

considered (1.0025 being the lowest, for the two end intervals). When considering

this type of analysis of a residual distribution, small expected frequencies must be

dealt with so as to produce intervals with at least one for an expected frequency.

With small numbers of residuals, this may become a necessary concern.

A w2 value of 1.326 means that there is between a 1% and 2.5% chance that the

pseudo-Gaussian residuals in Fig. 1 are not randomly distributed. This is the

derived level of confidence indicated by this w2 value with 7 degrees of freedom

[in this case, the number of degrees of freedom is 9 (the number of intervals)

3. Analysis of Residuals 43



minus 1 (for the requirement that
P

Oi ¼
P

Ei) minus 1 (for the estimation of an

apparent standard deviation) equals 7]. The considerably larger w2 value of 7.344
for the structured residuals of Fig. 1 indicates a significantly higher probability that

the residuals are indeed not randomly distributed, supporting the conclusion

drawn by inspection of the scatter diagrams in Fig. 1.

VI. Kolmogorov-Smirnov Test: An Alternative to the x2 Statistic

As an alternative to the w2 method for determining whether the residuals

generated from an analyis of data by a mathematical model are randomly

distributed, one may apply the Kolmogorov-Smirnov test (Daniel, 1978). The

Kolmogorov-Smirnov test has a number of advantages over the w2 treatment.

Whereas the w2 approach requires compartmentalization of residuals into discrete

intervals, the Kolmogorov-Smirnov test has no such requirement. This relaxes the

constraint of possessing a sufficient number of residuals so as to significantly

populate each of the intervals being considered in the w2 analysis. And to provide

a closer approximation to a continuous distribution, the w2 approach requires

consideration of a large number of intervals. The Kolmogorov-Smirnov approach

requires no discrete approximations but rather provides a quantitative basis for

making a statistical comparison between the cumulative distribution of a set of

residuals and any theoretical cumulative probability distribution (i.e., not limited

to only a Gaussian probability distribution).

Table I
Residual Probability Distribution per Intervala

Z-Interval

Observed

ExpectedPseudo-Gaussian Structured

�1, �1.75 1 1 1.0025

�1.75, �1.25 2 1 1.6375

�1.25, �0.75 2 6 3.0250

�0.75, �0.25 6 6 4.3675

�0.25, 0.25 4 4 4.9350

0.25, 0.75 4 3 4.3675

0.75, 1.25 3 4 3.0250

1.25, 1.75 2 0 1.6375

1.75, þ 1 1 0 1.0025

aFor w2 ¼ S½ðOi;�EiÞ2=Ei�, whereOi is the observed number of residuals with values in interval i and

Ei is the expected number of residuals with values in interval i. w2 (pseudo-Gaussian) ¼ 1.326;

w2 (structured) ¼ 7.344. The probabilities associated with these values of w2 (for seven degrees of

freedom, nine intervals minus the two constraints for estimating the mean and variance of the distribu-

tions) verify that the Gaussian distributed residuals are correctly identified as being Gaussian

distributed [w2 (pseudo-Gaussian) ¼ 1.326], whereas the nonrandom residuals are confirmed to be

non-Gaussian [w2 (structured) ¼ 7.344].
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The statistic used in the Kolmogorov-Smirnov test, D, is the magnitude of the

greatest deviation between the observed residual values at their associated cumu-

lative probabilities and the particular cumulative probability distribution function

with which the residuals are being compared. To determine this quantity, one

must consider the discrete values of the observed residuals, ri, at the cumulative

probability associated with each particular residual, Pi,

Pi ¼ ½ði � 0:5Þ=n�; 1 � i � n

relative to the continuous theoretical cumulative probability function to which

the distribution of residuals is being compared (e.g., that of a Gaussian distribution

possessing the calculated standard deviation, as visually represented in the cumu-

lative probability plots of Fig. 2). The continuous nature of the theoretical cumu-

lative probability function requires that both end points of each interval defined by

the discrete points corresponding to the residuals be considered explicitly. The

parameter D is therefore defined as

D ¼ max
1�i�n

fmax½jriðPiÞ � rtheoryðPiÞj; jri�1ðPi�1Þ � rtheoryðPiÞj�g:

The deviations between the observed and theoretical values are thus considered

for each end of each interval defined by the observed values of ri(Pi) and ri�1(Pi�1).

The value of this statistic is then compared with tabulations of significance levels

for the appropriate number of residuals (i.e., sample size), a too-large value of D

justifying rejection of the particular theoretical cumulative probability distribution

function as incorrectly describing the distribution of residuals (at some specified

level of confidence).

VII. Runs Test: Quantifying Trends in Residuals

The existence of trends in residuals with respect to either the independent (i.e.,

experimental) or dependent (i.e., the experimental observable) variables suggests

that some systematic behavior is present in the data that is not accounted for by the

analytical model. Trends in residuals will often manifest themselves as causing too

few runs (consecutive residual values of the same sign) or, in cases where negative

serial correlation occurs, causing too many runs. A convenient way to assess

quantitatively this quality of a distribution of residuals is to perform a runs test

(Bard, 1974). The method involves calculating the expected number of runs, given

the total number of residuals as well as an estimate of variance in this expected

number of runs.

The expected number of runs, R, may be calculated from the total number of

positive and negative valued residuals, np and nn, as

R ¼ f½2npnn=ðnp þ nnÞ� þ 1g:
The variance in the expected number of runs, s2R, is then calculated as
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s2R ¼ f½2npnnð2npnn � np � nnÞ�=½ðnp þ nnÞ2ðnp þ nn � 1Þ�g:
A quantitative comparison is then made between the expected number of runs,

R, and the observed number of runs, nR, by calculating an estimate for the

standard normal deviate as

Z ¼ jðnR � Rþ 0:5Þ=sRj:
When np and nn are both greater than 10, Z will be distributed approximately as

a standard normal deviate. In other words, the calculated value of Z is the number

of standard deviations that the observed number of runs is, from the expected

number of runs for a randomly distributed set of residuals of the number being

considered. The value of 0.5 is a continuity correction to account for biases

introduced by approximating a discrete distribution with a continuous one. This

correction isþ0.5 (as above) when testing for too few runs and is�0.5 when testing

for too many runs. The test is therefore estimating the probability that the number of

runs observed is different from that expected from randomly distributed residuals.

The greater the value of Z, the greater the likelihood that there exists some form of

correlation in the residuals relative to the particular variable being considered.

In Table II is presented an application of the runs test to the residuals of Fig. 1.

The results clearly indicate that the number of runs expected and observed for the

pseudo-Gaussian distributed residuals agree quite well (Z values of 0.83 and 1.24),

whereas the agreement between expected and observed numbers of runs with the

structured residuals is very different (Z values of 4.05 and 4.48). The probability

that the distributions of residuals exhibit the ‘‘correct’’ number of runs is therefore

statistically acceptable in the former case (less than 0.83 standard deviations

from expected) and statistically unacceptable in the latter (more than 4 standard

deviations from expected). A cutoff value for acceptability may be considered to be

Table II
Runs Test Applied to Residualsa

Residuals

Parameter Pseudo-Gaussian Structured

np 12 15

nn 13 10

R 13.48 13

sR
2 5.97 5.5

nR 16 3

Ztf 1.24 4.05

Ztm 0.83 4.48

aThe Z values derived from this analysis suggest that the expected num-

ber of runs is encountered in the Gaussian distributed residuals (Ztf ¼ 1.24

and Ztm ¼ 0.83), a situation that is not the case for the nonrandom residual

distribution (Ztf ¼ 4.05 and Ztm ¼ 4.48). Subscripts refer to testing for too

few or too many runs.
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2.5–3 standard deviations from the expected value (corresponding to probabilities

of approximately 1-0.25%). The values calculated in this illustrative example fall

well to either side of this cutoff range of Z values.

VIII. Serial Lagn Plots: Identifying Serial Correlation

A situation in which too few runs are present in the residual distribution

indicates positive serial correlation. Too many runs, on the other hand, is a

situation characteristic of negative serial correlation in residuals. Serial correlation

suggests systematic behavior with time and, in fact, is often considered in this

context. However, this sort of serial dependence may also be of significance when

considering parameter spaces other than time.

Visualization of this phenomenon is best achieved by lagn serial correlation plots

(Draper and Smith, 1981). The residual values are plotted against each other, each

value plotted versus the one occurring n units before the other. As demonstrated in

Fig. 3 for the two residual distributions presented in Fig. 1, considerable correla-

tion is suggested in the structured residuals in the lag1, lag2, and lag3 serial plots but

is no longer obvious in the lag4 plot, whereas the pseudo-Gaussian residual

distribution produces no obvious trend in any of the serial lagn plots. The presence

of positive serial correlation (i.e., adjacent residuals with the same sign) is evi-

denced by positive sloping point distributions (as demonstrated by the distribution

exhibiting residual structure in Fig. 3), whereas negative slopes characterize

negative serial correlation (i.e., adjacent residuals with opposite sign). In the

absence of correlation, the points will be randomly clustered about the origin of

the plot (as demonstrated by the pseudo-Gaussian distributed residuals in Fig. 3).

IX. Durbin-Watson Test: Quantitative Testing for
Serial Correlation

The Durbin-Watson test provides a quantitative, statistical basis on which

to judge whether serial correlation exists in residuals (Draper and Smith, 1981).

The test permits estimation of the probability that serial correlation exists by

attempting to account for effects of correlation in the residuals by the following

formula

ri ¼ rri�1 þ Zi:

Here, ri and ri�1 correspond to the ith and (i � 1)th residuals, and r and Zi

provide for quantitation of any effects of serial correlation. This approach is based

on the null hypothesis that the residuals are distributed in a manner free of any

serial correlation and possessing some constant variance. The above expression

relating adjacent residuals is a means to quantify deviation from the hypothesized
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Fig. 3 Lagn serial plots for the residual distributions presented in Fig. 1 are displayed for lags of 1, 2,

3, and 4. It is apparent that the nonrandom residuals of Fig. 1 (bottom plots) possess some positive serial

correlation as demonstrated by positive slopes in the point distributions for the lag1, lag2, and lag3 cases

but disappearing by the lag4 plot. The Gaussian distributed residuals (top plots), on the other hand,

exhibit no indication of serial correlation in any of the four serial lagn plots.

48 Martin Straume and Michael L. Johnson



ideal case. The underlying assumptions are that the residual values, the ri’s, as well

as the values for the Zi’s in the above equation each possess constant variances,

which for the case of the residuals is given by

s2 ¼ s2r=ð1� r2Þ:
The case in which no serial correlation is indicated is given by r ¼ 0.

The variance then reduces to that estimated from the original distribution (and

the null hypothesis is accepted).

A parameter is calculated to provide a statistical characterization of satisfying

the null hypothesis and therefore addressing whether any correlation is suggested

in the residuals being considered. This parameter is given by

d ¼
Xn
i¼2

ðri � ri�1Þ2=
Xn
i¼1

r2i

In assigning a probability to the likelihood of serial correlation existing in the

considered residuals, two critical values of d (a lower and an upper value, d1 and du)

are specified, thus defining a range of values associated with a specified probability

and the appropriate number of degrees freedom. Tables of these critical values at

various levels of confidence may be consulted (Draper and Smith, 1981) and testing

of the following three conditions may be permitted: r > 0, r < 0, or r 6¼ 0. When

considering the first case (r > 0), d < d1 is significant (at the confidence level

specified in the table used), and serial correlation with r> 0 is accepted. A value of

d > du indicates that the case r > 0 may be rejected, that is, that one is not justified

in assigning any positive serial correlation to the distribution of residuals being

considered. Intermediate values of d (between d1 and du) produce an ‘‘inconclu-

sive’’ test result. The case of r< 0 is considered in an analogous manner except that

the value of (4 � d) is used in comparisons with tabulated values of d1 and du. The

same process as outlined above for the first case applies here as well. The test for

r 6¼ 0 is performed by seeing whether d< d1or (4� d)< d1. If so, then r 6¼ 0 at twice

the specified level of confidence (it is now a two-sided test). If d > duand (4 � d) >
du, then r ¼ 0 at twice the specified level of confidence. Otherwise, the test is

considered ‘‘inconclusive.’’ To resolve this ‘‘inconclusive’’ occurrence, one may

assume the conservative approach and reject once the more stringent criterion of

the two is exceeded.

X. Autocorrelation: Detecting Serial Correlation in
Time Series Experiments

Experimental data collected as a time series typically exhibit serial correlations.

These serial correlations arise when the random uncertainties superimposed on the

experimental data tend to have values related to the uncertainties of other data

points that are close temporally. For example, if one is measuring the weight of a

test animal once a month and the data are expressed as a weight gain per month,
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negative serial correlation may be expected. This negative serial correlation is

expected because a positive experimental error in an estimated weight gain for

one month (i.e., an overestimate) would cause the weight gain for the next month

to be underestimated.

A basic assumption of parameter-estimation procedures is that the experimental

data points are independent observations. Therefore, if the weighted differences

between experimental data points and the fitted function (the residuals) exhibit

such a serial correlation, then either the observations are not independent or the

mathematical model did not correctly describe the experimental data. Thus, the

serial correlation of the residuals for adjacent and nearby points provides a

measure of the quality of the fit.

The autocorrelation function provides a simple method to present this serial

correlation for a series of different lags, k (Box and Jenkins, 1976). The lag refers to

the number of data points between the observations for a particular autocorrela-

tion. For a series ofN observations, Yt, with a mean value of m, the autocorrelation
function is defined as

bk ¼ ŝk=ŝ0

for k ¼ 0, 1, 2, . . ., K, where the autocovariance function is

ŝk ¼ 1

n

Xn�k

t¼1

ðYt � mÞðYtþk � mÞ

for k ¼ 0, 1, 2, . . ., K. In these equations, K is a maximal lag less than n. The

autocorrelation function has a value between �1 and þ1. Note that the autocorre-

lation function for a zero lag is equal to 1 by definition.

The expected variance (Moran, 1947) of the autocorrelation coefficient of a

randomprocess with independent, identically distributed random (normal) errors is

varðbkÞ ¼
n� k

nðnþ 2Þ
where m is assumed to be zero.

Autocorrelations are presented graphically as a function of k. This allows an

investigator to compare easily the autocorrelation at a large series of lags kwith the

corresponding associated standard errors (square root of the variance) to decide if

any significant autocorrelations exist.

XI. x2 Test: Quantitation of Goodness-of-Fit

After verification that the residuals resulting from amodel parameter-estimation

process to a set of data are indeed free of any systematic trends relative to any

variables of significance (i.e., dependent or independent variables), a quantitative

estimate of the adequacy of the particular model in describing the data is possible.

Calculation of the w2 statistic is a common quantitative test employed to provide a
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statistical estimate of the quality of fit of a theoretical, mathematical description of

the behavior of a system to that measured experimentally (Bevington, 1969). The

value of the w2 statistic varies approximately as the number of degrees of freedom

in situations where the mathematical description is correct and only random

fluctuations (i.e., experimental noise) contribute to deviations between calculated

and observed dependent values. The w2 statistic is defined as

w2 ¼
Xn
i¼1

Yobs;i � Ycalc;i

si

� �2

that is, as the sum over all n data points of the squared, normalized differences

between each observed and calculated value of the dependent variable (Yobs,i �
Ycalc,i), normalized with respect to the error estimate for that particular point (si).
The required knowledge of an accurate estimate for the uncertainty associated

with each observed value makes it challenging sometimes to implement this test. It

is just these estimated uncertainties that give the w2 test its statistical significance,
by appropriately normalizing the residuals. By dividing this calculated value of w2

by the number of degrees of freedom, the reduced w2 value is obtained. The number

of degrees of freedom is defined as the number of data points (n) minus the number

of parameters estimated during analysis (p) minus 1 (i.e., NDF ¼ n � p � 1). The

value of the reduced w2 value will quite nearly approximate 1 if both (1) the

estimated uncertainties, si, are accurate and (2) the mathematical model used in

analysis accurately describes the data. With accurate knowledge of the experimen-

tal uncertainty, it is possible to define statistically the probability that a given

model is an accurate description of the observed behavior.

XII. Outliers: Identifying Bad Points

In any experimental measurement, occasionally values may be observed that

produce an unusually large residual value after an analysis of the data is per-

formed. The existence of an outlier (or ‘‘bad point’’) suggests that some aberration

may have occurred with the measurement of the point. The presence of such a

point in the data set being analyzed may influence the derived model parameter

values significantly relative to those that would be obtained from an analysis

without the apparent outliers. It is therefore important to identify such ‘‘bad

points’’ and perhaps reconsider the data set(s) being analyzed without these

suspect points.

Visual inspection of residual scatter diagrams often reveals the presence of

obvious outliers. Cumulative frequency plots will also indicate the presence of

outliers, although perhaps in a less direct manner. Visualization methods may

suggest the presence of such points, but what method should be used to decide

whether a point is an outlier or just a point with a low probability of being valid? A

method to provide a quantitative basis for making this decision derives from
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estimating the apparent standard deviation of the points after analysis. This is

calculated as the square root of the variance of fit obtained from analysis of an

unweighted data set. The variance of fit is defined as the sum of the squared

residuals divided by the number of degrees of freedom (the number of data points

minus the number of parameters being estimated). In the case that the model

employed is capable of reliably characterizing the data (i.e., capable of giving a

‘‘good fit’’), the distribution of residuals will, in principle, represent the distribu-

tion of experimental uncertainty. Any residuals possessing values that are more

than approximately 2.5–3 standard deviations from the mean have only a 1–0.25%

chance of being valid. When considering relatively large data sets (of the order of

hundreds of points or more), the statistical probability of a residual possessing a

value 3 standard deviations from the mean suggests that such a point should be

expected about once in every 400 data points.

XIII. Identifying Influential Observations

The presence of outliers (as discussed in the previous section) may produce

derived model parameter values that are biased as a result of the influence of

outliers. Methods to test for influential observations may be applied to determine

the influence of particular data points or regions of independent variable space on

the parameters of the analytical model (Draper and Smith, 1981). The influence a

potential bad point may have on the resulting model parameter values will be

dependent on whether there exist other data points in the immediate vicinity of the

suspect point (i.e., in an area of high data density) or whether the point is relatively

isolated from others. And if there are regions of low data density, influential

observations may not be made apparent by looking for outliers. That is because

the relatively few points defining part of an independent parameter space may be

largely responsible for determination of one or a few particular model parameters

but have very little influence on other model parameters. These points will then

represent a particularly influential region of independent parameter space that may

strongly affect the outcome of an analysis but may at the same time be difficult to

identify as being bad points.

One approach is to omit suspected influential regions of data from consideration

during analysis to see if any portion of the complete data set can be identified as

being inconsistent with results suggested by consideration of other regions of

independent parameter space. A difficulty that may be encountered is that partic-

ular regions of independent parameter space may be almost exclusively responsible

for determining particular model parameters. Omitting such regions of data from

analysis may not permit a complete determination of all the parameters character-

istic of the model. If such a situation is encountered, it indicates that a higher level

of determination is necessary in this region of independent parameter space and

that the experimental protocol during acquisition of data should be modified to

permit more data to be accumulated in this ‘‘influential window.’’
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The various quantitative methods that have been developed to address influen-

tial observations (Draper and Smith, 1981) generally involve reconsideration of

multiple modified data sets in which some points have been omitted from consid-

eration. The variation in the values of the derived model parameters arising from

considering multiple such modified data sets then indicates the degree to which

particular regions of data influence various model parameters. If an influential

region of independent parameter space is identified, a relatively easy fix to the

dilemma is to change the data acquisition protocol to take more experimental

measurements over the influential region of independent parameter space.

XIV. Conclusions

Qualitative and quantitative examination of residuals resulting from analysis of

a set (or sets) of experimental data provides information on which a judgment can

be made regarding the validity of particular mathematical formulations for reliably

characterizing the considered experimental data. With the advances in biochemical

and biophysical instrumentation as well as computer hardware and software seen

in recent years (and the anticipated advances from ongoing development), quanti-

tative descriptions of biological system properties are continuously being better

determined. Deficiencies in current models characteristic of system behavior are

often recognized when more highly determined experimental data become avail-

able for analysis. Accommodation of these recognized deficiencies then requires

evolution of the particular mathematical description to more advanced levels. In so

doing, a more comprehensive understanding of the biochemical or biophysical

properties of the system often results.

An interpretation of derived model parameter values implicitly relies on the

statistical validity of a particular mathematical model as accurately describing

observed experimental system behavior. The concepts and approaches outlined

in the present chapter provide a survey of methods available for qualitatively and

quantitatively considering residuals generated from data analysis procedures. In

those cases where very precise interpretation of experimental observations is

required, a thorough, quantitative consideration of residuals may be necessary in

order to address the statistical validity of particularly detailed mathematical mod-

els designed to account for the biochemical or biophysical properties of any

experimental system of interest.
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I. Update

The fitting of equations to experimental data involves numerical procedures

which estimate the numerical values of the parameters of the equations that have

the highest probability of being correct (Johnson, 1992, 2010, 2008). Commonly

the next step will be a statistical comparison of these parameter values with some

a priori values, such as zero. If the parameter is not different from zero then the

term is not significant, etc.

This is not as simple a task as one might envision. For linear equations, like

orthogonal polynomials, a simple equation for the evaluation of the parameter

standard errors exists, tha is, asymptotic standard errors. For non-orthogonal

ESSENTIAL NUMERICAL COMPUTER METHODS
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linear equations, such as ordinary polynomials, these commonly used asymptotic

standard errors fail to include the contribution due to the co-variance between

the estimated parameters, that is, they typically will significantly underestimate the

actual errors in the estimated parameters and will thus overestimate the signifi-

cance of the results (Johnson, 1992, 2010, 2008). For nonlinear fitting equations,

no analytical solution exists, only approximations exist.

This chapter provides an example of aMonte-Carlo approach for the evaluation

of confidence intervals of estimated parameters that can be used for orthogonal

equations that are either linear or nonlinear. The reader is encouraged to also

examine Bootstrap Methods (Chernick, 1999).

II. Introduction

The quantitative analysis of experimental data generally involves some numeri-

cal process to provide estimates for values of model parameters (least-squares,

Johnson and Faunt, 1992; method of moments, Small, 1992; maximum

entropy, Press et al., 1986a; Laplace transforms, Ameloot, 1992; etc.). The derived

parameter values are, in turn, interpreted to provide information about the

observed properties of the experimental system being considered. This fundamen-

tal process applies for the simplest of analyses (e.g., protein determinations

employing standard curves) as well as for the highly sophisticated modeling

algorithms in use today for interpretation of a broad spectrum of complex biomo-

lecular phenomena.

The primary objective of a quantitative analysis is derivation of the values

corresponding to the best estimates for the parameters of the model employed to

characterize the experimental observations. System properties may then be in-

ferred by a physical interpretation of the significance of the model parameter

values. However, the level of confidence one can have in the interpretation of

derived parameter values depends strongly on the nature and magnitude of the

confidence probability distribution of the parameter values about their most

probable (or best-fit) values.

Determination of reliable estimates of confidence intervals associated with

model parameters may be critical in discerning between alternative interpretations

of some biomolecular phenomena (e.g., the statistical justification for existence of

quaternary enhancement in human hemoglobin oxygen-binding behavior

(Straume and Johnson, 1989). In a case such as this, the most probable derived

value is significant, but the shape and breadth of the distribution of expected

parameter values, given the experimental uncertainties associated with the data

sets being analyzed, are also of critical importance with regard to arriving at a

statistically significant conclusion. Knowledge of complete confidence probability

distributions as well as the correlation that exists among parameters or between

parameters and the experimental independent variable(s) is also of value for

identifying influential regions of independent parameter space (e.g., extent of
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binding saturation in a ligand-binding experiment) as well as for pointing out the

relative behavior of parameters between different models used to interpret the

same data (e.g., models that explicitly account for ligand-linked cooperative bind-

ing versus those allowing nonintegral binding stoichiometries to accommodate

effects arising from cooperativity; Correia et al., 1991).

The determination of confidence intervals for parameters estimated by numeri-

cal techniques can be a challenging endeavor for all but the simplest of models.

Methods for estimation of parameter confidence intervals vary in the level of

sophistication necessarily employed to obtain reliable estimates (Beecham, 1992).

Implementation of parameter spaces that minimize statistical correlation among

the parameters being determined may permit extraction of moderately accurate

estimates of confidence intervals with relative ease. However, the great majority of

parameter estimation procedures employed in interpretation of biophysical data

are cast in terms of complex mathematical expressions and processes that require

evaluation of nonorthogonal, correlated model parameters.

Accommodation of statistical thermodynamic equations like those describing

multiple, linked equilibria (e.g., as in the case of oxygen-linked dimer-tetramer

association in human hemoglobin as a function of protein concentration) or

processes such as iterative interpolation or numerical integration involves solving

complex mathematical relationships using nontrivial numerical methods. Addi-

tionally, comprehensive modeling of multidimensional dependencies of system

properties (e.g., as a function of temperature, pH, ionic strength, and ligand

concentration) often requires relatively large numbers of parameters to provide a

full description of system properties. Mathematical formulations such as these

therefore often involve mathematical relationships and processes sufficiently com-

plex as to obscure any obvious correlations among model parameters as well as

between the parameters and data (e.g., through effects of regions of influential

observations; Correia et al., 1991; Straume and Johnson, 1992, 2010). It therefore

becomes difficult to identify conveniently parameter spaces that minimize correla-

tion, creating a potentially more challenging situation with regard to confidence

interval determination.

The numerical procedures that have been developed for estimating confidence

intervals all involve some approximations, particularly about the shape of the

confidence probability distribution for estimated parameters (Beecham, 1992).

Sometimes, these approximations may produce grossly incorrect estimates, partic-

ularly with more simplistic methods applied to situations exhibiting correlation.

Errors in estimates of confidence intervals usually arise from the inability of the

estimation procedure to account for high levels of sometimes complex, nonlinear

correlation among the parameters being estimated. Improving the accuracy of

confidence interval estimates therefore requires implementation of more thorough

mathematical procedures designed to eliminate or reduce the influence of approx-

imations regarding the shape of parameter variance space that reduce the reliabili-

ty of lower-order methods.
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III. Monte Carlo Method

Of course, the ultimate objective is to have available the entire joint confidence

probability distributions for each of the parameters being estimated in an analysis.

The Monte Carlo approach is unique in the sense that it is capable of determining

confidence interval probability distributions, in principle, to any desired level of

resolution and is conceptually extremely easy to implement (Bard, 1974; Press

et al., 1986b). The necessary information for application of a Monte Carlo method

for estimating confidence intervals and probability distribution profiles is 2-fold:

(1) an accurate estimate of the distribution of experimental uncertainties associated

with the data being analyzed and (2) a mathematical model capable of accurately

characterizing the experimental observations.

The Monte Carlo method is then applied by (1) analysis of the data for the most

probable model parameter values, (2) generation of ‘‘perfect’’ data as calculated by

the model, (3) superposition of a few hundred sets of simulated noise on the

‘‘perfect’’ data, (4) analysis of each of the noise-containing, simulated data with

subsequent tabulation of each set of most probable parameter values, and finally

(5) assimilation of the tabulated sets of most probable parameter values by gen-

erating histograms. These histograms represent discrete approximations of the

model parameter confidence probability distributions as derived from the original

data set and the distribution of experimental uncertainty contained therein.

The level of resolution attainable in determining confidence probability profiles by

thismethod is dependent on the number ofMonte Carlo ‘‘cycles’’ performed (i.e., the

number of noise-containing, simulated data sets considered). Themore cycles carried

out, the more accurate will be the resolution of the probability distribution. In

practice, this means that the amount of computer time needed to generate a probabil-

ity distribution will be of the order of 100–1000 times that required for an individual

parameter estimation (i.e., after �100–1000Monte Carlo cycles). This method must

therefore be considered a ‘‘brute force’’ type of approach to the determination of

parameter confidence intervals. Although the computational time required by the

Monte Carlomethod can be substantial, no othermethod is so easy to implement yet

capableof providing informationas complete aboutprofilesof confidenceprobability

distributions associated with estimated model parameters.

IV. Generating Confidence Probability Distributions for
Estimated Parameters

Implementation of theMonte Carlo confidence probability determination method

requires the initial estimation of the set of most probable parameter values that best

characterize some set(s) of experimental observations according to a suitable mathe-

matical model (i.e., one capable of reliably describing the data). [At this point, we will

proceed under the assumption that the mathematical model being used to analyze the

data is ‘‘valid.’’ The reader is referred to discussions addressing concepts related to
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judging thevalidityof analyticalmodels asdescriptorsof experimental data in termsof

either statistical probability (Straume and Johnson, 1992) or theoretical prediction

(Johnson andFaunt, 1992) (as opposed to simply empirical ‘‘fitting’’).]With this set of

best-fitmodel parameter values in hand, a set of ‘‘noise-free’’ data is next generated to

produce a data set made up of simulated ‘‘experimental points’’ calculated at exactly

the same independent variable values as those occurring in the original data. For

example, suppose that in a ligand-binding experiment measurements of some experi-

mental observable aremade asa functionof ligand concentration at, say, 0.1, 0.2, 0.25,

0.3, 0.33, 0.37, and 0.4 mM ligand. After the data are analyzed by an applicablemodel

for themostprobableparametervaluescharacteristicof thisdata set, theoreticalvalues

of the ‘‘expected’’ observable quantity are calculated from the model at 0.1, 0.2, 0.25,

0.3, 0.33, 0.37, and 0.4 mM ligand using the best-fit parameter values. The calculated

dependent variable values (the simulated ‘‘experimentalpoints’’) therefore correspond

to those values produced by evaluating the analytical model at the same independent

variable values encountered in the original data and employing the derived best-fit

parameter values.

In performing an analysis of the experimental data (to obtain the most probable

model parameter values), uniform, unit weighting of each experimental data point is

usually employed (i.e., each data point possesses a weighting factor of 1). In cases

where independent estimates of uncertainties are available for each of the observed

experimental values, weighting of the data by their estimated standard deviation is

desirable because a more statistically accurate parameter estimation will result

(Johnson and Faunt, 1992). This provides a basis for directly calculating the

variance of fit of the analytical model to the experimental data. The square root of

this variance of fit represents the estimated standard deviation in the experimental

data. In cases where variable weighting is employed, the square root of the variance

becomes a relative indicator of the quality of fit (relative to the absolute values of the

uncertainties used in weighting the data during the analysis). The assumptions

underlying this assignment are (1) that the model employed in analysis is capable

of accurately describing the data, (2) that the experimental uncertainty in the data is

randomly distributed, and (3) that there is no systematic behavior in the data that is

not accounted for by the analyticalmodel.When these three conditions are satisfied,

this estimate of the standard deviation of the experimental data permits realistic

approximations of the actual experimental uncertainty to be synthesized and super-

imposed on the noise-free, simulated dependent variable values.

Pseudorandom noise (Forsythe et al., 1977), with a distribution width defined by

the estimated standard deviation, is generated to be consistent with the actual

experimental uncertainty encountered in the original data. This pseudorandom

noise is added to the noise-free data set to produce simulated data possessing a

distributionof experimental uncertainty throughout the data.With variablyweight-

ed data, themagnitudeof the pseudorandomnoise that is added for a particular data

point is proportional to the estimated uncertainty associated with the data point.

A data set such as this corresponds to one possible distribution of noise on the

simulated, noise-free data andaccounts for both average systemproperties aswell as
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experimental uncertainties. A few hundred such simulated, noise-containing data

sets are generated and subsequently analyzed in the same manner and by the same

analytical model as was done with the original experimental data. The most proba-

ble model parameter values derived from the analysis of these simulated, noise-

containing data sets are then recorded as a group for each case considered.

An alternative way to generate synthetic noise sets is to rely on the residuals

actually produced as a result of the parameter estimation. With this approach, the

residuals obtained from an analysis are ‘‘reshuffled’’ to redistribute them among

the independent parameter values encountered in the original data. Again,

uniform, unit weighting is straightforward and direct, whereas variably weighted

data must take into account the variable relative uncertainties associated with data

obtained at different values of independent parameter space. This approach may in

some sense be viewed as ‘‘more correct’’ in that the actual noise distribution

obtained from analysis of the data is used—it is just redistributed among the

available independent variable values. No assumptions about the shape of the

actual probability distribution function are involved.

At this point exists a tabulation of a few hundred sets of most probable model

parameter values obtained from analysis of a spectrum of simulated data sets. The

properties of this group of data sets are meant to represent statistically what would

be expected had this many actual experiments been done. This information may be

assimilated in terms of probability distributions by generating histograms of

relative probability of occurrence as a function of parameter value (as in Figs. 1

and 2). These examples involved determinations of 500 simulated data sets, the

results of which were distributed into 51-element histograms to produce readily

discernible confidence probability distributions (Straume and Johnson, 1989). The

resolution of the determined probability distribution is dependent on the number

of simulated data sets considered and may be improved by analyzing a greater

number. In the example presented herein, 51-element histograms were employed

because they were judged as providing sufficient resolution as well as providing

intervals sufficiently populated to offer a statistically significant sample size.

V. Implementation and Interpretation

Knowledge of the full confidence probability distribution of model parameters

provides a most rigorous way to address questions regarding resolvability of

parameters characteristic of a mathematical model. The distribution of parameter

confidence probability is dependent on the scatter or noise present in the experi-

mental data as well as on the correlation between parameters of the model. The

mathematical linkage of these coupled properties of the data and the analytical

model parameters must be accounted for when estimating parameter confidence

intervals and when propagating uncertainties between parameter spaces.

Consider the example of propagating uncertainty for the case of a difference

between two derived free energy changes, as in the case for oxygen binding to

60 Martin Straume and Michael L. Johnson



R
el

at
iv

e
pr

ob
ab

ili
ty

−9.6 −9.4 −9.2
Δg�44  (kcal/mol)

−9.0 −8.8 −8.6
R

el
at

iv
e

pr
ob

ab
ili

ty

−8.50 −8.45 −8.40 −8.35 −8.30 −8.25
Δg�2i  (kcal/mol)

R
el

at
iv

e
pr

ob
ab

ili
ty

−1.2 −0.9 −0.6 −0.0−0.3
Δg�44 − Δg�2i  (kcal/mol)

4. Monte Carlo Confidence Probability Distribution 61



human hemoglobin (Straume and Johnson, 1989). The quaternary enhancement

effect in human hemoglobin (as quantified by the quaternary enhancement free

energy change, DgQE) may be defined as the difference between the free energy

changes associated with oxygenation of the last available site of hemoglobin

tetramers (Dg44) and that for binding oxygen to the last available site in dissociated

hemoglobin dimers (Dg22, or Dg2i for the case of noncooperative oxygen binding by

hemoglobin dimers). The quaternary enhancement free energy difference is there-

fore DgQE ¼ Dg44 – Dg2i. The significance of this parameter at the molecular level is

that it quantifies the cooperative oxygen-binding free energy gained by the macro-

molecular association of hemoglobin dimers to triply ligated tetramers.

The equilibrium for the molecular association of dimers to tetramers is coupled

to the oxygen binding properties of human hemoglobin. Mathematical modeling

of the behavior of oxygen-linked dimer-tetramer association involves estimating

parameters characteristic of the thermodynamic linkage scheme for this system

(Straume and Johnson, 1989). Oxygen-binding isotherms obtained over a range of

protein concentrations represent the two-dimensional data considered. When

analyzed, six model parameters require estimation. The actual parameter spaces

employed were those empirically judged to provide the most robust parameter

estimation (of those examined; Johnson et al., 1976; Straume and Johnson, 1988).

The analysis provides the most probable values for the oxygen-binding free energy

changes associated with binding at each step in the thermodynamic linkage scheme.

Twoof these areDg44 andDg2i, the parameters bywhich the quaternary enhancement

effect is most obviously defined. Estimates of joint confidence intervals for these

Fig. 1 Derived confidence probability distributions obtained from application of the Monte Carlo

method are presented here for three free energy change parameters characteristic of oxygen binding by

human hemoglobin tetramers. The parameter Dg44 is the intrinsic free energy change for addition of the

last (i.e., fourth) oxygen to hemoglobin tetramers, whereas Dg2i is that for oxygenation of dimer binding

sites. Because oxygen binding by dimers has been experimentally shown to be noncooperative, both free

energy changes Dg21 (for binding of the first oxygen) and Dg22 (for binding to the second site) are equal

and therefore identified as Dg2i. The quaternary enhancement effect (see text for further details) is

quantified by the difference Dg44 – Dg2i. The quaternary enhancement free energy change is therefore a

composite parameter that requires evaluation of the difference between the values of the two constituent

parameters by which it is defined, Dg44 and Dg2i. The confidence probability distribution for the

quaternary enhancement free energy change is demonstrated by these results to reside exclusively in

negative free energy space. This leads to the conclusion that, given the experimental data sets consid-

ered, quaternary enhancement is indeed indicated to exist under the conditions of the experimental

observations.The two distributions presented in each graph correspond to the results obtained by

considering two independent variable protein concentration oxygen-binding data sets [the solid lines

are derived from the data of Chu et al. (1984) (four binding isotherms at four protein concentrations for

a total of 283 data points), and the dotted lines are for the data of Mills et al. (1976) (five binding

isotherms at four protein concentrations for a total of 236 data points)]. The arrows in the upper parts of

the graphs correspond to estimates of the most probable and the upper and lower 67% confidence limits

for the distributions from the data of Chu et al. (lower set of arrows) and Mills et al. (upper set of

arrows). [Reproduced from Straume and Johnson, 1989, by copyright permission of the Biophysical

Society.]
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derived model parameters are also possible; however, they are difficult to obtain

reliably using numerical methods that search the analytical variance space. An

estimate ofDgQEnow requires subtractingDg44 –Dg2i. Butwhat about the confidence
interval associated with this best-estimate value of DgQE? If confidence intervals for

Dg44 and Dg2i are determined, a propagation of these uncertainties to that of DgQE is

possible. To account for correlation, however, rigorous methods tomap the variance

spaces of Dg44 and Dg2i to that of DgQE would have to be performed. This can be a

quite challenging task with an analytical model as involved as the thermodynamic

linkage scheme considered here for human hemoglobin.

In Fig. 1, we see the confidence probability distributions for Dg44 and Dg2i as
determined by application of the Monte Carlo method to two different sets of

oxygen-binding isotherms (Straume and Johnson, 1989). The distributions for Dg2i
are seemingly symmetric, whereas those for Dg44 are noticeably skewed toward

negative free energy space. The distributions obtained for DgQE (Dg44 – Dg2i, see
Fig. 1) are also (not surprisingly) noticeably skewed toward negative free energy

space. The significant point here is that the confidence probability distributions of

DgQE for either data set remain entirely in the negative free energy domain. This

result supports the conclusion that association of hemoglobin dimers to form

triligated tetramers is accompanied by a cooperative free energy change for oxygen

binding. In this case, the molecular structural changes experienced by hemoglobin

tetramers (relative to dissociated dimers) are responsible for the enhanced average

oxygen affinity of triligated tetramers. This conclusion about thermodynamic

properties, in turn, provides information that contributes to elucidating the molec-

ular mechanisms for transduction of information which ultimately modifies a

functionally significant biological property of this system.

Although the confidence probability distributions for Dg44, Dg2i, and DgQE do not

exhibit strong effects of parameter correlation or evidence of highly asymmetric

Fig. 2 Derived confidence probability distributions for the intermediate tetramer oxygen-binding free

energy changes Dg42, Dg43, and Dg4(2þ3) are presented. Binding of the second oxygen to singly ligated

hemoglobin tetramers is characterized by Dg42, and binding of the third oxygen to doubly ligated

tetramers is determined by Dg43. These two free energy change parameters exhibit very broad and highly

asymmetric confidence probability distributions. The distributions for the free energy change associated

with binding of two oxygens to singly ligated tetramers to produce triply ligated tetramers, Dg4(2þ3),

however, is only moderately asymmetric and spans a much narrower range of free energy space. This

property of the parameter confidence probability distributions leads to the conclusion that the free energy

change for adding two oxygens to singly ligated hemoglobin tetramers may be confidently determined,

whereas the partitioning of this free energy change between the two steps (singly-to-doubly ligated and

doubly-to-triply ligated) is very poorly resolvable (from the experimental data considered in this analysis).

Propagation of the highly correlated and asymmetric uncertainties of Dg42 and Dg43 to estimate those of

Dg4(2þ3) would require performing a sophisticated mapping of the three variance spaces relative to each

other to provide reliable uncertainty estimates for Dg4(2þ3). By using the Monte Carlo method, propaga-

tion of uncertainties is quite straightforward because the method implicitly accounts for all parameter

correlation effects. Possessing the tabulated results from a Monte Carlo confidence probability determi-

nation therefore permits generation of complete probability profiles for any other parameter space of

interest, as long as it may be obtained from the parameters for which distributions have been determined.
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variance spaces, the same is not the case forDg42,Dg43, andDg4(2þ3) (seeFig. 2).Here,

Dg42 is the average free energy change for adding the second oxygen to hemoglobin

tetramers, Dg43 is that for adding the third, and Dg4(2þ3) is that for adding the second

and thirdoxygens (i.e., forproceeding fromsingly ligated tetramers to triligatedones).

As clearly shown,Dg42 andDg43 show very broad and highly asymmetric (in opposite

directions) confidence probability distributions. However, the probability distribu-

tions for Dg4(2þ3) (the sum of Dg42 andDg43) are symmetric and spanmuch narrower

rangesof free energy space thandoes eitherDg42orDg43.Here is a casewhere effects of

both strong correlation and highly asymmetric parameter variance spaces are demon-

strated. The conclusion from the standpoint of a physical interpretation is that it is

possible to quantify with considerable confidence the free energy change associated

withgoing fromsingly to triply ligated tetramersbutnothow this free energychange is

partitionedbetween adding the second and adding the third oxygens (at least from the

particular data being considered in this analysis).

VI. Conclusion

The application of ever more sophisticated analytical protocols to interpretation

of experimental data has been made possible largely from ongoing advances in

computer technology, both in terms of computational power and speed as well as

affordability. Biological scientists thus now have convenient access to analytical

capabilities superior in many ways to that available in the past. Continued devel-

opments in both computer hardware and software will undoubtedly lead to more

widespread use of sophisticated parameter-estimation algorithms that may, in

principle, be applied to any analytical situation.

The estimation of most probable (or best-fit) model parameter values is, of

course, the primary objective of the great majority of analytical procedures.

However, the statistical validity of an interpretation of system properties (based

on the most probable derived parameter values) may be critically dependent on the

nature of the confidence probability distributions associated with these para-

meters. In those cases where detailed knowledge of entire confidence probability

distributions is needed, the Monte Carlo method is capable of providing the

necessary information while minimizing the number of assumptions that are

implicit (to varying degrees) in other confidence interval estimation protocols.

The total computer time needed to carry out a Monte Carlo confidence proba-

bility determination is directly proportional to the number of Monte Carlo

‘‘cycles’’ needed to produce the desired level of resolution in the probability profile

(typically in the range of �500 estimations). Therefore, although other, more

approximate methods will produce estimates of parameter confidence intervals

using considerably less computer time, the Monte Carlo approach described here

circumvents the approximations implicit in these methods and produces the most

accurate, experimentally based and numerically derived profiles of entire confi-

dence probability distributions associated with estimated parameters of any ana-

lytical model as applied to any particular data set(s).
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TheMonteCarlomethod also implicitly fully accounts for all correlations among

model parameters. After the original most probable parameter values obtained

from a Monte Carlo analysis are tabulated, it is possible to generate directly

complete confidence probability distributions for any composite parameters (e.g.,

DgQE or Dg4(2þ3)) from knowledge of the distributions of and correlations between

constituent parameters (i.e., Dg44 and Dg2i or Dg42 and Dg43 for DgQE and Dg4(2þ3),

respectively). Propagating uncertainties in this way requires no assumptions about

the correlation among parameters and obviates the need for complex mapping of

variance spaces to convert from one parameter space to another.
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I. Introduction

Two of the most common characteristics of data include heteroscedasticity

(heterogeneity of variance) and skewness. Unfortunately, these are features that

are often ignored or improperly considered for their impact on inference and

estimation in a statistical model of biological relationships. As is often the case,

however, it can be extremely time consuming and computationally messy to
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consider skewness and heteroscedasticity. Although assumptions of homogeneity

of variance and symmetry will frequently lead to reasonable conclusions, there are

many occasions, in terms of efficiency and prediction, where ignoring important

distributional properties can have serious consequences.

This chapter examines the effect of heteroscedasticity and skewness as it affects

inference and prediction in regression. An example is presented in pediatric cardi-

ology where interest centers on developing models of growth of the normal human

heart as a function of increasing body size. Such models are useful in helping

identify growth that is both normal and abnormal. The data presented represent

one of the most common types of statistical problems that are encountered in

modeling biological relationships. The selected example serves as a useful means

for describing the general effects of heteroscedasticity and skewness on traditional

analytical procedures which commonly require assumptions of constant variance

and symmetry for valid statistical testing to be undertaken. We illustrate the

consequences of ignoring heteroscedasticity and skewness based on three methods

of estimation.

II. Example from Modeling Growth of the Human Heart

The data presented here were gathered by the Division of Pediatric Cardiology

in the Department of Pediatrics at the University of Virginia Health Sciences

Center. The data are derived from 69 normal children ranging in age from infancy

to 18 years. Among the many indices of cardiac development, aortic valve area

(AVA) is used in this chapter to reflect size of the human heart (Gutgesell and

Rembold, 1990). The index used for body size will be body surface area (BSA), a

quantity derived from height and weight that has been widely used as a proxy for

growth and physical development (Gutgesell and Rembold, 1990).

In this chapter, interest is in developing a regression model that can be used to

predict a range of normal values of AVA for a given BSA. In particular, we wish to

establish boundaries which discriminate between normal and abnormal values of

AVA.We are also more interested in the lower boundary than the higher boundary

of AVA prediction because low AVA is more likely to be a marker of abnormal

cardiac development (aortic stenosis). Although the prognostic significance of low

AVA values is not addressed, low AVA is a precursor of various cardiac conditions

that are observed later in adult life, including left ventricular hypertrophy and

cardiac failure.

The data from the 69 normal children are displayed in Fig. 1. The lower range of

BSA levels (<0.5 m2) correspond to infants, and the higher values (>1.5 m2)

correspond to teenagers. There is considerable heteroscedasticity in the data; in

other words, as BSA increases, the variability in AVA increases. Although skew-

ness in the data is less apparent, it will be shown that its effect on prediction in this

example is at least as important as the effect of heteroscedasticity.
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The first step in modeling the relationship between AVA and BSAmight be to fit a

simple straight line through the data. In fact, there is no evidence from the data to

suggest that more complicated models would be better. Similar relationships have

been observed in adults (Davidson et al., 1991). The model we use will have the form

Yi ¼ aþ bXi þ ei; ð1Þ
for i¼ 1, . . .,N, where for the ith child, Yi¼AVAi,Xi¼ BSAi, and ei represents the
random error around the regression line. The unknown regression coefficients are

a and b. For notational simplicity, we suppress the i subscript.

Once the regression model has been estimated, we next create boundaries which

encompass 95% of the normal values for a given BSA. The selection of 95%,

although arbitrary, is not an uncommon level of confidence that is selected in

medicine for the purpose of classification and prediction. It can always be easily

changed to meet specific needs.

In terms of modeling growth of the human heart, the boundaries can help define

a range of values which are characteristic of normal growth in AVA with increas-

ing BSA. Although the original purpose of collecting the data set was to describe

the physiology of cardiac development through the early years of life, one could

also imagine that the boundaries have clinical use as well. For example, a child who

falls outside the boundaries might be thought of as unusual or atypical. Although

the child might still have normal cardiac development, falling outside the bound-

aries which encompass 95% of normal heart growth suggests that the child is more

like children who are abnormal. Misclassification here would be a type I error.

Further monitoring of the child by the cardiologist may be warranted if the child

has an AVA which is unusually low. For a given BSA, a child who falls within the

95% boundary is more likely to resemble normal children and should probably be

classified as normal (a mistake would be a type II error).
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Fig. 1 Observed levels of aortic valve area and body surface area in 69 normal children.
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III. Methods of Estimation

A. Method I: Ordinary Least Squares

From ordinary least squares, (Neter andWasserman, 1974) based on a sample of

size N, we choose estimates a and b to estimate a and b in Eq. (1), respectively,

where a and b minimize the error sum of squares between the observed value of Y

and the expected value from the estimated equation a þ bX; that is, we choose a

and b to minimize

S½Y � ðaþ bXÞ�2 ¼ Se2: ð2Þ
In ordinary least squares estimation, we assume that the errors (e) in Eq. (1) are

normally distributed around the regression line. In particular, it is assumed that the

variance of the errors in Eq. (1) is constant (homoscedastic) with changing levels in

X and that the distribution of the errors is symmetric.

Once the regression line is estimated, then a 95% prediction interval for a new

observation is given as

95%prediction interval ¼ aþ bX � z0:975ðspÞ; ð3Þ
where

sp ¼ ½s2 þ VarðaÞ þX2 VarðbÞ þ 2XCovða; bÞ�1=2 ð4Þ
and z0.975 ¼ 1.96 is the 97.5th percentile from a normal distribution. With smaller

sample sizes, z is usually replaced with the 97.5th percentile from a t distribution

with n � 2 degrees of freedom. In Eq. (4), Var(a) and Var(b) are the estimated

variances of a and b, respectively. Cov(a, b) is an estimate of the covariance

between a and b, and s2 ¼ Se2=ðn� 2Þ.
Estimation of Eq. (1) and the 95% prediction interval in Eq. (3) based on

ordinary least squares yields the result displayed in Fig. 2. There are two major

deficiencies in the estimation procedure, although the simple linear regression

model appears to fit the data well. The first deficiency is the result of assuming

that the variance of errors is constant across the regression line. This assumption

results in the prediction that all infants will have normal cardiac development. In

fact, for ranges of BSA less than 0.5 m2, a low AVA in infants will always be within

the range of normal growth (it is impossible to have a negative AVA). Constant

variance also assumes that approximately the same prediction interval width can

be used for infants and teenagers. Clearly, it is easier to identify unusual cardiac

development in the older age ranges based on this assumption, with the opposite

effect occurring in infants. The circled observations in Fig. 2 illustrate this point.

The second deficiency in ordinary least squares estimation as it is used for the

cardiac data is now more apparent. In Fig. 2 the data are skewed to the right, that

is, there are greater deviations in AVA that fall above the regression line than

below. As a result, it would be more unusual to find data that fall below the lower

prediction boundary as compared to that falling above the upper boundary. This
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becomes more serious as younger children are studied. For the cardiac data, this is

a serious problem as abnormal cardiac growth is associated with low AVA. If the

lower boundary is placed too low, however, then abnormalities will be harder to

identify. It is more common, as confirmed in Fig. 2, to find unusually high values

of AVA, but there is no evidence suggesting that high AVA has any adverse

consequences—it may even be associated with cardiovascular benefits.

B. Method II: Weighted Least Squares

If we ignore, for the moment, the problem imposed by skewness, we should at

least consider alternatives to ordinary least squares estimation, which will account

for the heteroscedasticity in the data. Although several alternatives exist, the best

known is weighted least squares estimation (Neter and Wasserman, 1974).

In weighted least squares, we again are interested in estimating the parameters in

Eq. (1), but now we relax our assumption that the variance of the errors is

constant. Figure 3 shows how the variability in levels of AVA changes with BSA.

Here, the estimated standard deviation of AVA is calculated within specific ranges

of BSA. The linear increase in the estimated standard deviations suggests that the

variance of the errors, Var(e), might be modeled as follows:

VarðeÞ ¼ ’2ðgþ dXÞ2: ð5Þ
Here, g and d are regression coefficients associated with the linear increase in the

standard deviation of the errors as a function of BSA. As can be seen below, f2 is a

constant variance term for the errors e* that appear in the following reparameterized

model:
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Fig. 2 The 95% prediction intervals for aortic valve area based on a prediction from body surface area

using ordinary least squares estimation.

5. Heteroscedasticity and Skewness in Regression 71



Y=ðgþ dXÞ ¼ a=ðgþ dXÞ þ bX=ðgþ dXÞ þ e=ðgþ dXÞ ð6Þ
which is equivalent to the linear regression model

Y � ¼ aZ þ bX� þ e�: ð7Þ
Notice that the parameters a and b are the same as in Eq. (1), but now the

variance (f2) of the errors (e*) in Eq. (7) is a constant. The idea was to reparame-

terize Eq. (1) with heteroscedastic errors and create a new Eq. (7) where the errors

can be assumed to be homoscedastic. If we choose to estimate g and d in Eq. (5)

using ordinary least squares, then we can proceed to estimate the parameters in

Eq. (7) and approximate 95% prediction intervals also using ordinary least squares.

In our example, estimates of g and d are from the estimated regression line in Fig. 3.

The 95% prediction interval is then approximated by Eq. (3), but sp is replaced with

sp ¼ ½h2ðgþ dXÞ2 þ VarðaÞ þ X 2 VarðbÞ þ 2XCovða; bÞ�1=2: ð8Þ
Here, g and d are ordinary least squares estimates of g and d in Eq. (5),

respectively, and h2 ¼ Se�2=ðn� 2Þ is an estimate of f2. Notice that use of

Eq. (8) ignores the error in estimating g, d, and f2.

Figure 4 presents the results from the weighted least squares approach. Al-

though the problem of heteroscedasticity has been addressed, the problem of

skewness continues to be an issue. For the upper 95% boundary, two additional

individuals are identified in the younger age range with abnormally high levels of

AVA, and one older subject identified as having an abnormally high AVA based

on ordinary least squares estimation (see Fig. 2) is now within the normal range of

cardiac development. Unfortunately, except for this last subject, not accounting

for skewness has resulted in an upper boundary which may be too low for younger
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children. Normal cardiac development has a greater chance of being identified as

being abnormally high. Although misclassification in this region has consequences

which are probably unimportant, the misclassification that occurs can be largely

attributed to ignoring the long tails that occur in skewed data.

Although the prospects for identifying abnormalities in infants have improved,

it does not occur for low values of AVA where abnormal cardiac development is

more likely to occur. In fact, across all values of BSA, none of the AVA values is

close to the lower 95% boundary where abnormal cardiac development is of

greatest interest. Not accounting for skewness has created a lower boundary

which has increased the range of normal values for AVA in which abnormal

cardiac development has a greater chance of being classified as normal. Misclassi-

fication in this region is most serious.

C. Method III: Transform Both Sides

Although other methods exist for modeling heteroscedasticity and skewness, the

most common or logical alternative to ordinary least squares and weighting is

based on transformations. One approach includes a modified power transforma-

tion (Box and Cox, 1964). The idea is to produce a single expression for a

transformation that includes the most common types of transformations that are

used to induce constant variance and approximate normality. If Y is a dependent

variable as in Eq. (1), then we let

hðY ; lÞ ¼ ðY l � 1Þ=l if l 6¼ 0

¼ logðY Þ if l ¼ 0;
ð9Þ

where l is a new power transformation parameter. Choosing l ¼ 0 means taking

the log transformation, choosing l ¼ 0.5 means taking the square root transfor-

mation, choosing l < 0 includes inverse transformations, and choosing l ¼ 1.0

means taking no transformation.
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Fig. 4 The 95% prediction intervals for aortic valve area based on a prediction from body surface area

using weighted least squares estimation.

5. Heteroscedasticity and Skewness in Regression 73



Such transformations can have several effects on inducing symmetric errors. If

the data are skewed to the left, then l > 1. An example of such data includes

gestational time. When l> 1, h(Y, l) is a convex function in Y. This means that for

data which are left skewed values in the long left tail will be pushed to the right and

values in the blunted right tail will be pulled apart. The effect is to make the data

more symmetric.

If data are skewed to the right, as in the heart growth data, then l < 1. Here,

h(Y, l) is a concave function in Y, which has a similar but opposite effect on data

than when l > 1. When data are symmetric, l ¼ 1. Notice that when l tends

asymptotically to 0, (Yl - 1)/l tends asymptotically to log(Y). The log is probably

the most common type of transformation used in medical research for correcting

for right skewed data. Its use falls among the class of transformations (l < 1) for

data with long right tails.

Because selection of the log transformation in medical research is often arbi-

trary, the advantage of the transformation defined by Eq. (9) is that it can provide

a means for systematically searching for better transformations. Although the log

transformation is one of many possible transformations included in Eq. (9), alter-

natives for right skewed data which may be better than the log can be considered.

Transformations for left skewed data are also included as well. In addition,

corrections to heteroscedasticity can occur (Carroll and Ruppert, 1988). One single

transformation, however, does not always work. Even after estimation of l, one
still has to question model adequacy, heteroscedasticity, and skewness, as should

be the case in ordinary and weighted least-squares estimation.

The problem with the transformation in Eq. (9) is that now the heart growth

model becomes

hðY ; lÞ ¼ aþ bX þ e: ð10Þ
This is not the simple model we began with that describes a straight line

relationship between AVA and BSA. In fact, the relationship is destroyed under

Eq. (10). To preserve the simple linear relationship that is supported by Fig. 1 and

similar data from adults, instead of transforming Y we transform both sides of

Eq. (1) as follows:

hðY ; lÞ ¼ hðaþ bX ; lÞ þ e

or

ðY l � 1Þ=l ¼ ½ðaþ bXÞl � 1�=lþ e: ð11Þ
Equation (11) is referred to as the transform both sides (TBS) model (Carroll

and Ruppert, 1984). The relationship between Y and X is preserved, but now e
represents the error in prediction of h(Y, l) from h(a þ bX, l). Of course, the error

in Eq. (11) subjects it to the usual distributional concerns of heteroscedasticity and

skewness, but it is hoped that the TBS model has altered these deficiencies in a way

that makes prediction reasonable.
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Although one can always generalize Eq. (11) further, it is sufficient in the heart

growth example to assume that the TBS model has resulted in symmetric errors

and homoscedasticity. Carroll and Ruppert (1988) consider the case when the error

variance is not constant. Implementing both weighting and transformation is a

possible option. One could also consider different power transformations for the

right-hand and left-hand sides of Eq. (11). The major disadvantage of Eq. (11), and

more complicated alternatives, is that we now have a nonlinear model, although a

linear relationship between Y and X remains preserved inside Eq. (11). Although

computationally more messy, it may be worth the effort to achieve symmetry and

homoscedasticity for making proper predictions.

Fortunately, for the heart growth data, the TBS model results in errors that are

nearly symmetric and homoscedastic. As a result, we assume that the errors (e) are
independent and identically distributed with mean m ¼ 0 and variance s2 ¼ 1. An

assumption of a normal distribution can also be imposed on the errors. If normality

is assumed, then based on the conditional density of Y given X, the likelihood of

the data is maximized for fixed a, b, and l when s2 is estimated by

s2 ¼ S½hðY ; lÞ � hðaþ bX ; lÞ�2=N: ð12Þ
Maximizing the likelihood is then equivalent to choosing a, b, and k to estimate

a, b, and l, respectively, that minimize

S ½hðY ; kÞ � hðaþ bX ; kÞ�=Gk
� �2

; ð13Þ
where G ¼ (PY)1/N is the geometric mean of Y. Minimizing Eq. (13) seems like a

reasonable goal to achieve even in the presence of nonnormality.

The problem with estimating a, b, and l based on minimizing Eq. (13) is that

most nonlinear regression computer routines do not allow the response to depend

on unknown parameters, in this case l. One solution is to create a ‘‘pseudomodel’’

(Carroll and Ruppert, 1988). Here, we fit the model

0 ¼ ½hðY ; lÞ � hðaþ bX ; lÞ�=Gl þ e; ð14Þ
that is, we regress a ‘‘pseudoresponse’’ of 0 onto the right-hand side of Eq. (14).

Note that the least-squares estimates from the pseudomodel minimize Eq. (13) and

are therefore maximum likelihood estimates of a, b, and l in Eq. (11).

To approximate the 95% prediction intervals for Y, we first transform Eq. (11)

back into the original units of Y as follows:

Y ¼ ½ðaþ bXÞl þ le�1=l: ð15Þ
If we ignore estimation errors in a, b, l, and s2, then the pth quantile of Y given

X is

qpðY jXÞ ¼ ½ðaþ bXÞl þ lF�1ðpÞ�1=l; ð16Þ
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where e has distribution F. If the errors are normally distributed, then we replace

F�1(p) with sF�1(p). An approximate 95% confidence interval becomes

95%Confidence interval ffi ½q0:025ðY jXÞ; q0:975ðY jXÞ�: ð17Þ
For large samples, ignoring the errors in a, b, l, and s2 has few consequences.

Because of the computational complexity involved, the errors in estimating these

parameters are often ignored in practice (Carroll and Ruppert, 1988). In our

example, ignoring the errors is probably not important as there is some mitigating

effect arising from the negative covariance between estimates of a and b. More

refined estimation methods which include simulation and resampling techniques

are described elsewhere (Carroll and Ruppert, 1991). As will be seen, the simpler

formulation based on Eqs. (16) and (17) and assumption of normality of the errors

or estimation of the empirical distribution function produce results that are un-

likely to be improved in the heart growth example. With large enough samples, the

prediction intervals would be expected to include an average of 95% of the

observations across the entire range of X. Large departures from this percentage

may indicate that ignoring the errors in a, b, l, and s2 is inappropriate.
The fitted regression line from the TBS Eq. (11) and 95% prediction intervals

based on Eqs. (16) and (17) for the heart growth data are displayed in Fig. 5. The

dots represent the observed levels of Y ¼ AVA after transformation, (Yk � 1)/k,

and the solid line is given by [(a þ bX)k � 1]/k where X ¼ BSA. The dashed lines

represent the 95% prediction boundaries where the distribution of the errors is

derived from the empirical distribution function. Assume that normality has little

effect on the placement of the boundaries. The distribution of the errors around the

regression line now appears homogeneous across values of BSA. Figure 6 displays

the standard deviations for the errors in the TBS model for various ranges of BSA.

The estimated standard deviations appear to be more constant. Skewness is also
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body surface area using transform both sides estimation.
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less apparent as there are now some low values of AVA which fall below or are

closer to the lower prediction boundary.

Transforming back to the original units yields Fig. 7. The effect on prediction by

using the TBS model is more apparent here. The 95% prediction intervals account

for the heteroscedasticity in the errors, as does the weighted least squares approach

in Fig. 4. However, the lower prediction boundary has now been raised, correcting

for the problem imposed by right skewness. There are now clear opportunities for

abnormal cardiac development to be identified in infants as well as older children.
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IV. Discussion

Correct prediction and proper classification of diseased conditions is essential to

the practice of medicine. It is often the case that defining an abnormal condition is

determined by what is normal. Identifying individuals who fail to conform to

normal standards of physical development is important in the diagnosis of disease

and in determining prognosis.

In this chapter, we are interested in developing a regression model which can be

used to predict a range of normal values of AVA in children for a given BSA. In

particular, we are interested in establishing boundaries which discriminate between

normal and abnormally low values of AVA on an individual basis. Although these

boundaries may have some clinical use, our focus is on the effects of heteroscedas-

ticity and skewness in helping to estimate the boundaries. We believe that these

effects are extremely common in medicine where minimal levels of certain elements

are common in biological systems (zero is always the best lower bound) but

excesses can have wide variation. An example of such data that are right skewed

is serum triglyceride. The opposite occurs with gestational time.

In an investigation of growth, it seems natural to expect that increases in

anatomy will promote greater diversity of structures that can comprise an area.

Some structures develop more quickly than others as increased heterogeneity

evolves between individuals. Increased heterogeneity with growth can also be

expected as exposure to diversity in diet, pollution, and social conditions increases.

Assuming that a statistical model is correct and the errors are independent,

heteroscedasticity and skewness can have a major effect on classic regression

analysis for estimation and prediction. As can be seen in Fig. 2, assuming that

the errors have constant variance across all levels of BSA results in frequent

misclassifications of infants with abnormal AVA as being normal. Older children

with normal AVA have a greater chance of being misclassified as abnormal.

Assuming that the errors are symmetrically distributed around the regression

line makes it difficult to identify abnormal cardiac development at any age. This is

apparent from Fig. 4 where the lower prediction boundary is set too low, particu-

larly in infants. The TBS model, however, accounts for skewness in the data, the

key factor which is most likely to influence misclassification of abnormally low

levels of AVA as being normal.

For our example, we believe that ignoring the errors in a, b, l, and s2 has

negligible effects on the placement of the prediction boundaries. The distribution

of points near the prediction boundaries is rather similar for older and younger

children. Exceptions may occur near BSA levels of 2.0 m (Davidson et al., 1991),

but this could be due to the limited sample size in this range of BSA. The scatter of

points relative to the prediction boundaries is consistent with what would be

expected from creating 95% prediction intervals. Of course, improved placement

of the boundaries can be accomplished by resampling techniques and other meth-

ods (Carroll and Ruppert, 1991), but generalizing these ideas to a broad range of

linear and nonlinear regression models is difficult.
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Use of the TBS method has also resulted in regression coefficients that are

similar to those estimated by ordinary and weighted least squares (see Table I).

In all estimation approaches, the estimates of a are similar and not significantly

different from zero. The estimates of b are also similar but statistically significant,

suggesting that AVA has a true relationship to BSA. Often, the TBS method

results in more efficient parameter estimates. The standard errors for the estimates

of a and b are smaller than those for the other estimation procedures. From the

TBS model, the standard error of the estimate of l is determined numerically from

the negative of the inverse of the second derivative of the likelihood with respect to

l (Carroll and Ruppert, 1988). The estimate of l in Table I is significantly different

from zero, which suggests that the log transformation may not be suitable. It is also

significantly different from one, which suggests that some correction is in order.

In general, we believe that heterogeneity of variance and skewness are common

characteristics in the distribution of data. The effects of these features can be small,

but for data similar to the heart growth example, the effect on prediction can be

large. Weighting alone may not be sufficient, although the TBS method may not

always work either. Nevertheless, awareness of the effects of heteroscedasticity and

skewness on prediction is important, as is the need to identify methods which can

correct for their influence. Transformation and weighting offer many possibilities.

Acknowledgments

Supported by National Heart, Lung, and Blood Institute Contract NO1-HC-05102 (to the Honolulu

Heart Program) and by National Institutes of Health Grant RR-00847 (to the University of Virginia

General Clinical Research Center).

References

Box, G. E. P., and Cox, D. R. (1964). J. R. Stat. Soc. Ser. B 26, 211.

Carroll, R. J., and Ruppert, D. (1984). J. Am. Stat. Assoc. 79, 321.

Table I
Regression Coefficient Estimates Based on Ordinary and Weighted Least Squares and
Transform Both Sides Methods

Method of estimation Coefficient Estimate Standard error p Value

Ordinary least squares a 0.0128 0.0819 0.876

b 1.3356 0.0869 <0.001

Weighted least squares a 0.0434 0.0338 0.204

b 1.2915 0.0761 <0.001

Transform both sides a 0.0279 0.0292 0.339

b 1.2656 0.0715 <0.001

l 0.2090 0.0955 0.029

5. Heteroscedasticity and Skewness in Regression 79



Carroll, R. J., and Ruppert, D. (1988). ‘‘Transformation and Weighting in Regression.’’ Chapman &

Hall, New York.

Carroll, R. J., and Ruppert, D. (1991). Technometrics 33, 197.

Davidson, W. R., Jr., Pasquale, M. J., and Fanelli, C. (1991). Am. J. Cardiol. 67, 547.

Gutgesell, H. P., and Rembold, C. M. (1990). Am. J. Cardiol. 65, 662.

Neter, J., and Wasserman, W. (1974). ‘‘Applied Linear Statistical Models.’’ Richard D. Irwin, Inc.,

Homewood, IL.

80 Robert D. Abbott and Howard P. Gutgesell



CHAPTER 6

Singular Value Decomposition: Application
to Analysis of Experimental Data

E. R. Henry and J. Hofrichter
Laboratory of Chemical Physics
NIDDK, National Institutes of Health
Bethesda, MD, USA

I. Update

II. Introduction

III. Definition and Properties

A. Singular Value Decomposition of Known Data Matrix

IV. Singular Value Decomposition of Matrices Which Contain Noise

A. Random Matrices

B. Noise-Averaging by Singular Value Decomposition

C. Statistical Treatment of Noise in Singular Value Decomposition Analysis

D. Singular Value Decomposition of Matrices Containing Rank-1 Noise

V. Application of Singular Value Decomposition to Analysis of Experimental Data

A. Preparation of Data Matrix

B. Calculation of Singular Value Decomposition

C. Analysis of Singular Value Decomposition Output

D. Rotation Procedure

E. Application of Physical Models to Processed Singular Value Decomposition

Output

VI. Simulations for a Simple Example: The Reaction A ! B ! C

A. Effects of Random Noise

B. Combined Effects of Random and Wavelength-Correlated Noise

VII. Summary

References

ESSENTIAL NUMERICAL COMPUTER METHODS
Copyright # 2010, Elsevier Inc. All rights reserved. 81 DOI: 10.1016/B978-0-12-384997-7.00006-6



I. Update

Since the publication of this article, the expansion in the scope of application of

SVD-based analysis techniques to experimental data has been driven largely by the

evolution of the computing field itself. On the one hand, the orders-of-magnitude

increase in both CPU speeds and memory capacities has enabled the treatment of

data sets far larger than could have been contemplated even a decade ago, extend-

ing, for example, to SVD analysis of sets of electron-density maps in X-ray

crystallography (e.g., ‘‘Analysis of experimental time-resolved crystallographic

data by singular value decomposition,’’ Rajagopal et al., 2004). On the other

hand, the availability of the SVD algorithm itself in off-the-shelf analysis programs

such as MATLAB and Mathematica, as well as its incorporation into what has

become the de facto standard of matrix analysis libraries, the LAPACK library,

have placed the necessary facilities in the hands of researchers and programmers

everywhere.

The compact representation of the essential information content of a data set

provided by the SVD was touted in the article as an important advantage of this

approach over so-called global analysis, especially in the face of limited computing

resources. The dramatic increase in available computational power noted above

has to some extent rendered this specific point moot. However, the unique ‘‘cross-

sectional’’ view of a data set provided by proper use and interpretation of the SVD

makes it an extremely powerful diagnostic and analytical tool, independently of

any considerations of computational efficiency. In a subsequent article (Henry,

1997), we have presented a unified view of modeling of matrix data sets applicable

to both SVD-based and global analysis procedures; we have often integrated both

methodologies into our own work in order to best exploit their respective

strengths.

Tips and Caveats Concerning the Use of the Technique:

We believe that this technique has a place in any toolkit for the numerical

analysis of experimental data. However, like most analytical tools, its effective

use benefits from a deeper understanding of its specific powers and limitations. In

this article we have attempted to bring out the various types of information that

SVD and associated processing algorithms are able to reveal about a set of

measurements. First and foremost, it must be emphasized that it is a purely

mathematical procedure, the workings of which are in no way a reflection of the

physical reality underlying the measurements. This analysis provides a convenient

way to estimate the effective rank of a set of measurements—that is, within

measurement errors the number of linearly independent components present in

varying proportions in the data—but the actual such components provided by the

analysis are simply a basis set defined entirely by the mathematical properties of

the data set and should not be assigned a priori any deeper physical significance. To

use this basis set as more than a noise-filtered representation of the original data set
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requires some sort of model framework by which a description of physically

meaningful species in terms of this basis set may be produced.

The need for an appreciation of the mathematical aspects of the analysis

extends to some of the possible post-processing steps that were described. One

caveat of this sort was discussed in the article, but bears repeating. Because the

rotation algorithm can be very effective in further separating signal from noise in

the SVD output, there might be a temptation to incorporate a larger fraction of

this output (i.e., a larger number of component vectors) in the procedure.

However, it may easily be demonstrated that, in the limit in which the entire

SVD output is included in the rotation procedure, the number of mathematical

constraints introduced is sufficient to fix the final rotated vectors to a form that is

completely independent of the initial input. That is, the output of the rotation of

the entire set of V vectors from the SVD of a measured data matrix is identical to

the output of the rotation of the V vectors from the SVD of any random matrix

of the same size. This observation adds considerable weight to the caution in the

article against using more than a small fraction of the SVD output in the

rotation procedure.

In the article we have gone to great lengths to characterize the statistical proper-

ties of the SVD procedure in the presence of measurement noise, using idealized

simulations of experimental data sets. For most applications, these basic observa-

tions, as well as semi-quantitative estimates such as that in Eq. 33, should provide a

good starting point for a sound statistical treatment of the results. However, there

is no true substitute for a detailed understanding of the sources and statistical

properties of the measurement errors in a specific experiment, which can provide

the basis for simulations to guide the interpretation of the results of the SVD

analysis.

II. Introduction

The proliferation of one- and two-dimensional array detectors and rapid scanning

monochromators during the 1980s has made it relatively straightforward to charac-

terize chemical and biochemical systems bymeasuring large numbers of spectra (e.g.,

absorption or emission spectra) as a function of various condition parameters (e.g.,

time, voltage, or ligand concentration). An example of such a data set is shown in

Fig. 1. These data were obtained by measuring absorption difference spectra as a

function of time after photodissociation of bound carbon monoxide from modified

hemoglobin. The difference spectra are calculated with respect to the CO-liganded

equilibrium state.We will use this data set as an illustrative example at several points

in the following discussion. As such experiments have become easier to carry out;

two alternative approaches, one based on singular value decomposition (SVD)

(Golub and VanLoan, 1996; Horn and Johnson, 1990,1994; Lawson and Hanson,

1974) and the other called global analysis (Golub and Pereyra, 1973; Johnson et al.,

1981; Knutson et al., 1983; Nagel et al., 1982), have emerged as the most general
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approaches to the quantitative analysis of the resulting data. Before beginning a

detailed discussion of SVD, it is worthwhile to compare briefly these two alternative

approaches.

Suppose that we have collected a set of time-resolved spectra (e.g., the data in

Fig. 1) measured at nl wavelengths and nt times which we wish to analyze in terms

of sums of exponential relaxations. That is, we wish to represent the measured data

matrix in the form

Aij ¼ Aðli; tjÞ ¼
Xnk
n¼1

anðliÞe�kntj ; ð1Þ

for each li. An obvious approach to solving this problem is to use global analysis,

in which all of the nl vectors of time-dependent amplitudes (i.e., all of the columns

of the data matrix) are simultaneously fitted using the same set of nk relaxation

rates {k} (Knutson et al., 1983; Nagel et al., 1982). The total number of parameters

which must be varied in carrying out this fit is (nl þ 1) � nk. Such a fit to the

unsmoothed data represented in Fig. 1 would require fitting 91(480) ¼ 43,680 data

Wavelength (nm)

420 440 460400

Log (tim
e)

–8

–1

Fig. 1 Time-resolved absorption-difference spectra measured after photodissociation of

a2(Co)b2(FeCO)hemoglobin by 10 ns, 532 nm laser pulses. The original data consisted of 91 sets of

intensities measured for both photodissociated and reference (equilibrium sample) portions of the same

sample at 480 channels (wavelengths) using an optical multichannel analyzer (OMA) and vidicon detector

(Hofrichter et al., 1983, 1985; Murray et al., 1988). Background counts from the vidicon measured in the

absence of the measuring flash and baseline intensities measured in the absence of the photodissociating

flash were also collected. The spectra were calculated by subtraction of the backgrounds from each set of

measured intensities and calculationof the absorbance-difference spectra as the logarithmof the ratio of the

corrected intensities. These spectra were then corrected for the appropriate baseline. The resulting spectra

were averaged using aGaussian filter having the spectral bandwidth of the spectrograph (4 pixels) and then

truncated to101wavelengthpoints at approximately 0.8 nm intervals toproduce the results shown.Positive

signals arise from deoxy photoproducts and negative signals from the CO-liganded reference state(Data

courtesy of Colleen M. Jones.).
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points to a total of (480 þ 1)5 ¼ 2405 parameters; reducing the data by averaging

over the spectral bandwidth, pruning of regions where the signals are relatively

small, and sampling at 101 wavelengths reduces this to fitting 91(101) ¼ 9191 data

points using (101 þ 1)5 ¼ 510 parameters.

To determine the number of relaxations necessary to fit the data, some

statistical criterion of goodness-of-fit must be used to compare the fits obtained

for different assumed values for nk, the number of relaxations. The fitting of

data will be discussed in more detail in Section V.E on the application of

physical models and is also discussed at length elsewhere in this volume. The

value of nk determined from the fitting procedure provides a lower limit for the

number of kinetic intermediates which are present in the system under study.1

Another piece of information which is useful in the analysis of such data is the

number of spectrally distinguishable molecular species (ns) which are required

to describe the data set. It becomes difficult to determine this number from

inspection of real experimental data when it exceeds two, in which case iso-

sbestic points cannot be used as a criterion. In the case of global analysis, the

only method for estimating ns is indirectly (and ambiguously) from the number

of relaxations, nk.

We now turn to the SVD-based analysis of the same data. If the system under

observation contains ns species which are spectrally distinguishable, then Beer’s

law requires that the measured spectrum at time tj can be described as a linear

combination of the spectra of these species:

Aij ¼ Aðli; tjÞ ¼
Xns
n¼1

fnðliÞcnðtjÞ; ð2Þ

whereAij is the element of measured spectrumAj (the spectrummeasured at time tj)

sampled at wavelength li, fn(li) is the molar absorbance of species n at wavelength

limultiplied by the sample pathlength, and cn(tj) is the concentration of species n at

time tj. This result does not depend on the number of species present in the system

or the size of the data matrix (i.e., how many spectra are measured and the number

of wavelengths on which the spectra are sampled). One of the most useful and

remarkable properties of an analysis based on SVD is that it provides a

1 The simplest kinetic model for a system which contains ns species is one in which species intercon-

vert only via first-order reactions. Such a system may be described by an ns � ns matrix containing the

elementary first-order rates. The kinetics of such a systemmay, in most cases, be completely described in

terms of a set of exponential relaxations with rates given by the eigenvalues of the rate matrix. If the

system comes to equilibrium, one of these eigenvalues is zero, leaving ns – 1 nonzero relaxation rates.

If the eigenvalues of the rate matrix are nondegenerate, all relaxations are resolved in the kinetic

measurement, and all of the species in the system are spectrally distinguishable, then the number of

relaxations is one less than the number of species, nk ¼ ns – 1. Because the spectra of all of the kinetic

intermediates may not be distinguishable, the number of relaxations often equals or exceeds the number

of distinguishable spectra, that is, nk � ns. Under conditions where two or more species exchange so

rapidly that the equilibration cannot be resolved by the experiment, both the number of relaxations and

the number of observed species will be reduced.
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determination of ns which is independent of any kinetic analysis. In the absence of

measurement errors this number is the rank of the data matrix (Golub and

VanLoan, 1996; Horn and Johnson, 1990; Lawson and Hanson, 1974). For real

data, SVD provides information which can be used to determine the effective rank

of the data matrix (i.e., the number of species which are distinguishable given the

uncertainty of the data) which provides a lower limit for ns. This determination is

discussed in more detail below in Sections V.C and V.D which describe the analysis

of SVD output and the rotation procedure.

When SVD is used to process the data matrix prior to carrying out the fit, the

output is a reduced representation of the data matrix in terms of a set of ns
basis spectra and an associated set of ns time-dependent amplitude vectors.

A second important property of SVD is that if the set of output components

(pairs of basis spectra and amplitude vectors) is ordered by decreasing size,

each subset consisting of the first n components provides the best n-component

approximation to the data matrix in the least-squares sense (Golub and

VanLoan, 1996; Horn and Johnson, 1990; Lawson and Hanson, 1974). It is

therefore usually possible to select a subset containing only ns of the output

components which describe the data matrix A to within experimental precision.

Once ns has been determined, fitting the data requires modeling the amplitudes

for only ns time-dependent amplitude vectors instead of the nl vectors required

by global analysis. The total number of parameters which must be varied in

carrying out the fit is, therefore, (ns þ 1) � nk. The determination of the

number of relaxations required to best fit the data is accomplished using a

weighted fitting procedure which is directly comparable to that used for the

global analysis of the data, except that it requires fitting of a much smaller set

of time-dependent amplitude vectors.

The effectiveness of this procedure is illustrated by the SVD of the data in Fig. 1,

the first six components of which are presented in Fig. 2. The spectra and time-

dependent amplitude vectors which describe the first two components clearly

exhibit signals which are present in the data. Note, however, the progressive

decrease in the singular values, si, and the signal-to-noise ratios of the subsequent

amplitude vectors. Given this result, if ns were chosen based on a visual inspection

of Fig. 2, one might estimate ns to be only 2; that is, nearly all of the information in

the data can be described in terms of only the first two basis spectra and their

associated amplitudes. Fitting the first two amplitude vectors from the SVD to five

exponential relaxations would require fitting only 91(2) ¼ 182 data points using

only (2 þ 1)5 ¼ 15 parameters, as compared with the 9191 data points and 510

parameters required by global analysis of the data in Fig. 1.

This brief discussion and the example point out the advantages of using SVD in

carrying out such an analysis when the number ofwavelengths onwhich the data are

sampled is large (i.e., nl � ns ). The use of SVD as an intermediate filter of the data

matrix not only provides a rigorous and model-independent determination of ns,
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Fig. 2 Singular value decomposition of the data in Fig. 1. The basis spectra (columns ofU � S) are plotted
on the left, and the corresponding time-dependent amplitudes (columns of V) are plotted on the right. The

first 10 singular valueswere as follows: s1¼ 5.68; s2¼ 0.459; s3¼ 0.0813; s4¼ 0.0522; s5¼ 0.0223; s6¼ 0.0134;

6. Singular Value Decomposition 87



but also enormously simplifies the fitting problem. If the data set includes experi-

ments at only a small number of wavelengths, so that the number of wavelengths is

smaller than the number of species in the system which exhibit distinguishable

spectra, then ns ffi nl and SVD offers no clear advantage in the analysis. This brief

discussion also points out why the use of SVD proliferated in the 1980s. Earlier

experiments usually consisted of measuring time traces at a small set of selected

wavelengths. Only the availability of array detectors and efficient data acquisition

computers has made it possible to analyze sets of data sampled on a sufficiently

dense array of wavelengths to demand the increases in processing efficiency which

result from the use of SVD.

The matrix of data can be derived from a wide variety of experiments. Exam-

ples include sets of time-resolved optical spectra, obtained using either a rapid-

scanning stopped-flow spectrometer (Cochran et al., 1980) or a pulse-probe laser

spectrometer (Hofrichter et al., 1983, 1985; Milder et al., 1991; Murray et al.,

1988), and equilibrium spectra obtained during potentiometric (Hendler et al.,

1986; Subba Reddy et al., 1986) or pH (Frans and Harris, 1985) titrations. This

analysis has also been applied to other types of spectra, such as circular dichro-

ism (Hennessey and Johnson, 1981; Johnson, 1988) and optical rotatory disper-

sion spectra (McMullen et al., 1965). The only constraint imposed by the analysis

presented here is that the measured signal be linear in the concentrations of the

chemical species. The data matrix can then be described by an expression analo-

gous to Eq. (2). In general, the index j runs over the set of experimental condi-

tions which are varied in measuring the spectra. In the case of time-resolved

spectroscopy, this index includes, but is not necessarily limited to, the time

variable, whereas in pH or potentiometric titrations it would include the solution

pH or voltage, respectively.

If all of the spectra, fn(l), are known with sufficient accuracy, then the problem

of determining the sample composition from the spectra is easily solved by linear

regression. More often, however, the spectra of only a subset of the species are

known, or the accuracy with which the reference spectra are known is insufficient

to permit the analysis of the data to be carried out to within instrumental precision.

Under these conditions one is interested in determining both the number and the

shapes of a minimal set of basis spectra which describe all of the spectra in the data

matrix. Because the information contained in the data matrix almost always over-

determines the set of basis spectra, the algorithm must be robust when faced with

s7¼ 0.0109; s8¼ 0.0072; s9¼ 0.0047; s10¼ 0.0043. The data produce two significant basis spectra for which

the time-dependent amplitudes have large signal-to-noise ratios. The first, which has a signal-to-noise ratio of

about 250, results primarily from a decrease in the amplitude of the deoxy-CO difference spectrum, and its

amplitudemonitors the extent of ligand rebinding. The second, which has a signal-to-noise ratio of about 30,

arises fromchanges in the spectra of the deoxyphotoproduct andhence reflects changes in the structure of the

molecule in the vicinity of the heme chromophore. The amplitudes of the SVDcomponents are plotted as the

points connected by solid lines.
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rank-deficient matrices. SVD is optimally suited to this purpose. Two alternative

procedures can be used to calculate the decomposition. One is to calculate it

directly using an algorithm which is also called singular value decomposition

(SVD), and the other is to use a procedure called principal component analysis

(PCA; Anderson, 1963; Cochran and Horne, 1980; Shrager and Hendler, 1982;

Shrager, 1986).2 PCA was used in most of the early applications of rank-reduction

algorithms to experimental data (Cochran and Horne, 1977, 1980; Kankare, 1970;

Sylvestre et al., 1974). The output of the decomposition provides a set of basis

spectra in terms of which all of the spectra in the data set can be represented to

within any prescribed accuracy. These spectra are not the spectra of molecular

species, but are determined by the mathematical properties of the SVD itself, most

significantly by the least-squares property mentioned above. These spectra and

their corresponding amplitudes can be used in a variety of ways to extend the

analysis and thereby obtain the spectra of the molecular species. This problem is

discussed in detail in Section V.E. A historical summary of the approaches which

have been brought to bear on this problem has been presented by Shrager (1986).

Practical applications of SVD to data analysis followed only after the develop-

ment of an efficient computer algorithm for computing the SVD (Golub and

Kahan, 1965; Golub and Reinsch, 1970) and the experimental advances discussed

above. Much of the existing literature which addresses the application of SVD to

spectroscopic data has focused on describing specific algorithms for extracting the

number of spectral components which are necessary to describe the data and for

determining the concentrations of molecular intermediates from the basis spectra

(Cochran and Horne, 1977, 1980; Shrager, 1984; Sylvestre et al., 1974). Since

beginning to collect this type of data almost a decade ago, we have made extensive

use of SVD in the analysis of time-resolved spectroscopic data. In addition to the

utility of SVD in the quantitative analysis of data, we have found that a truncated

SVD representation of the data also provides an ideal ‘‘chart paper’’ for array

spectroscopy, in that it allows data to be compared both qualitatively and quanti-

tatively at a range of levels of precision and also to be stored in a compact and

uniquely calculable format. This application of SVD is extremely important to the

experimental spectroscopist, since it is very difficult to compare directly raw data

sets which may contain as many as several hundred thousand data points. More-

over, because no assumptions are required to carry out the SVD portion of the

analysis, it provides a simple intermediate screen of the relative quality of ‘‘identi-

cal’’ data sets which permits the selection of both representative and optimal data

for further analysis.

We begin this chapter with a brief summary of the properties of the singular

value decomposition which are relevant to data analysis. We then describe how the

SVD of a noise-free data set for which the spectra, f, and concentration, c, vectors

2 In this chapter we use the abbreviation SVD to refer both to the decomposition itself and to the

SVD algorithm and the abbreviation PCA to refer specifically to the calculation of the SVD by the

eigenvalue-eigenvector algorithm (see below).
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[Eq. (2)] are known can be calculated from consideration of the integrated over-

laps3 of these components. Because data analysis necessarily begins with matrices

which are ‘‘noisy’’ at some level of precision, we next consider some of the proper-

ties of the SVD of matrices which contain noise. This section begins with a brief

description of the SVD of random matrices (i.e., matrices which contain only

noise). We then use perturbation theory to explore how the random amplitudes

are distributed in the SVD output when noise is added to a data matrix which has a

rank of one, a simple example which enables a quantitative analysis of the noise-

averaging properties of SVD. The discussion of noisy matrices continues by

describing an asymptotic treatment which permits the best estimate of the noise-

free matrix to be calculated in the presence of noise, and concludes with a

brief discussion of a special case in which the noise amplitudes are not random

over all of the data matrix, but are highly correlated along either the rows or

columns of A.

With this theoretical background, we proceed to a step-by-step description of

how SVD-based analysis is carried out on real data. The steps include preparation

and preprocessing of the data, the calculation of the SVD itself, and a discussion of

how the SVD output is analyzed to determine the effective rank of the data matrix.

This discussion includes the description of a ‘‘rotation’’ procedure which can be

used to distinguish condition-correlated amplitude information from randomly

varying amplitudes of nonrandom noise sources in the data matrix, the mathemat-

ical treatment of which is presented in the Appendix. The analysis of real data

necessarily includes the use of molecular models as a means of obtaining from the

data information about the system under study. We next describe how the output

of the SVD procedures is used as input data for fitting to models and the weighting

of the SVD output which optimizes the accuracy with which the fit describes the

original data. In Section VI, we present simulations of the SVD-based analysis of

sets of time-resolved spectra for the kinetic system A! B! C. These simulations

address in some detail the effects of both random and nonrandom noise on data

where the information content is known a priori, and they explore the range of

noise amplitudes for which the rotation algorithm results in useful improvement of

the retained SVD components.

3 The integrated overlaps of two continuous spectra, f1(l) and f2(l), and of two sets of concentrations

defined as continuous functions of conditions x, c1(x) and c2(x), are defined, respectively, asð1
0

f1ðlÞf2ðlÞdl;
ð1
0

c1ðxÞc2ðxÞdx

If f1 and f2 are vectors which represent the spectra f1(l) and f2(l) sampled on a discrete set of

wavelengths {l1}, and c1 and c2 are vectors which consist of the concentrations c1(x) and c2(x) sampled

on a discrete set of x values {xi}, then the overlaps defined above are closely approximated by either f1 �
f2 or c1 � c2 multiplied by the size of the appropriate sampling interval. We will conventionally ignore the

sampling interval, which appears as a scale factor when comparing the overlaps of vectors sampled on

the same points, and use the dot product as the definition of the ‘‘overlap’’ between two vectors.
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III. Definition and Properties

The existence of the SVD of a general rectangular matrix has been known for

over 50 years (Eckhart and Young, 1939). For an m � n matrix A of real elements

(m � n) the SVD is defined by

A ¼ USVT; ð3Þ
whereU is anm� nmatrix having the property thatUTU¼ In, where In is the n� n

identity matrix, V is an n � n matrix such that VTV ¼ In, and S is a diagonal n � n

matrix of nonnegative elements4. The diagonal elements of S are called the singular

values of A and will be denoted by sk, k 2 {1, . . ., n}. The columns of U and V are

called the left and right singular vectors of A, respectively (Golub and VanLoan,

1996; Horn and Johnson, 1990; Lawson and Hanson, 1974). The singular values

may be ordered (along with the corresponding columns of U and V) so that s1 � s2
� . . . � sn � 0. With this ordering, the largest index r such that sr > 0 is the rank of

A, and the first r columns ofU comprise an orthonormal basis of the space spanned

by the columns of A. An important property of the SVD is that for all k � r, the

first k columns of U, along with the corresponding columns of V and rows and

columns of S, provide the best least-squares approximation to the matrix A having

a rank of k. More precisely, among all m � nmatrices B having rank k, the matrix

B ¼ Ak 	 UkSkV
T
k , where Uk and Vk consist of the first k columns of U and V,

respectively, and Sk consists of the first k rows and columns of S, yields the smallest

value of jjA � Bjj.5 Furthermore, the magnitude of the difference

kA� Akk ¼ ðs2kþ1 þ � � � þ s2nÞ1=2(Golub and VanLoan, 1996; Horn and Johnson,

1990; Lawson and Hanson, 1974).

The relationship between SVD and principal component analysis (PCA)2 may

be seen in the following way. Given the matrix A with the decomposition shown in

Eq. (3), the matrix product ATA may be expressed as

ATA ¼ ðUSVTÞTUSVT

¼ VSUTUSVT

¼ VS2VT:

ð4Þ

4 There is some variability in the precise representation of the SVD. The definition given by Lawson

and Hanson,3 for example, differs from that given here in that bothU andV are square matrices (m�m

and n � n, respectively), and S is defined to be m � n, with the lower (m – n) � n block identically zero.

The definition given here has advantages in terms of storage required to hold the matrices U and S. The

SVD is similarly defined for an arbitrary matrix of complex numbers. We assume, without loss of

generality, that all of the matrices appearing in this chapter consist of real numbers.
5 The matrix norm used here is the so-called Frobenius norm, defined for an m � n

matrix M as kMk ¼
Xm

i¼1

Xn

j¼1
M2

ij

� �1=2
:
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The diagonal elements of S2 (i.e., the squares of the singular values of A) are the

eigenvalues, and the columns of V are the corresponding eigenvectors, of the

matrix ATA. A principal component analysis of a data matrix A has traditionally

derived the singular values and the columns of V from an eigenvalue-eigenvector

analysis of the real symmetric matrix ATA, and the columns of U either from the

eigenvectors corresponding to the n largest eigenvalues of the reverse product AAT

[¼ US2UT, by a derivation similar to that shown in Eq. (4)], or by calculating

U ¼ AVS�1. Although obtaining the matrices U, S, and V via this procedure is

mathematically equivalent to using the direct SVD algorithm (Golub and Reinsch,

1970), the latter procedure is more robust and numerically stable and is preferred

in most practical situations (Golub and Reinsch, 1970; Shrager, 1986).

A. Singular Value Decomposition of Known Data Matrix

To understand how SVD sorts the information contained in a noise-free data

matrix it is instructive to consider the SVD of matrices having the form of Eq. (2).

To generalize Eq. (2), the m � n matrix A may be written

A ¼ FCT; ð5Þ
where them� rmatrixF consists of a set of r columnvectors {Fi}whichare the spectra

of r individual species and the n � r matrix C is a set of corresponding amplitude

vectors {Ci}, describing the condition-dependent concentrations of these r species.

The sets of vectors {Fi} and {Ci} are both assumed to be linearly independent. The

matrixAwill thenhave rank r.Wenowconsider the r� rmatricesFTFandCTCwhich

consist of the overlaps of all possible pairs of vectors in {Fi} and {Ci}, respectively:

ðFTFÞij ¼ Fi�Fj

ðCTCÞij ¼ Ci�Cj:
ð6Þ

The eigenvalues and eigenvectors of the r � r product of these two matrices,

FTFCTC, have a simple relationship to the SVD of A. If n is an eigenvector of this

matrix with eigenvalue l, then

FTFCTCn ¼ ln: ð7Þ
Premultiplying Eq. (7) by C yields

CFTFCTCn ¼ Cln;

ðCFTFCTÞCn ¼ lðCnÞ;
ATAðCnÞ ¼ lðCnÞ:

ð8Þ

The vector Cn is therefore an eigenvector of the matrix ATA with the same

eigenvalue.

Because the eigenvalues of ATA are the squared singular values of A, and the

normalized eigenvectors are the columns of the matrix V in Eq. (4), it follows that

the r eigenvalues of FTFCTC are the squares of the r nonzero singular values of A.
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Multiplying each corresponding eigenvector by C yields (to within a normalization

factor) the corresponding column of V. Note that the transpose of the overlap

product matrix (FTFCTC)T ¼ CTCFTF has the same set of eigenvalues but a

different set of eigenvectors. If o is the eigenvector corresponding to eigenvalue

l, then by a derivation similar to the above:

CTCFTFo ¼ lo;

FCTCFTFo ¼ lðFoÞ;
AATðFoÞ ¼ lðFoÞ:

ð9Þ

Fo is therefore an eigenvector of the matrix AAT. Normalization of Fo yields

the column of the matrix U corresponding to the singular value given by l1/2. The
remaining n � r columns of U and V, corresponding to singular values which are

equal to zero, may be made up of arbitrary orthonormal sets of vectors which are

also orthogonal to the first r column vectors constructed as described here.

A useful result of this analysis is that, because the columns of V and U may be

formed simply by normalizing the sets of vectors {Cn} and {Fo}, respectively, the
individual elements of the eigenvectors n and o are the coefficients with which the

various columns of C and F are mixed to produce the columns of V and U. This

analysis of the overlap product matrix thus allows us to understand quantitatively

how, in the absence of noise, SVD constructs the output matrices from the spectra

and concentrations of the species which generate the input matrix.

IV. Singular Value Decomposition of Matrices Which
Contain Noise

To this point we have discussed the SVD of hypothetical data constructed from

spectra and concentrations of a set of species which are known with arbitrary

accuracy. In the analysis of experimental data, one is confronted with matrices

which contain noise in addition to the desired information. One objective of the

experimental spectroscopist is to extract the data from the noise using the smallest

possible number of a priori assumptions. To take full advantage of SVD in accom-

plishing this task it is important to understand how SVD deals with matrices in

which the individual elements include random as well as nonrandom contributions.

Although some insight into this problem can be obtained from algebraic analysis,

the problems encountered in the analysis of data are generally too complex to solve

analytically, and simulations are required. In this section, we use both algebraic

analysis and simulations in treating some relatively simple examples which we have

selected to illustrate the general principles involved in dealing with noisy matrices.

We begin with a description of the SVD of random matrices. We have carried

out simulations to obtain distributions of singular values for a set of m � n

matrices and for square matrices of finite size, and we compare these results with

the known analytical result in the asymptotic limit of infinite matrix size. Next, we

illustrate the noise-averaging properties of SVD by asking how random noise is

partitioned among the SVD components in the case where the noise-free data
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matrix has a rank of one. We then present a procedure which generalizes an earlier

treatment by Cochran and Horne (1980, 1977) which specifies a weighting of the

data matrix which can be used to obtain the best estimate of the noise-free data

matrix from noisy data if the matrix of variances of the noise component is

known. Finally, we consider the problem of noise which can be described as the

outer product of two vectors (i.e., the noise amplitude matrix has a rank of 1).

A. Random Matrices

To explore the effects of noise in the data matrix, A, on the SVD of A we begin by

considering matrices which contain only random elements. Figure 3A depicts the

distributions of the singular values for matrices of dimensions 10 � 10, 100 � 100,

and 1000� 1000. The distributions were calculated from simulations in which a total

of 2(105) singular values were generated from the SVD of matrices having the

specified size, each element of which was a normally distributed random variable

having mean value zero and variance s2. Note that the rank of the n� n noise matrix

is always close to n. This result can be readily understood, since it is not generally

possible to write any one random vector of length n as a linear combination of the

remaining n� 1 random vectors. This distribution is described in the limit as n!1
by the so-called quarter-circle law (Trotter, 1984; Wigner, 1967).

PðxÞ ¼ 1

p
ð4� x2Þ1=2; x 	 s=sn1=2: ð10Þ

The distribution function describes the quarter-circle on the interval [0,2], also

shown in Fig. 3A. The simulations show that the distribution of singular values

closely approximates the quarter-circle distribution, even for relatively small

matrices. Characteristic distortions, which are largest when n is small (10 � 10),

are present in the regions of the maximum and minimum singular values but the

asymptotic limit becomes a very good first-order description of the distribution of

singular values for matrices larger than 100� 100, a size which is often exceeded in

the collection of real experimental data.

There is no analytical theory to describe the distribution of singular values for an

m� nmatrix wherem 6¼ n. Ifm> n, then it is almost always possible to writem� n

of the rows of the matrix as linear combinations of a subset of n rows which are

linearly independent. If the singular values of an m � n matrix are compared with

those of an n� nmatrix, where both are composed of random elements having the

same variance, one intuitively expects that each singular value of the m � nmatrix

will, on the average, be larger than the corresponding singular value of the n � n

matrix. This expectation is confirmed by the results of simulations which were

carried out to determine the distribution of singular values for matrices varying

from 200� 200 to 1000� 200 which are presented in Fig. 3B. The results show that

the entire distribution of singular values shifts to higher values, with the magnitude

of the shift being correlated with m � n. The results in Fig. 3B suggest that the

largest singular value from the distribution increases roughly as m0.3. It is
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important to note that when m > n, the entire set of singular values is effectively

bounded away from zero, so a random matrix which is not square can be confi-

dently assumed to have full rank (i.e., rank ¼ min{m,n}). In the simulations in

Section VI.A, we shall see that this conclusion can be generalized to matrices which

contain nonrandom as well as random amplitudes.

B. Noise-Averaging by Singular Value Decomposition

As discussed above, the first component of the SVD of the matrix A provides the

best one-component least-squares approximation to A. For a data set which

consists of n spectra that are identical except for the admixture of random noise,

the first singular vector (U1) is, to within a scale factor, very nearly identical to the

average of all of the spectra in the data matrix. This example illustrates the

averaging properties of SVD. In this section, we use perturbation theory to

examine these properties in more detail for a particularly simple case. We consider

a data matrix A0 which has a rank of 1 (i.e., A0 can be described as the outer

product of two column vectors a and b, A0 ¼ abT). We now add to A0 a random

noise matrix, e, each element of which is a normally distributed random variable

having a mean value zero and variance s2, that is,

A ¼ A0 þ e ¼ abT þ e: ð11Þ
One would like to know how the noise represented by e alters the singular values

and vectors of the matrix A. If we consider for the moment the error-free data

matrix A0, we can write

0.8
A
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0.8
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p(
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Fig. 3 Distributions of singular values of matrices of normally distributed random numbers having

zero mean. (A) Calculated and asymptotic distributions for square matrices. The distribution predicted

in the limit of infinite matrix size, described by the quarter circle law [Eq. (10)], is shown as the solid line.

The average distributions obtained from calculation of a total of 2(105) singular values for matrices of

the following sizes are shown for comparison: (
) 10� 10; (�) 100� 100; (�) 1000� 1000. (B) Calculated

distributions for m � n matrices where m � n. The average distributions obtained by calculating a total

of 2(105) singular values for matrices of the following sizes are shown: 200� 200; 300� 200; 500� 200;

1000 � 200. The number of rows is indicated above each distribution.
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A0 ¼ s0U0V
T
0 ; ð12Þ

whereU0 ¼ a=kak;V0 ¼ b=kbk, and the singular value s0 ¼ kakkbk . Second-order
perturbation theory can be used to determine how these quantities are modified by

the addition of the random matrix e.
We begin by calculating the eigenvalues and eigenvectors of the matrices AAT

and ATA.

AAT ¼ A0A
T
0 þ A0e

T þ eAT
0 þ eeT

¼ A0A
T
0 þW:

ð13Þ

The perturbed values of the largest eigenvalue, s2, and the corresponding eigen-

vector, U, of this matrix can then be written

s2 ¼ s20 þUT
0 WU0 þ

X
n6¼0

ðUT
0 WUnÞ2
s20

U ¼ U0 þ
X
n 6¼0

ðUT
0 WUnÞ
s20

Un;

ð14Þ

where the {Un} are a set of normalized basis spectra which are orthogonal to U0.

We proceed by calculating the matrix elements in Eq. (14) and then calculating the

expected values and variances of the resulting expressions for s2 and U. The

results, in which only terms that are first order in s2 have been retained, may

be summarized by

s2 ffi s20 þ ðmþ n� 1Þs2 þ 2s0es;

s ffi s0 þ ðmþ n� 1Þs2
2s0

þ es; ½varðesÞ ¼ s2�;

Ui ffi U0i þ eUi

s0
; ½ varðeUi

Þ ¼ ð1�U2
0iÞs2�;

ð15Þ

where es and the eUi
are random variables having zero mean and the indicated

variances.6 A similar calculation for the matrix ATA yields the result

6 We have used the following properties of random variables in this derivation and in the discussion

which follows. First, if X is any fixed vector and Y is a vector of random variables of mean zero and

variance s2Y , then

hX �Yi ¼ 0; VarðX �YÞ ¼ jX j2s2Y :
Furthermore, if the individual elements of Y are independent and normally distributed, then X � Y is

also normally distributed. Second, if Z is also a vector of random variables of variance s2Z , which are

independent of those in Y, then

hY �Zi ¼
Xn
i�1

hYiihZii; VarðY �ZÞ ¼
Xn
i�1

ðs2Y hZii þ s2ZhYii þ s2Ys
2
ZÞ:
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Vj ¼ V0j þ
eVj

s0
; ½ varðeVj

Þ ¼ ð1� V 2
0jÞs2�: ð16Þ

The results in Eqs. (15) and (16) show that, while each element of the input

matrix, A, has variance s2, each element of the U and V vectors of the perturbed

data matrix has a variance which is somewhat less than (s/s0)
2, and the variance of

the singular value s is simply s2. As the matrix, A, becomes large the squares of the

individual elements of the normalized vectors U0 and V0 will, in most cases,

become small compared to 1, and the variance of each of the individual elements

of U and V will approach (s/s0)
2.

We expect a priori that the averaging of multiple determinations of a variable,

each of which is characterized by random error of variance s2, decreases the error
in the average value by a factor of d1/2, where d is the number of determinations. It

is interesting to consider an example for which the above results may be easily

compared with this expectation. If we choose the matrix A0 to be an m � n matrix

of ones, U0 and V0 are constant vectors having values of 1/m1/2 and 1/n1/2,

respectively, and s0 ¼ (mn)1/2. Equations (15) and (16) then become

s ffi ðmnÞ1=2 þ ðmþ n� 1Þs2
2ðmnÞ1=2

þ es; ½ varðesÞ ¼ s2�

Ui ffi 1

m1=2
þ eUi

ðmnÞ1=2
; varðeUi

Þ ¼ 1� 1

m

0
@

1
As2

2
4

3
5

Vj ffi 1

n1=2
þ eVj

ðmnÞ1=2
; varðeVj

Þ ¼ 1� 1

n

0
@

1
As2

2
4

3
5:

ð17Þ

If the elements of the basis spectrum, U, were obtained by simply fitting the

noisy data, A, with the V0 vector from the noise-free data which has n identical

elements, one would expect a relative error in the fitted ‘‘U’’ vector of s/n1/2. Use of

the corresponding procedure to obtain the amplitude vector, V, should produce a

relative error of s/m1/2. The predictions of Eq. (17) are very close to these expected

results: the variances of both theU and theV vectors are slightly less than would be

obtained from the fits. This can be rationalized by the fact that one degree of

freedom, that is, variations in the sum of the squares of the entries of the data

matrix, is incorporated into the variations of s. Each element of the filtered matrix,

reconstructed from the first singular value and vectors, sUVT, can now be

calculated

Aij ffi 1þ ðmþ n� 1Þ
mn

s2 þ eUi

n1=2
þ eVj

m1=2
þ es
ðmnÞ1=2

; n;m � 1; ð18Þ

where terms of higher order than 1/(mn)1/2 have been neglected. The amplitude

of the noise in the reconstructed matrix is thus also significantly reduced from that

of the input matrix if both n andm are large. This reduction results from discarding

the amplitudes of the higher SVD components which are derived almost exclusive-

ly from the random amplitudes of e.
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These results point out a number of useful features in designing experiments to

maximize signal-to-noise in the SVD-reduced representation of the data. Increasing

the size of the datamatrix in either dimension improves the signal-to-noise ratio in the

singular vectors if it increases the magnitude of s0. For the additional data to contrib-

ute to s0, the added pointsmust containmeaningful amplitude information and hence

cannot include regions in which there is little or no absorbance by the sample.

Increasing the size of the data matrix also does not help if it can only be accomplished

by simultaneously increasing the standard deviation in themeasurement for eachdata

point. In most cases, the size of the data matrix must be determined by compromises.

For example, increasing the value of m (i.e., increasing the wavelength resolution of

the experiment) reduces the number of photons detected per resolution element of the

detector. At the point where the noise in the measured parameter is dominated by

statistical fluctuations in the number of photons detected (shot noise), further increas-

ing the resolution will increase s asm1/2, so no improvement in signal-to-noise in the

SVD output will result from accumulating more densely spaced data. Increasing the

size of the data set by using a greater number of conditions necessarily increases

the time required for data acquisition. In this case, reduction in the quality of the data

matrix, perhaps by spectrometer drift or long-term laser drifts, may offset the

improvements expected from increasing the number of conditions sampled.

C. Statistical Treatment of Noise in Singular Value Decomposition Analysis

We have seen in Section IV.A that a matrix which includes random noise nearly

always has full rank (i.e., rank¼min{m,n}). The presence of measurement noise in

a data matrix thus complicates not only the best estimate of the error-free data

contained therein but even the determination of the effective rank of the matrix.

Two attempts have been made to treat quantitatively the statistical problems of

measurement errors in the principal component analysis of data matrices. Based

on a series of simulations using sets of synthetic optical absorption spectra having a

rank of 2 in the presence of noise of uniform variance, Sylvestre et al. (1974)

proposed that an unbiased estimate of the variance could be obtained by dividing

the sum of squared residuals obtained after subtraction of the rank r representation

of a p� n datamatrix by the quantity (n� r)(p� r). This result is useful as a criterion

in determining the rank of a matrix if the noise is uniform (see Section V.C).

This analysis was generalized by Cochran and Horne (1977) to the case where the

matrix of variances s2ij of the elements of the data matrix,Aij, is any matrix having a

rank of 1, rather than a constantmatrix. Cochran andHorne (1977) also introduced

a scheme for statistical weighting of the data matrix prior to PCA so that the

effective rank, r, is more easily determined and the rank-r representation of the

data is optimized. In this section, we discuss this analysis and its extension to

the case where the matrix of variances, s2ij , is arbitrary and establish a connection

between such a weighting scheme and SVD-based analysis.

Consider a single set of measurements, arranged as an m � n data matrix A.

Successive determinations of A will differ because of measurement errors owing to
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noise and other factors. If multiple determinations ofAwere carried out, its expected

value, hAi, could be calculated by averaging the individual elements. In the limit of a

very large number of determinations, the matrix hAi will become the best estimate of

the error-free matrix. In the following discussion we make constant use of the fact

that the SVD of A is closely related to the eigenvector-eigenvalue analyses of the

matrices AAT and ATA. We consider the expected values hAATi and hATAi that

would be generated by making an infinite number of determinations of A and

accumulating the averages of the resulting two product matrices. If we assume that

individual elements of A may be treated as independent variables uncorrelated with

other elements, the components of the average matrix hAATi may be written

hAATiij ¼
X
k

AikAjk

* +

¼
X
k

hAikAjki

¼
X
k

ðhAikihAjkið1� dijÞ þ hA2
ikidijÞ;

ð19Þ

where dij is the Kronecker delta. If we now define the elements of the variance

matrix as

s2ij ¼ hA2
iji � hAiji2; ð20Þ

Eq (19) can be rewritten as

hAATiij ¼
X
k

ðhAikihAjki þ s2ikdijÞ: ð21Þ

Similarly, the elements of the average matrix hATAi may be written

hATAiij ¼
X
k

ðhAkiihAkji þ s2kidijÞ: ð22Þ

These two results may be recast in matrix notation as

hAATi ¼ hAihAiT þ X;

hATAi ¼ hAiThAi þ Y;
ð23Þ

X and Y are diagonal matrices, whose diagonal elements consist of sums of rows

and columns of the matrix of variances, respectively, that is,

Xij ¼
X
k

s2ik

 !
dij;

Yij ¼
X
k

s2ki

 !
dij:

ð24Þ

6. Singular Value Decomposition 99



In Eq. (23) the effects of measurement errors on the expectation values of AAT

and AT A have been isolated in the matrices X and Y, respectively. In general, these

matrices are not simple multiples of the identity matrices of the appropriate size, so

there is no simple relationship between the eigenvectors of hAATi and those of

hAihAiT or between the eigenvectors of hATAi and those of hAiThAi. In the special

case in which the matrix of variances s2ij has a rank of 1, Cochran and Horne (1977)

showed that it is possible to obtain diagonal matrices L and T such that the

weighted or transformed matrix Aw ¼ LAT produces an expected value of the

first product matrix of the form

hAWAT
Wi ¼ hAWihAWiT þ cIm; ð25Þ

where c is an arbitrary constant and Im is the m � m identity matrix. Although not

discussed by Cochran and Horne (1977), it may also be shown that the same

choices of L and T produce an expected value of the reverse product matrix

hAT
WAWi which has a similar form. Equation (25) is significant because it shows

that the eigenvectors of the ‘‘noise-free’’ product hAWihAWiT are now identical to

those of the average of ‘‘noisy’’ matrices AWAT
W, with eigenvalues offset by the

constant c; a similar description holds for the reverse products.

It may be shown that for an arbitrary matrix of variances s2ij it is possible to

construct diagonal matrices L and T such that the transformed matrix AW ¼ LAT

satisfies the following conditions:

hAWAT
Wi ¼ hAWihAWiT þ aIm;

hAT
WAWi ¼ hAWiThAWi þ bIn;

ð26Þ

where a and b are constants such that a/b ¼ n/m. This analysis shows that, by using

the matrices L and T, which can be determined from the matrix of variances s2ij, it is
possible to produce indirectly the singular value decomposition of theweightednoise-

free matrix hAWi from the averages of the noisy products AWAT
W and AT

WAW .

It should be emphasized that this result is only rigorous in the limit of a large number

of determinations of the data matrix A (and hence AW). The efficacy of such weight-

ing schemes in improving the estimate of the noise-free data obtained from the

analysis of a single determination of A can only be established by numerical simula-

tions which incorporate the known characteristics of both the signal and the noise.

Because the noise distribution in our experiments (e.g., Fig. 1) is nearly uniform, our

experience with such schemes is severely limited. For this reason we will not discuss

this issue in any detail in this chapter. One can argue intuitively, however, that the

utility of such procedures for individual datamatrices should depend both on the size

of the data matrix and on the detailed distribution of the noise. That is, as the data

matrix becomes large, a single data set should be able to sample accurately the noise

distribution if the distribution of the variances is smoothly varying. On the other

hand, the noise distribution might never be accurately sampled if the variances are

large for only a very small number of elements of the data matrix.

Implementation of this general statistical weighting scheme requires solving a

system ofmþ n simultaneous nonlinear equations (Henry, unpublished) and using
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the resulting diagonal matrices L and T to calculate the weighted data matrix Aw¼
LAT. The SVD of this matrix is then calculated, and the output screened and/or

postprocessed by any of the methods discussed in this chapter (see below), yielding

a set of r basis spectra Uw
0 and amplitudes Vw

0 for which Aw ffi U
0
wV

0
wT. A set of

basis spectra and amplitudes of the unweighted matrix A which are consistent with

those ofAwmay then be constructed by simply ‘‘undoing’’ the weighting separately

on Uw
0 (using L�1) and on Vw

0 (using T�1), that is,

A ’ U
0
VT;

U
0 ¼ L�1U

0
w;

V
0 ¼ T�1V

0
w:

ð27Þ

It is important to note that the final basis spectra and amplitudes are generally

neither normalized nor orthogonal, but these mathematical properties are not

usually critical for the subsequent steps in data analysis (see below). As discussed

by Cochran and Horne (1980, 1977) one of the advantages of producing a weighted

matrix satisfying Eq. (26) is that, if Aw has rank r, then the lastm� r eigenvalues of

hAwA
T
wi will equal a. This is equivalent to having only the first m singular values of

hAwi nonzero. This suggests that one measure of the success in applying the

procedure to a finite data set might be the extent to which it pushes one set of

singular values toward zero and away from the remaining set.

D. Singular Value Decomposition of Matrices Containing Rank-1 Noise

In addition to the random noise which we have discussed to this point, data may

contain signals which have random amplitudes when examined along either the

rows or the columns of the data matrix, but nonrandom amplitudes when exam-

ined along the other set of variables. One example of a situation in which noise has

these characteristics arises in single-beam optical spectroscopy using array detec-

tors, where changes in the output energy of the source or in the sensitivity of the

detector result in constant offsets across the entire measured spectrum. The ampli-

tude of these offsets is highly correlated along the wavelength direction of the data

matrix, but uncorrelated along the conditions dimension. Another example arises

in the measurement of condition-dependent absorbances at a single wavelength,

such as kinetic traces or titration curves, where the limits of the absorbance

changes can often only be obtained by extrapolation of the data to conditions

where precise measurement is not possible (e.g., infinite or zero time; complete

saturation with substrate). Uncertainty in the value of the extrapolated absorbance

can generate errors which are present with equal amplitude in all of the data

measured at a single wavelength, but which vary from wavelength to wavelength.

The influence of this type of noise on the SVD output may be addressed using the

formalism developed in Section III.A. We consider a noise-free m � n data matrix

which can be written as the sum of the outer products of a small set of basism-vectors

{F0i} and corresponding amplitude n-vectors {C0i}, namely,A0 ¼ F0C
T
0 .We consider
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the situation inwhich the noiseNmayalsobewritten as the product of two vectors:X,

anm-vectorwhich describes the noise amplitudes as a function of the isolated variable

andY, ann-vectorwhich describes the noise amplitudes as a function of the remaining

variables. In other words,N¼XYT is rank-1.7We can then write the full data matrix

as A ¼ A0 þ N ¼ FCT, where F and C are formed by simply appending the column

vectorsX andY to thematricesF0 andC0, respectively. As discussed in Section III.A,

the SVD of a matrix of this form is completely determined by eigenvalue-eigenvector

analyses of the overlap product matrix FTFCTC and its transpose.

Either the vector X or the vector Y may contain the random amplitudes. For

purposes of discussion, we will assume that the randomness appears only in the

amplitude vector Y, which we assume to be a set of independent, normally

distributed random variables. We will also assume for simplicity that the ‘‘noise-

free’’ matrices F0 and C0 each have a single column; these column vectors will also

be called F0 and C0, respectively. The analyses for situations in which X is the

random vector, and in which the noise-free data matrix consists of more than one

component, proceed in a similar fashion. We will assume further that both X and

F0 are normalized vectors, so that the overall amplitude information is contained

in the vectors Y and C0. Then the overlap matrix FTF may be written simply as

FTF ¼ 1 D

D 1

" #
; ð28Þ

where D is the overlap of the normalized vectors F0 and X.

The statistical properties of the overlap product matrix FTFCTC and its transpose

are now determined by the statistical properties of the random overlap matrix CTC.

Using the results of Note 6, the expected value and variance of C0 � Y become

hC0�Y i ¼ 0

VarðC0�Y Þ ¼
X
i

s2yihðC0Þii2

¼ s2Y jC0j2
ð29Þ

and C0 � Y is normally distributed.

The expected value and variance ofY �Ymay be determined in a similar fashion.

The results, quoted here without proof, are

hY �Yi ¼ ns2Y ;

VarðY �YÞ¼ 2nðs2Y Þ2:
ð30Þ

However, in this case the resulting values of Y � Y are not normally distributed,

but are characterized by the skewed distribution

7 This situation in which the noise amplitude matrix is rank-1 must be distinguished from the case in

which the matrix of variances of the noise is rank-1, which was discussed in a different context in

Section IV.C.
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pðxÞdx ¼ 2n=2snY
Gðn=2Þ x

n=2�1e�x=ð2s2
Y
Þdx; ð31Þ

where x ¼ Y � Y, G(. . .) is the gamma function, and n is the number of elements in

Y.

With these results, the overlap matrix CTC in the case of two vectors may be

written

CTC ¼ jC0j2 0� sY
0� sY nsY � ð2nÞ1=2s2Y

� �
; ð32Þ

where the notation a � b denotes a random variable with expected value a and

variance b2. Because every instance of CTC in an ensemble is symmetric, the two

off-diagonal elements are in fact the same normally distributed random variable

(derived from the inner product of the random vector Y with C0). This simplifying

feature is offset by the fact that the lower right diagonal element in Eq. (32) is a

random variable (derived from the inner product of the random vector Y with

itself ) which is not normally distributed and is neither independent of nor repre-

sentable in terms of the off-diagonal elements. If the variance of this element

(which is second order in s2Y=jC0j2 ) is neglected, the analysis simplifies to the

diagonalization of overlap product matrices which are functions of a single nor-

mally distributed random variable. Even in this approximation analytical expres-

sions for the distributions of eigenvalues and eigenvectors of such matrices are

unmanageably complex.

It is, however, possible to determine the statistical properties of the SVD of the

perturbed data matrix by explicit simulation. The aim of such simulations is to

produce an ensemble of noisy data sets, the mean of which corresponds to some

prescribed, noise-free data set, and use this ensemble to calculate the statistical

properties (means and variances) of the singular values and vectors. In most cases

it is necessary to explicitly calculate the SVD of a large number of matrices

synthesized by adding random noise having specified characteristics to the ele-

ments of the noise-free data matrix. In the present situation, however, the simula-

tion procedure is greatly simplified because it is only necessary to create ensembles

of overlap product matrices FTFCTC. Because FTF is determined by the overlaps

of the (normalized) basis vectors, it can be specified by simply specifying the

magnitude of the off-diagonal elements, D. An ensemble of the elements of CTC

which involve the random amplitudes can then be constructed by calculating the

overlaps of an ensemble of random amplitude vectors with the various fixed

amplitude vectors and with themselves. The results of a set of such simulations

are presented in Fig. 4.

Figure 4 shows the extent of mixing of the random amplitudes, Y, with C0 and

the spectrum, X, with F0 as a function of the spectral overlap, D, at a number of

different values of the root-mean-square (RMS) noise amplitude, sY. Let us start
by examining the results in Fig. 4B, which describe the mixing of the basis spectrum

X with F0. When the RMS amplitude of the ‘‘noise’’ spectrum is significantly

6. Singular Value Decomposition 103



0.4

0.2

0
0.8

0.8 1

0.6

0.6

0.4

0.4

Spectral overlap

0.2

0 0.2
0

0.6

6.2
1

−1

−3 −2 −1 0

−3

−5

5.8

A

B

C

S
in

gu
la

r 
va

lu
e

M
ix

in
g 

of
 X

 a
nd

 F
0

M
ix

in
g 

of
 Y

 a
nd

 C
0

5.4

log(σY)

lo
g(
α

S
)

0

−2

−3 −2 −1 0

−4

−6

log(σY)
lo

g(
α

U
)

5

Fig. 4 Mixing between data and noise when both can be described by matrices having a rank of 1.

Simulations were carried out at each of 10 noise amplitudes, sY, spaced by factors of 2 from 0.001 to

0.512 and at each of 20 values of the overlap, D, ranging from 0 to 0.96 in increments of 0.04. Each

simulation was performed as follows. The matrix F was first formed as in Eq. (28) for a prescribed

value of the overlap D. A noise-free amplitude vector, C0, having elements (C0)i ¼ 0.5[exp(�k1ti) þ
exp(�k2ti)], for a set of 71 values of ti, uniformly spaced on a logarithmic grid from 10�8 to 10�1 s, was

first calculated using k1 ¼ 106 s�1 and k2 ¼ 103 s�1. An ensemble of 104 vectors, Y, each consisting of 71

normally distributed random numbers with variance s2Y and a mean value of zero was used to construct

an ensemble of overlap product matrices FTFCTC where CTC has the form
C0�C0 C0�Y
C0�Y Y �Y

� �
.
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smaller than the noise-free data, SVD effectively discriminates against the ‘‘noise’’

spectrum. Figure 4B shows that the effectiveness of this discrimination depends on

both D and the noise amplitude, sY. For low to moderate noise levels the mixing

coefficient increases linearly with D, and the inset to Fig. 4B shows that the initial

slope of the curves increases roughly as s2Y . In interpreting these results, we must

remember that the amplitude of the ‘‘noise’’ spectrum is a random variable, so

SVD is able to average and thereby substantially reduce these amplitudes in

producing the output signal spectrum. This cancellation, however, can only be as

effective as the ability of SVD to distinguish between the ‘‘signal’’ and ‘‘noise’’

spectra. The extent to which these spectra are distinguishable is determined by D.
WhenD is zero, there is nomixing of noise with signal at any noise amplitude.When

D is nonzero, SVD mixes the signal and noise spectra to produce orthogonal basis

spectra, and the extent of mixing increases roughly as Ds2Y . At high noise ampli-

tudes the curves become nonlinear, and appear to saturate at a value of 2�1/2.

We now examine the mixing of the random amplitudes, Y, with the unperturbed

composition vector, C0, described by Fig. 4C. The extent of the mixing is essential-

ly independent of the noise amplitude when the noise is small. As D increases, the

mixing coefficient increases monotonically to a value of 2�1/2. Recall that, by

design, all of the information on the amplitude of the perturbation is contained

in the norm of the vector Y. As a result, the amplitude-independent mixing

coefficient in Fig. 4C actually reflects the fact that the noise content of the first

amplitude vector increases in direct proportion to the amplitude of the perturba-

tion. The only operative discrimination against the random amplitudes in deriving

the first amplitude vector is the overlap. At the largest noise amplitudes the mixing

coefficient approaches its saturating value at smaller values of D.
The contribution of the random amplitudes to the first amplitude vector is

proportional to sY, and their contribution to the first spectrum is proportional

to s2Y . This is a direct consequence of the averaging of this contribution over the

The eigenvalues and eigenvectors of these matrices and their transposes were then used to construct an

ensemble of singular values and mixing coefficients as described in the text. (A) Averaged singular

values, s1. The inset in (A) describes the dependence of as on sY (the square root of the variance of Y)

where as is determined by fitting the initial portion of the curve to asD
2. (B) Mixing coefficients which

describe the singular vectors U1. These coefficients describe the mean amplitude of X, the normalized

spectrum associated with the random amplitudes which is mixed with F0 to generateU1 under each set of

conditions. The coefficients for U1 depend on both the overlap, D, and the noise amplitude, sY. The
dependence of the mixing coefficient on the overlap is approximately linear for values of the mixing

coefficient less than about 0.2. The inset in (B) describes the dependence of the initial slope of the curves

in (B), aU, on sY. The second derivative of the curves in (A), as, and the slopes in (B), aU, can both

be approximately represented by the relation a¼As2Y for sY < 0.1. (C) Mixing coefficients which

describe the singular vectors V1. These coefficients describe the mean amplitude of the random ampli-

tude vector, Y, which are mixed with C0 to generate V1. These coefficients depend primarily on the

overlap, D, and are nearly independent of the noise amplitude, sY. In each graph, the uppermost line

represents the results of the calculations for sY ¼ 0.512, and each lower line represents the results for a

value of sY which is successively smaller by a factor of 2.
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random amplitudes by SVD. Given these results it becomes possible to rationalize

the dependence of the singular values on the noise amplitudes shown in Fig. 4A. At

low noise amplitudes, the singular value increases quadratically with increasing D.
The second derivative at D ¼ 0 increases in proportion to s2Y as shown in the inset

to Fig. 4A. We have seen in Section IV.B that addition of a small random noise

amplitude to a nonrandom matrix increases the singular value in proportion to its

variance, s2. The observed results from the simulations parallel this behavior. The

first-order effect of adding the noise at low noise amplitudes is to increase the

random component in the amplitude vector in direct proportion to DsY. Without

the normalization imposed by SVD, these random amplitudes would be expected

to increase the norm of this vector by an amount proportional to (DsY)
2. This

increase then appears in the singular value when the amplitude vector is normal-

ized. No contribution to the singular value is expected from the mixing of F0 andX,

since both spectra are normalized prior to the mixing. At the highest noise ampli-

tudes, sY becomes comparable to the mean value of C0, and an additional small

contribution of Y to the singular value can be perceived as an offset in the value of

the singular value s at D ¼ 0. This probably results from the fact that the random

amplitudes have, at this point, become comparable to the ‘‘signal’’ amplitudes, and

the ‘‘noise’’ component can no longer be treated as a perturbation.

These simulations provide considerable insight into the performance of SVD for

data sets which contain one or more component spectra together with noise

described by a well-defined spectrum having random amplitudes. The results

show that when a perturbation having these characteristics is present in a data

set, it will have a much larger effect on the amplitude vectors than on the spectra.

Our observation that the degree of mixing with the signal spectrum increases as s2Y
suggests that any steps taken to minimize such contributions will be particularly

helpful in improving the quality of the resulting component spectra. The noise

contribution to the amplitude vectors increases only in direct proportion to sY, so
reduction of the noise amplitude will be less effective in improving these output

vectors. There are other analytical methods which can be used to supplement the

ability of SVD to discriminate against such contributions. One such method, the

so-called rotation algorithm, is discussed in Section V.D. Because the mixing of

the random amplitudes, Y, with the ‘‘signal’’ component, C0, is directly propor-

tional to the overlap between the spectra associated with these amplitudes, D, the
results further argue that, in some cases, it may be advantageous to select a form

for the data which minimizes this overlap. If, for example, the ‘‘noise’’ arises

primarily from baseline offsets mentioned above, then the overlap can be mini-

mized by arranging the collection and preprocessing of the data so that the spectra

which are analyzed by SVD are different spectra rather than absolute spectra. The

spectral signature of such random components in a specific experiment

(corresponding to X) can usually be determined by analysis of a data set which

contains no ‘‘signal’’ but only experimentally random contributions. We shall

return to this point when discussing the simulations presented in Section VI.B
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below in which random noise comparable to that discussed in Sections IV.A and

IV.B has also been included in the data matrix.

V. Application of Singular Value Decomposition to Analysis of
Experimental Data

Having considered some of the properties of the SVD of noise-free and noisy

matrices, we now turn to the problem of applying SVD to the analysis of experimen-

tal data. The actual calculation of the SVD of a data matrix is only one of a series of

steps required to reduce and interpret a large data set. For the purposes of this

discussion we shall break the procedure into four steps. The first step is the organiza-

tion of the experimental measurements into the matrix form required by SVD. In

addition to the processing of themeasured signals to produce the relevant experimen-

tal parameter (e.g., absorbance, linear dichroism, corrected fluorescence intensity)

this step might include some preconditioning (i.e., truncation or weighting) of the

data.The second step is the calculationof the SVDof the datamatrix. The third step is

the selection of a subset of the singular values and vectors produced by the SVD that

are judged sufficient to represent the original data to within experimental error (i.e.,

the determination of the effective rank ofA). In some cases this stepmay be preceded

or followed by some additional processing of the matrices produced by the SVD.We

describe one suchprocedure, a rotation of subsets of the left and right singular vectors

which optimizes the signal-to-noise ratio of the retained components. The effects of

this rotation procedure are explored in more detail by the simulations described

below. The final step is the description of the reduced representation of the original

data set that is produced in the first three steps in terms of a physical model. This step

most often involves least-squares fitting.

A. Preparation of Data Matrix

To carry out the SVD of a set of data, the data must be assembled as a matrix A

which is arranged so that each column contains a set of measurements for which a

single isolated variable ranges over the same set of values for each column, the

values of all of the other variables remaining fixed.8 Different columns of A then

correspond to different sets of values for the remaining variables. For example, the

data in Fig. 1 consist of optical absorption-difference spectra (i.e., a difference in

8 The first step in any analysis is the reduction of the raw data to produce values for the desired

experimental parameter. This operation usually includes adjustment of the measured data for offsets,

instrument response, and instrument background, as well as correction for baselines and other experi-

mental characteristics. We assume that all such calculations which are specific to a given experimental

technique and instrument have been carried out and tested by appropriate control experiments which

demonstrate, for example, the applicability of Eq. (2) to data collected and analyzed by these

procedures.
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optical densities between the photoproduct and the unphotolyzed sample

measured as a function of wavelength) obtained at different times after photo-

dissociation. To reduce these data using SVD, we create a data matrix A, each

column of which contains a single spectrum (i.e., varies only with wavelength). The

matrix A is then built up from such column vectors (spectra) measured under

different conditions [in this case, times as described by Eq. (2)]. In a properly

constructed matrix each row then corresponds to a single wavelength.

Three types of preprocessing of the data matrix, A, might be contemplated prior

to calculation of the SVD. We shall refer to them as truncation, smoothing, and

weighting. Truncation refers to the reduction of the size of the data matrix by

selection of some subset of its elements; smoothing refers to any procedure in

which noise is reduced by averaging of adjacent points; weighting refers to scaling

of the data matrix to alter systematically the relative values of selected elements.

Truncation of the data set, the first of these operations, may always be carried out.

The effect of truncation is to reduce the size of the data matrix and thereby delimit

the range of the experimental conditions. Truncation is clearly desirable if some

artifact, such as leakage of light from a laser source into the spectrograph, prefer-

entially reduces the quality of data on a subset of the data points. Smoothing of the

data could, in principle, be performed either with respect to the isolated variable

(i.e., ‘‘down the columns’’ of A) or with respect to the remaining variables (i.e.,

‘‘across the rows’’ of A). As we have seen in the discussion of the noise-averaging

properties presented in the previous section, SVD itself acts as an efficient filter to

suppress random measurement noise in the most significant components. A data

set reconstructed from the SVD components is therefore effectively noise-filtered

without the artifacts that may arise when some of the more popular smoothing

algorithms are used. For this reason, there is no clear advantage to pre-smoothing

a data set across either variable, unless such an operation is to take place in

conjunction with a sampling operation in order to reduce the data matrix to a

size determined by limits on either computational speed or computer memory.

The statistical discussion of noise in Section IV.C suggests that it would be

advantageous to weight the data matrix in accordance with the measured variances

of its individual elements. A detailed discussion of the desirability of and strategies

for statistical weighting is beyond the scope of this chapter. It would appear,

however, from the discussion of Cochran and Horne (1980, 1977) that a weighting

procedure should probably be incorporated into the analysis both in cases

where the variances of the data set have been very well characterized and in

cases where the variances range over values which differ by a significant factor.

In the latter cases, it is likely that any reasonable weighting scheme will produce

better results than no weighting at all. It is difficult to judge a priori whether

weighting will significantly improve the accuracy of the SVD analysis. The only

unambiguous method for determining the effects of weighting for a given type of

data appears to be to carry out statistical simulations that incorporate the known

properties of the data as well as the variances characteristic of the measurement

system.
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B. Calculation of Singular Value Decomposition

The computation of the SVD of a data matrix is the most clear-cut of all the

analytical steps in the treatment of experimental data. The input matrix can be

either A or Aw, depending on whether the weighting procedure has been used.

When the SVD of the data matrix A, assembled as described above, is calculated

[Eq. (3)], the left singular vectors of A (the columns ofU) are an orthonormal set of

basis spectra which describe the wavelength dependencies of the data, and the

corresponding right singular vectors (the columns of V) are normalized sets of

time-dependent amplitudes for each basis spectrum (see Fig. 2). The singular

values, {si}, are the normalization factors for each basis spectrum Ui and ampli-

tude vector Vi. Thoroughly tested FORTRAN subroutines for computing the

SVD, based on the work of Golub and co-workers (Golub and Kahan, 1965;

Golub and Reinsch, 1970), are generally available as part of the LAPACK

(Anderson et al., 1999) and Numerical Recipes (Press et al., 2007) subroutine

packages. The reader is referred to the original work for a discussion of the

computational details of the SVD algorithm, which are outside the scope of this

chapter (Golub and Kahan, 1965; Golub and Reinsch, 1970; Golub and VanLoan,

1996; Press et al., 2007).

C. Analysis of Singular Value Decomposition Output

The SVD provides a complete representation of the matrix A as the product of

threematricesU,S, andV havingwell-definedmathematical properties. Equation (3)

represents them� n elements ofA in terms ofm� n (elements ofU)þ n� n (elements

ofV)þ n (diagonal elements ofS)¼ (mþ nþ 1)n numbers.9 The effective use of SVD

as a data reduction tool therefore requires some method for selecting subsets of the

columns of U and V and corresponding singular values which provide an essentially

complete representation of the data set. This selection then specifies an ‘‘effective

rank’’ of the matrix A. In practice, a reasonable selection procedure produces an

effective rank which is much less than the actual number of columns ofA, effecting a

drastic reduction in the number of parameters required to describe the original data

set.

A first criterion for the selection of usable components is the magnitude of the

singular values, since the ordered singular values provide a quantitative measure of

the accuracy of the representation of the original data matrix A in terms of any

subset of the columns of U and V. In the absence of measurement noise and other

perturbations, the number of nonzero singular values is the number of linearly

independent component spectra required to describe the data set. In experimental

9 The number of independent parameters required to specify U, S, and V is reduced because these

numbers are constrained by the mathematical properties of the matrices U and V. A total of n(n þ 1)/2

constraints arise from the orthonormality conditions on the columns of each matrix, giving a total of n

(nþ 1) constraints. The total number of independent parameters is therefore (mþ nþ 1)n – n(nþ 1)¼mn,

which is the number of independent parameters in the matrix A.
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data, however, the presence of noise results in all nonzero singular values (see

Section IV.A). Despite this complexity, it is still possible to use the singular values,

together with an estimate of the measurement uncertainties, to determine how

many component spectra are sufficient to describe the data set to within experi-

mental error. If the data have not been weighted, and the variance, s2, is identical
for all elements of the data matrix, it is reasonable to argue that a component kþ 1

may be considered negligible if the condition

kA�UkSkV
T
kk ¼

Xn
i¼kþ1

s2i � mns2 ð33Þ

is satisfied.Uk, Sk, and Vk are the representation ofA in terms of k basis vectors and

their corresponding amplitudes, as defined in Section III.A, and m and n are related
to the size of the data matrix. This expression simply states that the neglect of this

and all subsequent components should yield a reconstructed data matrix that differs

from the original by an amount that is less than the noise. The choice of m and n rests
on the determination of the number of degrees of freedom for the representation

which remain after the selection of k basis vectors. Shrager has suggested that m ¼ m

and n ¼ n (Shrager and Hendler, 1982; Shrager, 1984, 1986). The results of Sylvestre

et al. (1974) mentioned in Section IV.C suggest that a better choicemay be m¼m� k

and n ¼ n � k. The index r of the least significant component that does not satisfy

this condition is then an estimate of the effective rank of A, and the first through the

rth components are retained for further consideration.

Some guidance in selecting significant components from the SVD of a weighted

data matrix is obtained from the work of Cochran and Horne (1977, 1980).

Weighting of the data using the procedure described in Section IV.C produces a

weighted matrix Aw such that, if Aw has rank r, then the last m � r eigenvalues of

hAwA
T
wi will have the same value, a [Eq. (26)]. This is equivalent to having only the

first m singular values of hAwi nonzero. Successful application of the weighting

algorithm thus produces a set of singular values which are pushed toward zero

away from the remaining set. If such a bifurcation is found, the point at which the

singular values separate can be used to estimate of the rank of the matrix.

Another reasonable criterion for the selection of usable components from the

SVD is the signal-to-noise ratio of the left and right singular vectors (columns of U

and V). Under some experimental conditions, particularly when noise is present

which is random only along one dimension of the data matrix (see Sections IV.D

and VI.B), selection of usable components from the SVD based on singular values

alone can produce a representation of the data matrix that approximates the

original to within experimental error, but in which some of the selected compo-

nents do not contain enough signal to lend themselves to further analysis (e.g., by

least-squares fitting with a physical model). An example of such behavior is seen in

the SVD presented in Fig. 2, where the amplitude of the third basis spectrum

exhibits almost no time-correlated ‘‘signal,’’ but the fourth component, which is

only about half as large, clearly does. Under these circumstances additional criteria
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may be required to select those components for which the signal-to-noise ratios are

sufficiently large to be candidates for further processing.

A useful measure of the signal-to-noise ratio of given columns of U (Ui) and V

(Vi), introduced by Shrager and co-workers (Shrager and Hendler, 1982; Shrager,

1984, 1986), are their autocorrelations defined by

CðUiÞ ¼
Xm�1

j¼1

Uj;iUjþ1;i; ð34Þ

CðViÞ ¼
Xn�1

j¼1

Vj;iVjþ1;i; ð35Þ

where Uj,i and Vj,i represent the jth elements of the ith columns of U and V,

respectively. Because the column vectors are all normalized to unity, those vectors

which exhibit slow variations from row to row (‘‘signal’’) will have values of the

autocorrelation that are close to but less than one. Rapid row-to-row variations

(‘‘noise’’) will result in autocorrelations which are much less than one, and possibly

negative. (The minimum possible value is �1.) For column vectors with many

elements (>100 rows) that are subjectively ‘‘smooth,’’ autocorrelation values may

exceed 0.99, whereas values less than about 0.8 indicate signal-to-noise ratios

approaching 1. Components which have been selected based on singular value

can be further screened by evaluating the autocorrelations of the corresponding

columns of U and V and rejecting the component if either autocorrelation falls

below some threshold value. A proper choice of this threshold depends on the

number of elements in the columns being considered and other experimental

details.

D. Rotation Procedure

The presence of measurement noise and other random components in the data

matrix decreases the effectiveness with which SVD extracts useful information into

the rank-ordered singular values and vectors. As we have seen in Section IV.D,

when the magnitudes of signal and noise components of the data become compa-

rable, they may be mixed in the SVD. The signal amplitude is ‘‘spread’’ by this

mixing over two or more of the singular values and vectors. In some cases, the

columns ofU and V ordered by decreasing singular value do not exhibit monoton-

ically decreasing signal-to-noise ratios (see Fig. 2). A component which is primarily

‘‘noise’’ may actually be sufficiently large to supersede a signal component in the

hierarchy. If this problem is addressed by simply discarding the ‘‘noise’’ compo-

nent from the data, one effectively introduces ‘‘holes’’ in the set of retained

components where components having large amplitudes are ignored and those

having small amplitudes are retained. In other cases one encounters a set of

components which satisfy the condition in Eq. (33) and contain some signal, but
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are not individually of sufficient quality to pass a signal-to-noise test such as the

autocorrelation criterion just described. Because such small signals are almost

always of interest, some procedure for ‘‘concentrating’’ the signal content from a

number of such noisy components into one or a very small number of vectors to be

retained for further analysis can be extremely useful.

One such optimization procedure transforms a selected set of such noisy com-

ponents by finding normalized linear combinations for which the autocorrelations

[Eqs. (34) and (35)] are maximized. The autocorrelations may be optimized either

for the columns of U [Eq. (34)] or for the columns of V [Eq. (35)]. The choice

depends on whether the signal-to-noise ratio of the determinations as a function of

the isolated variable (e.g., wavelength), or as a function of the remaining variables

(e.g., time, pH), is considered more important. For purposes of discussion, the

transformations will be applied to a set of p columns of V to be denoted by {Vk},

where the indices k are taken from the set {k1, k2, . . ., kp}. Clearly, blocks of

consecutive columns of either matrix are the most obvious candidates for transfor-

mation, because they correspond to blocks of consecutively ordered singular

values, but this choice is not required by the algorithm. It is only necessary that

the processing of the columns of one matrix be accompanied by the compensatory

processing of the corresponding columns of the other matrix so that the contribu-

tion of the product of the two matrices to the decomposition in Eq. (3) is preserved.

The problem then is to determine coefficients {ri}, for i ¼ 1, . . ., p, such that the

autocorrelation of the normalized vector

V0 ¼ r1Vk1 þ � � � þ rpVkp ð36Þ
is a maximum. Because the set of vectors {Vk} is an orthonormal set, the require-

ment that V0 be normalized is enforced by the constraint r21 þ � � � þ r2p ¼ 1 . The

solution of this problem is described in the Appendix. The procedure yields

p distinct sets of coefficients {ri} for which the autocorrelations of the transformed

vectors given by Eq. (36) have zero derivatives (yielding some maxima, some

minima, and some saddle points) with respect to the coefficients. The transformed

vectors with the largest autocorrelations may then be inspected individually to

determine whether they should be retained for subsequent analysis.

To represent the effect of this transformation on the entire matrixV, the p sets of

coefficients {ri} provided by the transformation procedure may be arrayed as

columns of an orthogonal matrix R{k} (see Appendix). This matrix may be viewed

as describing a rotation of the ordered set of orthonormal vectors {Vk} onto a

transformed set of orthonormal vectors V
0
k

� �
. We can define an n � nmatrix R by

Rij ¼ dij if i or j=2 kf g;
Rki;kj ¼ ðR kf gÞij; ð37Þ

that is, by embedding the matrix R{k} into an identity matrix using the indices {k}.

It is easily verified that R is also an orthogonal matrix. We can then define a

transformed matrix VR in terms of the entire original matrix V by
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VR ¼ VR: ð38Þ
The columns of V that are in the set {Vk} are transformed in VR to the

corresponding vectors in the set V
0
k

� �
, and columns of V that are not in {Vk} are

carried over to VR unchanged. If we define a transformed UR matrix by

UR ¼ USR ð39Þ
then the decomposition in Eq. (3) may be written

A ¼ USVT

¼ USRRTVT

¼ ðUSRÞðVRÞT

¼ URðVRÞT;

ð40Þ

where we have exploited the orthogonality of R (i.e., RRT ¼ In) on the second line.

The matricesUR and VR contain new ‘‘basis vectors’’ and amplitudes, respectively,

in terms of which the data matrix A may be represented.10 It is important to point

out that, while the columns of VR still comprise an orthonormal set of vectors, the

columns ofUR are neither normalized nor orthogonal. Furthermore, the mixing of

different components results in the loss of the optimal least-squares property (see

Section III) when the data matrix is described in terms of any but the complete set

of transformed vectors produced by this procedure.

The set of column vectors produced by the rotation procedure (columns of

VR) are mutually ‘‘uncorrelated’’ (in the sense that the symmetrized cross-

correlation matrix defined in the Appendix is now diagonal). One consequence

of this fact is that variations which are correlated in the original columns of V

(the ‘‘signal’’ distributed by the SVD over several components) will tend to be

isolated in single vectors after the rotation. Another consequence is that col-

umns of V which are uncorrelated will not be mixed by the rotation procedure.

Therefore, one anticipates that components having totally random amplitudes

(i.e., those which result from random noise in the data matrix) which are

included in the rotation will not be significantly altered by the rotation proce-

dure and will subsequently be eliminated on screening of the transformed

vectors based on the autocorrelation criterion. Extension of this line of

reasoning suggests that including in the set of rotated vectors additional vectors

beyond those that might be expected to contain usable signal will not signifi-

cantly alter the characteristics of the transformed vectors which contain signal

and will be retained after rotation.

The question of which components to include in the rotation procedure has no

simple answer. It is clear that even two components which have very high signal-to-

10 In practice, of course, only those columns of U and V whose indices are in the set {k} need be

transformed by postmultiplication by R{k} the remaining columns of V are simply carried over un-

changed, and the remaining columns of U are multiplied by the corresponding singular values to

produce the transformed basis vectors.
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noise ratios (i.e., autocorrelations which are close to 1) may be mixed in the

transformation if their variations are correlated in the sense defined above. As a

result, any component of the SVD output which is interesting or useful in

its present form, either for mathematical reasons or based on experience, should

be excluded from the rotation procedure (Hofrichter et al., 1983, 1985). Further-

more, although the discussion in the previous paragraph suggests that it is ‘‘safe’’

to include more components than are clearly required, the set of included compo-

nents should be kept to some small fraction of the total set.11 A procedure that

we have used with some success with data matrices of about 100 columns is to

select as candidates roughly 10% of the components which have the largest singular

values, exclude any of these which either should not be mixed with other compo-

nents for some reason or will not be significantly improved by such mixing, and

apply the rotation procedure to the rest (Hofrichter et al., 1985, 1991; Murray

et al., 1988).

An example which demonstrates the effectiveness of rotation in reordering and

improving the autocorrelations of the amplitude vectors is shown in Fig. 5. Col-

umns 3 through 10 of the SVD shown in Fig. 2 were included in the rotation, which

was carried out with the expectation of removing random contributions to the

small signal observed in V4 of the SVD. Columns 1 and 2 were excluded because

their singular values were, respectively, 70 and 5.6 times larger than that of

the ‘‘noise’’ component 3 and the signal-to-noise ratios of these components

were already about 250 and 30, respectively. The first effect of rotation is that

which was anticipated: the signal-to-noise ratio in the third amplitude vector is

improved from about 2 to more than 7 and the derivative-shaped ‘‘signal’’ in

channels 1 through 40 is concentrated in the third basis spectrum.12 The autocor-

relation of the rotated VR
3 is 0.933, whereas that of V4 is only 0.742. The second

effect is to suppress the random offset amplitudes represented by the third compo-

nent in the original SVD (Fig. 2) to the point that they do not even appear in the

first six components after rotation. The bulk of the offset amplitude actually

appears as component 8 of the rotated SVD, and the autocorrelation of VR
8 is

slightly less than zero (�0.12).

11 Additional constraints placed on the elements of the transformed vectors by the rotation proce-

dure tend to determine the individual elements as the size of the included set approaches that of the

complete set. Specifically, if p vectors out of a total of n columns of V are included, the p� n elements of

the resulting transformed vectors are subject to p2 constraints—p (p – 1)/2 from the fact that the

symmetrized cross-correlation matrix (see Appendix) has all off-diagonal elements equal to zero,

p(p – 1)/2 from the orthogonality of all the transformed vectors, and p from the normalization of each

vector. As p approaches n, these constraints obscure any relationship between the shapes of the

untransformed and the transformed vectors, and the set of vectors required to represent the signal

content of the original data matrix will actually increase rather than decrease.
12 This ‘‘signal’’ arises from the perturbation of the absorption spectra of the cobalt porphyrins in the

a chains of the hybrid hemoglobin tetramer. The time course for this spectral change is distinctively

different from that of the second component (Hofrichter et al., 1985).
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Fig. 5 Rotated SVD of the data in Fig. 1. Components 3 through 10 of the SVD for which the first six

components are shown in Fig. 2 were rotated using the algorithm discussed in the text and derived in the

Appendix. The autocorrelations of the components included in the transformation (3–10) were 0.149,

0.746, 0.062, �0.089, 0.337, �0.010, 0.031, and 0.099 before rotation. The signal-to-noise ratio for the

component with the highest autocorrelation (V4) evaluated by comparing a smoothed version of this
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E. Application of Physical Models to Processed Singular Value Decomposition Output

The discussion to this point has dealt with the purely mathematical problem of

using SVD and associated processing to produce a minimal but faithful representa-

tion of a data matrix in terms of basis vectors and amplitudes. The next step in the

analysis of the data is to describe this representation of the data matrix in terms of

the concentrations and spectra of molecular species. This step requires that some

physical model be invoked to describe the system and an optimization procedure be

carried out to adjust the parameters of the model so that the differences between the

data and the model description are minimized. Several assumptions are inherent in

such a procedure. First, a set of pure states or species which are accessible to the

system must be enumerated. The measured spectra are then assumed to be linear

combinations of the spectra of the various pure species, weighted by their popula-

tions under each set of conditions [e.g., Eq. (2)]. The dependence of the populations

of these species [the {cn} of Eq. (2)] on the conditions is further assumed to be

quantitatively described by a kinetic or thermodynamic model. If the model pro-

vides for r distinct species, then the first two of these assumptions permit the

(m wavelengths) � (n conditions) matrix A to be written in the form of Eq. (5),

that is,

A ¼ FCT; ð41Þ
where the columns of the m � r matrix F contain the spectra of the individual

species, and the corresponding columns of the n � r matrix C contain the popula-

tions of the species as a function of conditions.

The most common means for reducing a representation of a set of experimental

data to a description in terms of a physical model is through the use of least-squares

fitting. Using this approach, the amplitudes of all of the vectors which describe the

data matrix would be simultaneously fitted to the model to produce a set of

coefficients which describe the spectra of each of the species in the model as well

as the dependence of the species concentrations on experimental conditions (Shra-

ger, 1986). A common alternative to using molecular or physical models to directly

fit the data is to assume functional forms which result from analysis of generalized or

simplified models of the system and to use these forms to fit the data. For example, if

the kinetics of a system can be described by a set of first-order or pseudo-first-order

processes, then the kinetics of the changes in system composition can be described by

sums of exponentials, with relaxation rates which are the eigenvalues of the first-

order rate matrix.1 Under these circumstances, the time-dependent vectors which

describe the changes in the spectra can be empirically described by sums of exponen-

tial relaxations, and fitting can be carried out using functions of this form.

component with the original is approximately 2. The autocorrelations of transformed components 3

through 10 were 0.932, 0.473, 0.277, 0.191, 0.001, �0.115, �0.165, and �0.268, and their normalized

amplitudes were 0.058, 0.015, 0.041, 0.011, 0.023, 0.057, 0.014, and 0.029. The signal-to-noise ratio for

the most highly correlated component ðVR
3 Þ is about 7.
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Similarly, pH titration curves can be assumed to be sums of simple Henderson-

Hasselbach curves describing the uncoupled titration of individual groups, and the

measured dependence of the spectra on pH can be fitted to sums of these curves

(Frans and Harris, 1985; Shrager, 1986). Because use of this approach requires the

assumption of some functional form, it is therefore less rigorous than the use of an

explicit model. It also does not permit direct determination of the spectra of the

species in the model. As pointed out in Section II, the advantage of using the output

of SVD in any fitting procedure is that the number of basis spectra required to

describe the data matrix, and hence the number of amplitudes which must be fitted,

is minimized by the rank reduction which has been accomplished by SVD.

Suppose that a population matrix C0 is derived from a specific set of model

parameters. If C0 has rank r so that (C0TC0)�1 exists, the generalized inverse of C0T

can be written as C0(C0TC0)�1 (Lawson and Hanson, 1974), and the corresponding

matrix F0 of species spectra which minimizes the difference kA� F0C
0Tk may be

written (Cochran and Horne, 1980; Lawson and Hanson, 1974)

F0 ¼ AC0ðC0TC0Þ�1: ð42Þ
Least-squares fitting of the matrix A with the model then requires varying the

parameters of the model in some systematic way so that the population matrix C0
calculated from the parameters, and the matrix F0 of spectra calculated using

Eq. (42), result in the smallest possible value of the difference kA� F0C
0Tk. The

suitability of themodel as a description of themeasurements would then be assessed

on the basis of how well the final matrices F0 and C0 describe the original data.
This approach of least-squares fitting the entire data matrix, commonly referred

to as global analysis, has been applied in a large number of studies. Examples

include the analysis of sets of spectra obtained from pH titrations of multicompo-

nent mixtures (Frans and Harris, 1984), analysis of fluorescence decay curves

(Knutson et al., 1983), and analysis of flash photolysis data on the bacteriorho-

dopsin photocycle (Mauer et al., 1987a,b; Nagel et al., 1982; Xie et al., 1987). In

principle it provides the most complete possible description of a data matrix in

terms of a postulated model; however, it has certain features that make it difficult

to use in many cases. The most obvious difficulties are associated with the matrix

F0, which specifies the spectra of the species in the model. If the number of

wavelengths (m) sampled in collecting the data matrix is large, this matrix, which

contains the extinction coefficient of each of the r species at each ofm wavelengths,

is also large, containing a total of m � r adjustable parameters. The fitting

procedure then tends to become computationally cumbersome, in that every

iteration of a search algorithm in parameter space requires at least one recalcula-

tion of F0 using Eq. (42) or the equivalent. It should be noted that in most of the

applications cited above the number of wavelengths included in the analysis was 15

or less. Furthermore, numerical instabilities may arise in the direct application of

Eq. (42) if C0 is rank-deficient, or nearly so, because calculation of the inverse of

C0TC then becomes problematic.
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SVD provides a reduced representation of a data matrix that is especially

convenient for a simplified least-squares fitting process. In the most general

terms, after SVD and postprocessing have been performed, an essentially complete

representation of the data matrix A in terms of k components may be written

A ffi U0V
0T; ð43Þ

where U0 is a matrix of k basis spectra, and V0 contains the amplitudes of the basis

spectra as a function of conditions. If only the SVD has been performed, then U0
consists of the k most significant columns of US, and V0 the corresponding

columns of V; if a rotation or similar procedure has been performed as well, then

U0 consists of the kmost significant columns of the matrix UR [Eq. (39)] and V0 the
corresponding columns of the matrix VR [Eq. (38)]. If the data have been weighted

prior to SVD, then U0 consists of the k most significant columns of U0 and V0 the
corresponding columns of V0 as calculated from Eq. (27). The assumed complete-

ness of the representations of A in Eqs. (41) and (43) suggests the ansatz that the

columns of any matrix C0 of condition-dependent model populations may be

written as linear combinations of the columns of V0. This linear relationship

between C0 and V0 may be inverted, at least in the generalized or least-squares

sense, so that we can write formally13

V0 ffi C0P: ð44Þ
In the least-squares fit, the model parameters used to calculate C0 and the set of

linear parameters P are varied to produce a population matrix C0 ¼ Ĉ and a

parameter matrix P ¼ P̂ such that the difference kV0 � C0Pk is minimized. The

optimal approximation to V0 will be denoted V̂ð	 ĈP̂Þ. This then yields the further

approximation

A0 ¼ U0V
0T ffi U0V̂

T ¼ U0P̂
T
Ĉ

T 	 F̂Ĉ
T
; ð45Þ

where the matrix F̂ is the set of corresponding ‘‘least-squares’’ species spectra.

Equation (45) permits the identification of F̂ in terms of the basis spectra:

F̂ ¼ U0P̂
T
: ð46Þ

It is important to note that, because all of the species spectra must be represented

in terms of the set of basis spectra which compriseU0, the matrix P̂ is much smaller

than the matrix F̂ . Accordingly, the number of adjustable parameters which must

be specified in fitting the SVD representation of the data is significantly reduced

relative to the number required to fit the original data matrix.

13 The formal inversion [Eq. (44)] may optionally be used to facilitate the fitting procedure (Golub

and Pereyra, 1973). When the model parameters which produce the population matrix C0 are varied in

each step of the optimization, the generalized inverse may be used to produce the matrix of linear

parameters, P, which produces the best approximation to V0 corresponding to the specified set of model

parameters.
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This somewhat formal discussion may be made clearer by considering an example

from the field of time-resolved optical absorption spectroscopy, which is similar to

the example described in Section II. Recall that the data consist of a set of absorption

spectra measured at various time delays following photodissociation of bound

ligands from a heme protein by laser pulses (Hofrichter et al., 1983, 1985). Each

column of the data matrixA describes the absorbances at each wavelength measured

at a given time delay. After the SVD and postprocessing, we are left with a minimal

set of basis spectraU0 and time-dependent amplitudesV0 (seeFig. 5). Suppose thatwe
now postulate a ‘‘model’’ which states that the system contains r ‘‘species,’’ the

populations of which each decay exponentially with time with a characteristic rate:

Cij ¼ e�kj ti ; j ¼ 1; . . .; r and i ¼ 1; . . .;m; ð47Þ
where the set {ti} represents the times at which the spectra (columns of A) are

measured and the set {kj} represents the characteristic decay rates of the popula-

tions of the various ‘‘species.’’ The fit in Eq. (45) optimizes the relation

V
0
ij ffi

Xr
q¼1

Pq je
�kqti : ð48Þ

Producing an optimal least-squares approximation to V0ð	 V̂Þ clearly involves

simultaneously fitting all the columns ofV0 using linear combinations of exponential

decays, with the same set of rates k̂q
� �

, but with distinct sets of coefficients {Pqj}, for

each column j. The resulting best-fit rates k̂q
� �

then produce a best-fit set of ‘‘model’’

populations Ĉ and best-fit coefficients P̂qj

n o
[Eq. (48)]. The set of ‘‘species’’ spectra

F̂ which produce a best fit to the matrixU0 are then obtained from Eq. (46), that is,

F̂ iq ¼
Xk
j¼1

P̂ qjU
0
ij : ð49Þ

Although this ‘‘model’’ is admittedly highly contrived, in that descriptive kinetic

models involving interconverting species will not produce species populations which

all decay to zero as simple exponentials, it illustrates the general fitting problem.

Least-squares fitting the columns of V0 obtained from SVD, when the residuals

from each column of V are correctly weighted, is mathematically equivalent to

least-squares fitting the entire data matrix using the global analysis procedure

described in Section II. Shrager (1986) has shown that for SVD alone (no post-

processing) the two procedures in fact yield the same square deviations for any set

of parameters if the sum of squared residuals from each of the columns of V is

weighted by the square of the respective singular value. In other words, the

function to be minimized in the simultaneous fit to all the columns of V should be

f2 ¼
Xm
i¼1

s2i kV
0
i � ðC0PÞik2; ð50Þ
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where V
0
i is the ith column vector of V0. It is shown in the Appendix that, if a

rotation has been performed as described in Eqs. (36)–(40), approximately the

same squared deviations will be obtained if all the columns ofVR are fit with the ith

column weighted by the ith diagonal element Wii of the matrix W ¼ RTS2R.

In practice the SVD is truncated to generate V0, and only a small fraction of the

columns of V are included in the fitting procedure. This is equivalent to setting the

weighting factors of the remaining columns to zero. If the truncation is well

designed, then the columns of V which are discarded either have small weighting

factors, s2i , or have autocorrelations which are small enough to suggest that they

contain minimal condition-correlated signal content. If a rotation procedure

described in Eqs. (36)–(40) has been performed prior to selecting V0, then singular

values of very different magnitudes may be mixed in producing the retained and

discarded columns of VR and their corresponding weighting factors (see Appen-

dix). Because the rotation procedure is designed to accumulate the condition-

correlated amplitudes into the retained components, the discarded components,

while not necessarily small, also have little or no signal content. In both cases the

neglected components clearly contribute to the sum of squared residuals, f2.

Because their condition-correlated amplitudes are small, however, their contribu-

tion to f2 should be nearly independent of the choice of fitting parameters. To the

extent that this is true, parameters optimized with respect to either truncated

representation of the data should closely approximate those which would have

been obtained from fitting to the entire data set.

In summary, an SVD-based analysis almost always simplifies the process of

least-squares fitting a data matrix with a physical model by reducing the problem

to that of fitting a few selected columns of V0. Reducing the rank of the data matrix

also minimizes the number of parameters which must be varied to describe the

absorption spectra of the molecular species [the elements of the matrix P̂ in

Eq. (46)]. Attention must be paid to the proper choice of weighting factors in

order to produce a result which faithfully minimizes the deviations between the fit

and the full data matrix, but the increase in the efficiency of fitting afforded by this

approach argues strongly for its use under all conditions where the rank of the data

matrix is significantly smaller than the number of rows and/or columns (i.e.,

rankmin m; nf g ).

VI. Simulations for a Simple Example: The Reaction A ! B! C

To explore in more detail the effects on the SVD output of introducing noise into

data sets we have carried out simulations of noisy data for the simple kinetic

system

A!B!C: ð51Þ
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This model was used to generate sets of data consisting of sample absorption

spectra and difference spectra (with difference spectra calculated as sample spec-

trum � C) using rates kAB ¼ 106 s�1 and kBC ¼ 103 s�1. The spectra of A, B, and C

were represented as peaks having Gaussian bandshapes centered about wave-

lengths lA ¼ 455 nm, lB ¼ 450 nm, and lC ¼ 445 nm. The bandwidths (half-

widths at 1/e of maximum) and peak absorbances for the three species were chosen

to be DA ¼ 20 nm, DB ¼ 18 nm, and DC ¼ 16 nm and eActl ¼ 0.9 OD, eBctl ¼
1.0 OD, and eCctl ¼ 1.1 OD (ctl is the product of the total sample concentration

and path length). These spectra were selected so that the ordered nonzero singular

values of the noise-free data successively decreased by a factor of between 5 and 10.

These data thus represent many of the problems encountered in the processing of

real data in which some processes may produce changes in absorbance as large as

1 OD, whereas other processes produce changes as small as a few thousandths of

an optical density unit. To derive reliable kinetic information under such unfavor-

able circumstances, careful consideration must be given to the effects of measure-

ment noise on the data analysis.

Two different types of noise were added to the data. The first noise component,

which we refer to as random noise, was selected independently for each element of

the data matrix from a Gaussian distribution having an expectation value of zero

and variance s2r . Random noise simulates shot noise or instrumental noise in the

determination of each experimental absorbance. The assumption that the ampli-

tude of the random noise component is constant over the entire data matrix is

certainly an oversimplification for real data: shot noise results from random

deviations in the number of photons measured for each data point, and therefore

depends on a number of factors, including the intensity of the source and the

optical density of the sample. Moreover, the photon and electronic noise actually

appears in the measured intensities, not in the absorbance, which is calculated from

the logarithm of the ratio of two intensities. The second noise source consists of a

spectrum having an identical absorbance at each wavelength, but having a differ-

ent amplitude for every measured spectrum, selected from a Gaussian distribution

with mean value zero and variance s2l. We shall refer to noise having these

characteristics as wavelength-correlated noise. This noise approximates changes

in the DC baseline of the spectrometer. In single-beam spectroscopy, such noise

can arise from changes in the output energy of the lamp or changes in the sensitivi-

ty of the detector. In double-beam spectroscopy, it can result from electronic drift.

In both cases, however, sl can be significantly larger than the error inherent in the

determination of the dependence of a given spectrum on wavelength, which is

characterized by sr.
We have already seen that independent addition of these two kinds of noise to

noise-free data has qualitatively different effects on the SVD. Based on the results

of Sections IV.A and IV.B, random noise is expected to introduce a spectrum of

singular values similar in magnitude to those obtained for a random matrix and to

perturb the singular values and vectors of the noise-free data as discussed in

Section IV.B. The effects of adding wavelength-correlated noise have been
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explored in Fig. 4 for the case where the noise-free data matrix is rank-1. As shown

there, the SVD contains only a single extra component, which arises primarily

from the constant spectrum assumed as the noise source.

To examine the statistical properties of the SVD of data sets having specified

amplitudes for random (sr) and wavelength-correlated (sl) noise, the SVD of each

of 5000 independently generated data matrices was calculated. Each matrix

contained the identical ‘‘signal,’’ which consisted of absorbances at 101 wave-

lengths and 71 time points evenly spaced on a logarithmic time grid, as well as

randomly selected noise. For each set of 5000 trials, the means and standard

deviations of the individual singular values and of the individual elements of the

appropriate singular vectors were calculated. In calculating the statistical proper-

ties of the SVD, one is confronted with the problem of choosing the sign of each of

the SVD components. Because SVD only determines unambiguously the sign of

each of the productsUi � Vi, some independent criterion must be used to choose the

sign of each of the Ui or Vi. The algorithm chosen in these simulations was to

require that the inner product of the left singular vector with the corresponding left

singular vector obtained from the SVD of the noise-free data matrix be positive. To

present the results of the simulations in a compact form we have chosen to display

the singular values, together with the square root of the mean of the variances of

the relevant singular vectors (noise amplitudes). The singular values facilitate

comparison of the magnitude of the noise contributions with those of the signals

which result from the noise-free data. The noise amplitude provides a compact

characterization of the signal-to-noise ratio for a given parameter or vector.

A. Effects of Random Noise

The first set of simulations was carried out to explore the consequences of adding

random noise of arbitrary amplitude to the data. Based on the discussion of noise

presented earlier, addition of random noise to a noise-free data matrix would be

expected to have two effects on the SVD output. First, the random amplitudes will

generate a set of additional singular values having amplitudes comparable to those

of a random matrix having the same size and noise amplitude [see Eq. (10) and

Fig. 3] in addition to those which derive from the noise-free data. When the noise

amplitude is small, all of these values should be significantly smaller than the

smallest singular value of the noise-free data, and the noise should not interfere

with the ability of SVD to extract the spectral information from the data. Second,

the noise should perturb the singular values and vectors which derive from the

noise-free data by the addition of random amplitudes as shown in Eqs. (15) and

(16) for the case in which the noise-free data matrix has a rank of 1. One objective

of the simulations was to extend this analysis to explore both data sets which had a

rank higher than 1 and the effects of larger noise amplitudes. In particular, we were

interested in determining the random noise amplitudes at which signals became

unrecoverable. It is intuitively expected that the noise amplitudes must become
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large compared to the signal for this to occur, so information on this point cannot

be obtained by treating the noise as a perturbation.

An example of the input data at a relatively low noise amplitude is shown in

Fig. 6B, and the results of the simulations are summarized in Fig. 7. The averages

of the first three singular values are shown in Fig. 7A, and the square roots of the

variances of the first three singular values and singular vectors are plotted as a

function of sr in Fig. 7B–D. The results in Fig. 7A show that, for small sr (<3 �
10�2), the average values of s1, s2, and s3 are essentially unperturbed from the

values obtained from the noise-free data. Figure 7B shows that the presence of

the noise in the data matrix at these noise amplitudes is observable as an increase in

the variances of the first three singular values and vectors. The square roots of the

variances of s1, s2, and s3 are each very nearly equal to sr. Figure 7B and C show

that the square roots of the variances of the singular vectors, sU and sV, are very
nearly equal to sr/sj, where sj is the relevant singular value from the noise-free data.

Because these noise amplitudes are small compared to all of the SVD components

of the noise-free data, these results can be compared directly to the results pre-

dicted by the perturbation treatment in Section IV.B.

The observed variances suggest that it may be possible to generalize Eqs. (15)

and (16) which state that, for a data matrix having a rank of 1, the square root of

the variance of s1 is equal to sr, whereas the square roots of the variances of the

vectors U1 and V1 approximate sr/s1 for large matrices. The proposed generaliza-

tion of these equations would predict that the jth SVD component is described by

sj ffi sj0 þ ðmþ n� 1Þs2
2sj0

þ esj ; ½ varðesj Þ ¼ s2r �;

Uji ffi Uji0 þ
eUji

sj0
; ½ varðeUji

Þ ¼ ð1�U2
ji0Þs2r �;

Vji ffi Vji0 þ
eVji

sj0
; ½ varðeVji

Þ ¼ ð1þ V 2
ji0Þs2r �:

ð52Þ

A more careful examination of the variances of the singular values and vectors

obtained from these simulations shows that these approximations are quite accu-

rate, describing the variance of the first SVD component to within 1%, and the

second and third components to within 2-3%. We can conclude from this analysis

that if the noise in the data is small and purely random, then the variances of the

singular values and vectors should be related as described by Eq. (52). Failure of

the variances to meet this criterion argues strongly for the presence of other sources

of noise in the data.

As sr rises above 0.03 OD, s3 begins to increase. The noise amplitudes for all the

singular values and vectors continue to increase in direct proportion to sr. Once sr
exceeds 0.1 OD, the square roots of the variances of the third singular vectors, U3

andV3, saturate at the values expected from completely random vectors (m�1/2 and

n�1/2, respectively), showing that the elements of these vectors have become
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completely uncorrelated. This result implies that the third SVD component of

the noise-free data has been replaced by a component which is generated by the

random noise. Further increasing sr produces proportional increases in s3, the

singular value associated with this pair of random basis vectors. This behavior is

analogous to that observed for random matrices, where the U and V vectors are

random and the variance of the random variable appears only as a scale factor

multiplying the singular values [Fig. 3; Eq. (10)]. At the maximum values of sr,
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Fig. 6 Sample data sets from simulations of the effects of random and wavelength-correlated noise on

singular values and vectors. (A) The noise-free data. The spectra are calculated as the sums of the

spectra of the three species A, B, and C times the concentrations calculated for a population which is

100% A at t ¼ 0, using the rates kAB ¼ 106 s�1 and kBC ¼ 103 s�1. The spectra are described in the text.

The time points were chosen on a logarithmic grid with 10 points per decade, beginning at 10�8 and

ending at 10�1 s. Random and wavelength-correlated noise having amplitudes sr and sl, respectively,
were added to the noise-free data. (B) Spectra with random noise only: sr ¼ 0.016 OD; sl ¼ 0.

(C) Spectra with both random and wavelength-correlated noise: sr ¼ 0.016 OD; sl ¼ 0.016 OD.

(D) Difference spectra with both random and wavelength-correlated noise. The difference spectra

were calculated by subtracting the spectrum of pure C from all of the calculated spectra. The noise

amplitudes in (D) are identical to those in (C).
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similar behavior is observed in the second singular value and vectors as the noise

becomes sufficiently large that its contribution to the spectrum of singular values

begins to dominate s2.

The dependence of the standard deviations of the singular values and vectors

suggests that a smooth connection can be made between the perturbation treat-

ment for low noise amplitudes and the results obtained from the simulations of

random matrices described in Fig. 3 at higher noise amplitudes. To quantitatively

compare the results of the simulations with those in Fig. 3 we first calculate from

Eq. (10) that, for an n � n square matrix, the largest singular value resulting from

the random amplitudes is equal to smax ¼ 2srn1=2. Inspection of the results in

Fig. 3B form/n< 2 suggests that the corresponding first approximation for anm�
n matrix is smax ffi 2srðmnÞ1=4. The second and third singular vectors in Fig. 7,

which have singular values s2 ¼ 7.7 and s3 ¼ 1.04, become dominated by random

noise when the noise amplitudes exceed 1.0 and 0.12 OD, respectively. The

corresponding values of smax calculated from the noise amplitudes are 9.2 and

1.1, very close to s2 and s3, respectively. If this result can be generalized, it suggests

that the random noise dominates a signal component k when smax � sk. To restate

this conclusion, the signal described by a given singular value, sj, and its associated

singular vectors, Uj and Vj, becomes totally obscured by noise when the random

noise amplitude, sr, exceeds sj/2(mn)1/4. Attempts to improve the quality of signal

components in the presence of random noise by rotation or other postprocessing

algorithms were uniformly unsuccessful (a result which is expected because the

noise components generated by SVD are almost completely uncorrelated).

B. Combined Effects of Random and Wavelength-Correlated Noise

The rotation procedure described in Section V.D and derived in the Appendix

was designed to discriminate between signals which are correlated in one dimen-

sion of the data matrix and those which are not. The simulations just described

show that this procedure has little or no effect when confronted with random noise,

which produces SVD components which are uncorrelated in both dimensions of

the data matrix. We anticipate, however, that this algorithm will be more

Fig. 7 Effects of the amplitude of random noise on the SVD of simulated data for the reaction A! B

! C. The spectra were calculated as described in the text. (A) The first three singular values; (B) square

root of the variance of the first three singular values; (C, D) square root of the average variance of the

first three left (C) and right (D) singular vectors. For each noise amplitude, sr, the SVD of each of 5000

independently generated data matrices was calculated. For each set of 5000 trials the means and

variances of each of the singular values, s1, s2, and s3, and of each element of the three most significant

singular vectors (columns 1–3 of the matrices U and V) were calculated. The value plotted for each

singular vector and noise amplitude in (C) and (D) is the square root of the mean value of the variances

calculated for all of the elements of that singular vector. (Preliminary calculations in which the

dispersions of the variances were examined showed that variations were too small to be analyzed

from the results of these simulations.)
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successful in discriminating against mixing of wavelength-correlated noise with the

noise-free data. To explore the effectiveness of this procedure we performed two

sets of simulations in which both wavelength-correlated noise and random noise

were added to the data. In the first set of simulations the spectra were calculated as

in Section VI.A above, and in the second set the same spectra were used but the

spectrum of pure C was subtracted from the sample spectrum at each time point to

produce a difference spectrum. Sample data sets at the same noise amplitudes are

shown in Fig. 6C and D. Recall that in the absence of random noise, addition of

wavelength-correlated noise increases the rank of the matrix of the absolute

spectra from 3 to 4 and the rank of the matrix of difference spectra from 2 to 3.

At each of three amplitudes for the random noise (sr ¼ 0.016, 0.032, and

0.064 OD), sl was increased systematically from a point where the noise ampli-

tudes were much smaller than the smallest SVD component of the noise-free data

to a point where the contribution of this component to the resulting data matrix

was larger than that of the second component. At each set of noise amplitudes 5000

data sets were generated and analyzed by SVD. For the absorption spectra com-

ponents 3 through 10 were then rotated as described above to optimize the

autocorrelation of the retained VR
3 component. For the difference spectra compo-

nents 2 through 10 were rotated to optimize the retained VR
2 component.

Figure 8 presents the first three singular values and the noise amplitudes of

the smallest singular vectors (U3 and V3) of the noise-free data in the first case

where the data are absorption spectra. The random amplitudes of the wavelength-

correlated noise would produce a singular value, sl ¼ ðmns2lÞ1=2 if the noise were

isolated in a single SVD component. The noise amplitudes thus become compara-

ble to the signal represented by the third SVD component of the noise-free data

when sl is slightly larger than 0.01 OD. Figure 8A permits us to track the

magnitude of this component once it exceeds s3 from the noise-free data. Note

that s3 doubles when the noise amplitude reaches a value of about 0.03 OD and

then climbs steadily until it reaches a value of about 0.1 OD, at which point it levels

off. This is the region in which we are primarily interested.

If we now examine the results in Fig. 8C, we find that the square root of the

variance of V3, s(V3), begins to increase detectably at values of sl as small as

0.004 OD. When sl becomes about 10 times larger (�0.05 OD), s(V3) approaches

the value expected for a random variable n
�1=2
t ffi 0:119, strongly suggesting that

the third SVD component results almost exclusively from the wavelength-corre-

lated noise at these noise amplitudes. This conclusion is supported by examining

U3 of the individual SVDs under these conditions, which shows that the U3 of the

noise-free data has been replaced by a nearly constant spectrum arising from the

offsets. The variance of V3 increases monotonically as sl increases between these

two values. This result argues that most of the information originally contained in

component 3 of the noise-free data has been displaced into component 4 by the

wavelength-correlated noise when sl is larger than 0.05 OD.

These results show that the sorting of wavelength-correlated noise from the data

by SVD is moderately efficient as long as sl is about a factor of 3 smaller than the
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singular value of a given component (sl < 0.004 OD). What is even more interest-

ing is that SVD is able to sort efficiently when sl is more than a factor of 3 larger

than this singular value (sl > 0.04 OD). There is a ‘‘mixing zone,’’ delimited by the
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Fig. 8 Effects of the RMS amplitude of an offset spectrum on the singular values and variances of the

third singular vectors of simulated absorption spectra for the reaction A ! B ! C in the presence of

random noise. Simulations were carried out using the spectra described in the text and analysis

procedures identical to those described in the legend to Fig. 7, both in the absence of random noise

and at random noise amplitudes (sr) of 0.016, 0.032, and 0.064 OD. (A) The first three singular values.

The dashed lines are the result in the absence of random noise; the results for all values of sr are plotted
using the identical symbol: s1, filled circles; s2, open squares; s3, open circles. (B, C) Square root of the

average variance of the third singular vectors, U3 (b) and V3 (C). The results are shown both before

(large symbols and solid lines) and after (small symbols and dashed lines) rotation to optimize the

autocorrelation of the retained right singular vector, VR
3 .
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requirement that the amplitude of the wavelength-correlated noise, measured by

sl, be within a factor of about 3 of that of the signal, measured by s3, in which

significant mixing occurs. At all values of sl, rotation of the SVD output has a

dramatic effect on s(V3), reducing it to a value which is almost identical to that

obtained in the presence of only the random noise component. This improvement

persists until sl exceeds 0.1, where the wavelength-correlated noise is almost an

order of magnitude larger than the third component of the noise-free data.

If we now examine the noise amplitude for U3 shown in Fig. 8B we find that it

remains small throughout this mixing zone and even decreases as sl becomes large

enough to dominate the third SVD component. This result is consistent with the

results of the simulations shown in Fig. 7, which showed that the noise amplitude

in each of the left singular vectors produced by mixing of random noise amplitudes

with the data is inversely proportional to its singular value. Because U3 of the

noise-free data and the spectral signature associated with the wavelength-corre-

lated noise are smooth, the contribution of random noise to the noise amplitude of

U3 should be determined by the magnitude of s3. When the SVD output is rotated

to optimize s(V3), the variance of U
R
3 increases systematically as sl increases, but

never reaches the value expected if the spectrum were completely uncorrelated. It is

also interesting to note that the random noise component acts almost only as a

‘‘background’’ to the wavelength-correlated noise in all of the output vectors. The

noise amplitude contributed by the wavelength-correlated noise appears to be

simply superimposed on this background.

A second set of simulations was carried out to explore to what extent the mixing

of wavelength-correlated noise was dependent on the preprocessing of the data.

The noise-free data used in these simulations were identical to those used above

except the spectrum of pure C was subtracted at each time point. The data are

therefore representative of data processed to produce difference absorption spectra

at a given time point with the equilibrium sample used as a reference. The sample

data set in Fig. 6D shows that the calculation of difference spectra removes much

of the signal from the data matrix. From the point of view of SVD, the major

consequence of this change is effectively to remove the first SVD component,

which corresponds to the average absorption spectrum of the sample, from the

analysis. The first SVD component now corresponds to the average difference

spectrum observed in the simulated experiment.

The first two singular values and the noise amplitudes obtained for the second

singular vectors (U2 andV2) are shown in Fig. 9. Note that the values of s1 and s2 of

the noise-free data in these simulations are only slightly larger than s2 and s3 in

Fig. 8. The dependence of the variance of V2 on sl, shown in Fig. 9C, is qualita-

tively similar to that found for V3 in Fig. 8C. The ability of the rotation algorithm

to reduce the variance of V2 is also qualitatively similar to that shown in Fig. 8C,

but the reduction in s(V2) which results from rotation in Fig. 9C is even larger than

that for s(V3) in Fig. 8C. As in the previous simulation, rotation is able to ‘‘rescue’’

the original signal-to-noise ratio in VR
2 up to the point where the noise becomes as

large as the first component of the noise-free data. At this point, significant noise
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amplitudes begin to mix into V1. Comparable simulations which included rotation

of V1 show that the original signals in both V1 and V2 can be recovered even at

these very large noise amplitudes.
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Fig. 9 Effects of the RMS amplitude of an offset spectrum on the singular values and variances of the

second singular vectors of simulated difference spectra for the reaction A ! B ! C in the presence of

random noise. Simulations were carried out using the spectra described in the text except that the

spectrum of pure C was subtracted from the calculated sample spectrum at each time point and using

analysis procedures identical to those described in the legend to Fig. 7. (A) The first two singular values.

The dashed lines are the result in the absence of random noise, and the results for all values of sr are
plotted using the same symbol: s1, filled circles; s2, open squares. (B, C) Square root of the average

variance of the second singular vectors, U2 (b) and V2 (C). The results are shown both before (large

symbols and solid lines) and after (small symbols and dashed lines) rotation to optimize the autocorrela-

tion of the retained right singular vector, VR
2 . It should be noted that in the absence of random noise the

SVD consists of only three singular values and vectors, so rotation only involves themixing ofV2 andV3.
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Closer comparison of the results in Figs. 8 and 9 shows that there are significant

differences between the analyses of the absorption spectra and the difference

spectra. One major difference is the width of the ‘‘mixing zone,’’ or transition

region in which the relevant component (V3 in Fig. 8 or V2 in Fig. 9) is a

combination of signal and wavelength-correlated noise. For the difference spectra

(Fig. 9C) this zone is significantly narrower, covering about a factor of 3 change in

sl. (An intermediate value of s(V2) is obtained for only a single value of sl.) In
Fig. 8C, on the other hand, this transition zone extends over at least a factor of 10

in sl. The RMS deviations of V3 in Fig. 8C are also somewhat greater than the

corresponding deviations in V2 in Fig. 9C at low noise amplitudes (sl < 0.02).

These results suggest that SVD alone sorts the wavelength-correlated noise from

the signal more efficiently when the input data are in the form of difference spectra.

Another significant difference in the two simulations is that the variance of U2

from the difference spectra also becomes very large in the transition region in

Fig. 9B. There is essentially no evidence of such an effect in Fig. 8B. Because the

offset spectrum has no wavelength dependence, this cannot arise from high-

frequency contributions to U2 in the SVD of a single data set. Rather, it must

result from variations in the sign and magnitude of the offsets which are mixed

with the U2 of the noise-free data in different simulated data sets. Because the

relative sign of the signal and offset contributions to U2 is presumably deter-

mined by statistical fluctuations in the offset amplitudes, it is not unreasonable

that the offset contribution varies both in magnitude and sign from data set to

data set. The major difference between the two simulations is the absence of the

largest SVD component in the difference spectra simulations. Examination of

individual SVD outputs shows mixing of significant offset amplitudes with this

component. Our tentative interpretation of this difference, then, is that signifi-

cant mixing of the offsets with the average absorption spectrum can occur when

the absorption spectra are used as data (Fig. 8B), but that this mixing cannot

occur when difference spectra are used (Fig. 9B).14

The results of these simulations can be summarized as follows. As the ampli-

tude of the wavelength-correlated noise increases, it first mixes with the compo-

nents of the noise-free data, systematically increasing the random component of

V3(V2) and altering U3(U2) (components in parentheses refer to the simulations

of the difference spectra). As the noise amplitude increases further, the third

(second) SVD component obtained from the noisy data results primarily from

the wavelength-correlated offset, and its singular value, s3 (s2), increases in

proportion to sl. At these noise amplitudes V3(V2) is essentialy a random vector.

For the absorption spectra, the increased value of s3 reduces s(U3), suggesting

that nearly all of the noise in U3 results from random noise contributions, but

more complex behavior is observed for the U2 obtained from the difference

spectra. Under these conditions most of the information contained in the third

14 The possibility cannot be ruled out that a remaining ambiguity in the determination of the sign of

U2 as calculated in these simulations contributes to the variance of U2 at higher noise levels.
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(second) component of the SVD of the noise-free data has been displaced into the

fourth (third) SVD component.

The rotation procedure is extremely effective in reclaiming the signals repre-

sented by V3 (V2) under all conditions where sl is less than about 0.1. Processing of

components 3 through 10 (2 through 10) by this algorithm dramatically reduces the

noise of V3 (V2). The cost of this decrease in the noise of the rotated V3 is a

significant increase in the noise amplitude of the rotated U3 (U2). The noise

amplitude of the rotated V3(V2) only increases at the point where the wave-

length-correlated noise becomes comparable in magnitude to the second (first)

SVD component of the noise-free data. At this point the wavelength-correlated

noise begins to mix significantly with the second (first) SVD component, and a

different processing algorithm (specifically, a rotation which includes V2(V1) in the

rotated set) would be required to extract the signal from the noise. The ineffective-

ness of the rotation algorithm when confronted with random noise amplitudes,

noted earlier, is strongly reinforced by these simulations. We therefore conclude

that the rotation procedure can be of significant benefit in extracting correlated

noise contributions to the data matrix which are comparable in magnitude to a

given signal component. When the signal is significantly larger than the noise,

rotations appear to be of questionable benefit, sometimes resulting in a less

efficient extraction of the signal by reducing the difference in the norms of the

mixed components.

VII. Summary

In writing this chapter we have attempted to point out the significant advan-

tages which result from the application of SVD and complementary processing

techniques to the analysis of large sets of experimental data. Although SVD

performs no ‘‘magic,’’ it does efficiently extract the information contained in

such data sets with a minimum number of input assumptions. Moreover, SVD is

the right approach to use for such a reduction. The least-squares property which

we have described both in the introduction (Section II) and in Section III,

together with the theorem which shows that fitting of appropriately weighted

SVD output is equivalent to fitting of the entire data set, argues that there are

few, if any, additional risks which accompany the use of SVD as part of the

analysis procedure.

The simple examples of the SVD of noisy matrices (Section IV) together with the

simulations in Section VI teach several lessons in regard to the choice of an algo-

rithm for processing data. First, when random noise is mixed with data the results

are totally predictable. SVD very effectively averages over random contributions to

the data matrix. However, when the random noise amplitude becomes sufficiently

large to completely submerge the averaged signal amplitude from a given SVD

component, that component becomes unresolvable. This result is a straightforward

extension of conventional signal-averaging wisdom. The only possible approaches to
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extracting additional information when all of the higher SVD components are

uncorrelated (i.e., they result from random noise) are either to increase the size of

the data matrix and hence increase the number of observations which are averaged

or to improve the quality of the data matrix by decreasing the noise level in the

experiment. Second, when the data contain random amplitudes of a correlated noise

source (e.g., the wavelength-correlated noise in our simulations) the mixing of the

‘‘signal,’’ represented by a given SVD component, k, with the noise becomes signifi-

cant when sl becomes sufficiently large that the contribution of the noise component

to the data matrix, sl ¼ ðmns2lÞ1=2, becomes comparable in magnitude to the ‘‘sig-

nal’’ represented by that SVD component, sk. When the noise is small, it does not

seriously degrade the component, but is efficiently sorted by SVD into a separate

component, appearing as a larger than random contribution to the spectrum of

singular values which result from the noise. When the noise becomes significantly

larger than a given SVD component, the ability of SVD to sort by signal magnitude

again separates such noise from the desired signal relatively cleanly, but the efficien-

cy with which the two components are separated appears to depend on the specific

data being analyzed. When such noise is mixed with the signal component in the

SVD, dramatic improvement in signal-to-noise ratios can be produced by rotation of

the mixed and highly cross-correlated SVD components to improve the autocorre-

lation of the retained component(s).

In conclusion, it must be noted that in the examples and simulations which

we have presented we know the ‘‘signal’’ a priori and are also using noise

having well-defined characteristics. As a result, it is considerably easier to

understand the behavior observed in these cases than when one is confronted

with real data. The results of the SVD analysis either with or without the

rotation procedure depend on both the spectra which are used as input and

on the detailed characteristics of the noise which is added to the data. Further-

more, the distribution of correlated noise in the SVD output can be altered by

preprocessing as simple as the calculation of difference spectra. Extrapolation

of these results would suggest that, in order to optimize the processing algo-

rithm for any specific data, the experiment and its processing should be tested

by simulations which use spectra that closely match those measured and noise

that closely approximates that measured for data sets in which there is no

signal. The only obvious alternative to using simulations appears to be to

process the same experimental data using a variety of different procedures

and to compare the results. Either of these approaches may pay dividends in

the analysis of real experimental data.

Acknowledgments

We are grateful to Attila Szabo for numerous discussions and suggestions, as well as for critical

comments on the manuscript. We also thank our colleagues in using SVD, William A. Eaton, Anjum

Ansari, andColleenM. Jones, for helpful comments and suggestions.We especially thankColleenM. Jones

for providing the data used as the example.

134 E.R. Henry and J. Hofrichter



Appendix: Transformation of SVD Vectors to Optimize
Autocorrelations

Suppose that we have an orthonormal set of column vectors {Vi}, for example,

the set of right singular vectors of an m � nmatrix. The autocorrelation of column

vector Vi is defined by

CðViÞ ¼
Xn�1

j¼1

VjiVjþ1;i; ðA:1Þ

where Vji is the jth element of the vector Vi and n is the number of elements in each

vector. The rotation procedure produces a linear transformation R{k} which takes

a given subset consisting of the p basis vectors {Vk} (k 2 {k1, . . ., kp}) to a new set

of vectors V
0
k

� �
for which the autocorrelations as defined in Eq. (A.1) are opti-

mized. The problem is to find coefficients rji, the elements of the matrix R{k}, such

that the autocorrelations of the vectors

V
0
j ¼

X
i2 kf g

rjiVi ðA:2Þ

are optimized. From Eq. (A.1) we have

CðV 0
i Þ ¼

Xn�1

j¼1

V
0
jiV

0
jþ1;i

¼
X
j

X
k

rikVjk

 ! X
p

ripVjþ1;p

 !

¼
X
k;p

rikrip
X
j

VjkVjþ1;p

 !
:

ðA:3Þ

If we define the p � p cross-correlation matrix X by

Xij ¼
X
k

VkiVkþ1; j ðA:4Þ

then Eq. (A.3) may be written in the compact form

CðV 0 Þ ¼
X
i;p

rirpXip; ðA:5Þ

where we have also dropped the vector index j for brevity.

We now require that the coefficients ri produce extremum values of the autocor-

relation in Eq. (A.5), subject to the constraint that the normalized and orthogonal

vectors Vi are transformed into normalized vectors V
0
j , that is, Sr2i ¼ 1. These

requirements are easily formulated using the method of undetermined multipliers:
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@F

@ri
¼ 0; i ¼ 1; . . .;m; ðA:6Þ

where

F ¼ CðV 0 Þ þ l
X
i

r2i : ðA:7Þ

Using Eq. (A.5), Eq. (A.6) becomesX
p

ðXip þ XpiÞ � 2lri ¼ 0: ðA:8Þ

This may be rewritten in matrix-vector notation as

XSr ¼ lr; ðA:9Þ
where the matrix XS ¼ (X þ XT)/2 is the symmetrized cross-correlation matrix and

r is the vector of coefficients ri.

Equation (A.9) represents a simple eigenvalue problem for the real symmetric

matrix XS. The individual eigenvectors rj (j ¼ 1, . . ., p) of Xs are sets of coefficients

rji that produce distinct transformed vectors V
0
j from the starting vectors Vi

according to Eq. (A.2). It is easily shown that the corresponding eigenvalues lj
are in fact the autocorrelations of the transformed vectors V

0
j . The matrix R{k} of

the linear transformation that we seek is just the matrix of column vectors rj, and

the transformation in Eq. (A.2) may be rewritten

VR ¼ VR kf g; ðA:10Þ
where V and VR are the matrices of untransformed and transformed vectors,

respectively. The matrix R{k} is clearly orthogonal, that is, R�1
kf g ¼ RT

kf g, allowing
the transformation of Eq. (A. 10) to be identified as a rotation. The eigenvectors rj
that make up the matrix R{k} are conventionally arranged in order of decreasing

eigenvalues, so that the columns of VR will be arranged in order of decreasing

autocorrelations of the transformed vectors.

It should be pointed out that the conditions of Eq. (A.6) only ensure extremum

values of the autocorrelation with respect to the coefficients ri, not necessarily

maximum values. In general, the procedure produces a set of p vectors V
0
j some of

which have autocorrelations that are maxima, some of which have autocorrela-

tions that are minima, and some of which have autocorrelations that represent

saddle points in the space of coefficients ri. For this reason, the procedure may be

viewed as producing a new set of autocorrelations, some of which are improved

(with respect to the original set) at the expense of others. It should also be noted

that this straightforward procedure for reducing the optimization problem to an

eigenvalue problem for determining the transformation matrix R{k} is easily

generalized to optimization of a much broader class of autocorrelation and other

bilinear functions than has been considered here.

One final topic of discussion is the proper choice of weighting factors to be used

when performing least-squares fits using transformed columns of V. As discussed
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in the text, fits using the untransformed columns of V require that the fit to each

column be weighted by the square of the corresponding singular value. In this case,

for any set of model parameters the weighted squared deviation between V and the

matrix eV(eV 	 C
0
P in Section V.E) of fitted columns produced by explicit evalua-

tion of the model may be written

f2 ¼ kSðVT � eVTÞk2: ðA:11Þ
Inserting the product RRT ¼ In, where R is the full orthogonal transformation

matrix defined in Eq. (37), and using the definition of Eq. (A.10),

f2 ¼ kSRRTðVT � eVTÞk2

¼ kSR½ðVRÞT � ðeVRÞT�k2:
ðA:12Þ

We define the matrix D as

D ¼ VR � eVR
: ðA:13Þ

Using the identity

kMk2 ¼ TrðMTMÞ; ðA:14Þ
where Tr (. . .) signifies the matrix trace operation, we can write

f2 ¼ TrðDRTS2RDTÞ
¼
X
i

X
kl

DikðRTS2RÞklDil :
ðA:15Þ

If the model being used is adequate to describe the data matrix to within some

tolerance, then within some neighborhood of the minimum of Eq. (A.11) in

parameter space it is reasonable to expect that the deviations represented by the

different columns of D will be uncorrelated. If this is the case, we can writeX
i

DikDil ¼
X
i

dklD
2
ik; ðA:16Þ

where dkl is the Kronecker delta. This allows us to simplify Eq. (A.15) to

f2 ffi
X
k

ðRTS2RÞkk
X
i

D2
ik

¼
X
k

WkkkDkk2;
ðA:17Þ

where the matrix W ¼ RTS2R and Dk is the kth column of the matrix D. Thus,
subject to caveats concerning the assumptions leading to Eq. (A.16), it is reason-

able to choose the squares of the corresponding diagonal elements of the matrix

RTS2R as weighting factors in fits to columns of VR.

Another way to estimate the weighting factors is via the amplitudes of the

columns of UR corresponding to the normalized columns of VR being fit. In the
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absence of rotations, the weighting factors for fitting the columns of V are simply

the squared amplitudes of the corresponding columns of US. By analogy, the

weighting factors for fitting the columns of VR could be chosen as the squared

amplitudes of the corresponding columns of UR. These squared amplitudes are

given by the diagonal elements of the product (UR)TUR. By Eq. (39) this product

may be written

ðURÞTUR ¼ RTSUTUSR

¼ RTS2R:
ðA:18Þ

Thus, this approach to estimating the weighting factors yields the same result as

was produced by the first method.
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I. Update

Since the publication of this article, both the primary methods espoused herein,

approximate entropy (ApEn) and cross-ApEn, have been applied very frequently to

an increasingly wide variety of settings within biology, medicine, and epidemiology.

These include an upsurge in applications to the analysis of electroencephalogram

(EEG) data; extensive studies of balance andmotor control; further applications to

heart rate and respiratory data as well as very broad continued application to the

analysis of hormonal dynamics within endocrinology. Representatives of these

studies are applications of ApEn to classify the depth of anesthesia with greater

accuracy than previous benchmark standard methods (Bruhn et al., 2000), and a

means to assess clinically subtle post-concussion motor control in an evaluation of

recovery status (Cavanaugh et al., 2006).

Moreover, ApEn has been recently applied to several studies within psychiatry,

primarily to the analysis of daily mood rating data of sadness and depression

(Pincus et al., 2008), and as well, has been demonstrated to be a strong predictor of

the onset of menopause on the basis of disrupted patterns of menstrual bleeding,

when applied to a seminal database of a long term, longitudinal study of womens’

menstrual cycles (Weinstein et al., 2003).

Finally, more theoretical mathematical aspects have been developed as part of

an application to financial data (Pincus and Kalman, 2004), as well as in a

theoretical probability study of the limiting nature of the ApEn distribution,

which was shown to be chi-squared (Rukhin, 2000).

II. Introduction

Series of sequential data arise throughout biology, in multifaceted contexts.

Examples include (1) hormonal secretory dynamics based on frequent, fixed-incre-

ment samples from serum, (2) heart rate rhythms, (3) EEGs, and (4) DNA

sequences. Enhanced capabilities to quantify differences among such series would

be extremely valuable as, in their respective contexts, these series reflect essential

biological information. Although practitioners and researchers typically quantify

mean levels, and oftentimes the extent of variability, it is recognized that in many

instances, the persistence of certain patterns or shifts in an ‘‘apparent ensemble

amount of randomness’’ provide the fundamental insight into subject status. Despite

this recognition, formulas and algorithms to quantify an ‘‘extent of randomness’’

have not been developed and/or utilized in the above contexts, primarily as even

within mathematics itself, such quantification technology was lacking until very

recently. Thus except for the settings in which egregious changes in serial features

presented themselves, which specialists are trained to detect visually, subtler changes

in patterns would largely remain undetected, unquantified, and/or not acted on.

Recently, a newmathematical approach and formula, ApEn, has been introduced

as a quantification of regularity of data, motivated by both the above application
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needs (Pincus, 1991) and by fundamental questions within mathematics (Pincus and

Kalman, 1997; Pincus and Singer, 1996). This approach calibrates an ensemble

extent of sequential interrelationships, quantifying a continuum that ranges from

totally ordered to completely random. The central focus of this review is to discuss

ApEn, and subsequently cross-ApEn (Pincus and Singer, 1996; Pincus et al., 1996a),

a measure of two-variable asynchrony that is thematically similar to ApEn.

Before presenting a detailed discussion of regularity, we consider two sets of time

series (Figs. 1 and 2) to illustrate what we are trying to measure. In Fig. 1A-F, the

data represent a time series of growth hormone (GH) levels from rats in six distinct

physiologic settings, each taken as a 10-min sample during a 10-h lights-off

(‘‘dark’’) state (Gevers et al., 1998). The end points (a) and (f) depict, respectively,

intact male and intact female serum dynamics; (b) and (c) depict two types of

neutered male rats; and (d) and (e) depict two classes of neutered female rats. It

appears that the time series are becoming increasingly irregular as we proceed from

(a) to (f), although specific feature differences among the sets are not easily

pinpointed. In Fig. 2, the data represent the beat-to-beat heart rate, in beats per

minute, at equally spaced time intervals. Figure 2A is from an infant who had an

aborted SIDS (sudden infant death syndrome) episode 1 week prior to the record-

ing, and Fig. 2B is from a healthy infant (Pincus et al., 1993). The standard

deviations (SD) of these two tracings are approximately equal, and while the

aborted SIDS infant has a somewhat higher mean heart rate, both are well within

the normal range. Yet tracing (A) appears to be more regular than tracing (B). In

both of these instances, we ask these questions: (1) How do we quantify the

apparent differences in regularity? (2) Do the regularity values significantly distin-

guish the data sets? (3) How do inherent limitations posed by moderate length time

series, with noise and measurement inaccuracies present as shown in Figs. 1 and 2,

affect statistical analyses? (4) Is there some general mechanistic hypothesis, appli-

cable to diverse contexts, that might explain such regularity differences?

The development of ApEn evolved as follows. To quantify time series regularity

(and randomness), we initially applied the Kolmogorov-Sinai (K-S) entropy

(Kolmogorov, 1958) to clinically derived data sets. The application of a formula

for K-S entropy (Grassberger and Procaccia, 1983a; Takens, 1983) yielded intui-

tively incorrect results. Closer inspection of the formula showed that the low

magnitude noise present in the data greatly affected the calculation results. It

also became apparent that to attempt to achieve convergence of this entropy

measure, extremely long time series would be required (often 1,000,000 or more

points), which even if available, would then place extraordinary time demands on

the computational resources. The challenge was to determine a suitable formula to

quantify the concept of regularity in moderate-length, somewhat noisy data sets, in

a manner thematically similar to the approach given by the K-S entropy.

Historical context further frames this effort. The K-S entropy was developed for

and is properly employed on truly chaotic processes (time series). Chaos refers to

output from deterministic dynamic systems, where the output is bounded and

aperiodic, thus appearing partially ‘‘random.’’ Recently, there have been myriad
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claims of chaos based on analysis of experimental time series data, in which

correlation between successive measurements has been observed. Because chaotic

systems represent only one of many paradigms that can produce serial correlation,

it is generally inappropriate to infer chaos from the correlation alone. The mis-

labeling of correlated data as ‘‘chaotic’’ is a relatively benign offense. Of greater

significance, complexity statistics that were developed for application to chaotic

systems and are relatively limited in scope have been commonly misapplied to

finite, noisy, and/or stochastically derived time series, frequently with confounding

and nonreplicable results. This caveat is particularly germane to biologic signals,

especially those taken in vivo, because such signals usually represent the output of a

complicated network with both stochastic and deterministic components. We

elaborate on these points in the later section titled Statistics Related to Chaos.

With the development of ApEn, we can now successfully handle the noise, data

length, and stochastic/composite model constraints in statistical applications.

As stated, we also discuss cross-ApEn (Pincus and Singer, 1996; Pincus et al.,

1996a), a quantification of asynchrony or conditional irregularity between two

signals. Cross-ApEn is thematically and algorithmically quite similar to ApEn, yet
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Fig. 2 Two infant quiet sleep heart rate tracings with similar variability, SD (A) aborted SIDS infant,

SD¼ 2.49 beats per minute (bpm), ApEn(2, 0.15 SD, 1000)¼ 0.826; (B) normal infant, SD¼ 2.61 bpm,

ApEn(2, 0.15 SD, 1000) ¼ 1.463.
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with a critical difference in focus: it is applied to two time series, rather than a single

series, and thus affords a distinct tool from which changes in the extent of synchrony

in interconnected systems or networks can be directly determined. This quantification

strategy is thus especially germane to many biological feedback and/or control

systems and models for which cross-correlation and cross-spectral methods fail to

fully highlight markedly changing features of the data sets under consideration.

Importantly, we observe a fundamental difference between regularity (and

asynchrony) statistics, such as ApEn, and variability measures: most short- and

long-term variability measures take raw data, preprocess the data, and then apply

a calculation of SD (or a similar, nonparametric variation) to the processed data

(Parer et al., 1985). The means of preprocessing the raw data varies substantially

with the different variability algorithms, giving rise to many distinct versions.

However, once preprocessing of the raw data is completed, the processed data

are input to an algorithm for which the order of the data is immaterial. For ApEn,

the order of the data is the essential factor; discerning changes in order from

apparently random to very regular is the primary focus of this statistic.

Finally, an absolutely paramount concern in any practical time series analysis is

the presence of either artifacts or nonstationarities, particularly clear trending. If a

time series is nonstationary or is riddled with artifacts, little can be inferred from

moment, ApEn, or power spectral calculations, because these effects tend to

dominate all other features. In practice, data with trends suggest a collection of

heterogeneous epochs, as opposed to a single homogeneous state. From the

statistical perspective, it is imperative that artifacts and trends first be removed

before meaningful interpretation can be made from further statistical calculations.

III. Quantification of Regularity

A. Definition of ApEn

ApEn was introduced as a quantification of regularity in time series data,

motivated by applications to relatively short, noisy data sets (Pincus, 1991).

Mathematically, ApEn is part of a general development of approximating Markov

chains to a process (Pincus, 1992); it is furthermore employed to refine the for-

mulations of i.i.d. (independent, identically distributed) random variables, and

normal numbers in number theory, via rates of convergence of a deficit from

maximal irregularity (Pincus and Kalman, 1997; Pincus and Singer, 1996, 1998).

Analytical properties for ApEn can be found in Pincus (1991), Pincus and Singer

(1996), Pincus and Huang (1992), Pincus and Goldberger (1994); in addition, it

provides a finite sequence formulation of randomness, via proximity to maximal

irregularity (Pincus and Kalman, 1997; Pincus and Singer, 1996). Statistical evalu-

ation is given in Pincus and Huang (1992), Pincus and Goldberger (1994).

ApEn assigns a nonnegative number to a sequence or time series, with larger

values corresponding to greater apparent process randomness (serial irregularity)

and smaller values to more instances of recognizable patterns or features in data.
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ApEnmeasures the logarithmic likelihood that runs of patterns that are close form

observations remain close on next incremental comparisons. From a statistician’s

perspective, ApEn can often be regarded as an ensemble parameter of process

autocorrelation: smaller ApEn values correspond to greater positive autocorrela-

tion; larger ApEn values indicate greater independence. The opposing extremes are

perfectly regular sequences (e.g., sinusoidal behavior, very low ApEn) and inde-

pendent sequential processes (very large ApEn).

Formally, given N data points u(1), u(2),. . ., u(N), two input parameters, m and

r, must be fixed to compute ApEn [denoted precisely by ApEn(m, r, N)]. The

parameter m is the ‘‘length’’ of compared runs, and r is effectively a filter. Next,

form vector sequences x(1) through x(N –m þ 1) from the {u(i)}, defined by x(i)¼
[u(i), . . ., u(iþm – 1)]. These vectors representm consecutive u values, commencing

with the ith point. Define the distance d[x(i), x(j)] between vectors x(i) and x(j) as

the maximum difference in their respective scalar components. Use the sequence x

(1), x(2), . . ., x(N – m þ 1) to construct, for each i � N – m þ 1,

Cm
i ðrÞ ¼ ½number ofxðjÞsuch that d½xðiÞ; xðjÞ� � r�=ðN �mþ 1Þ: ð1Þ

The Cm
i (r) values measure within a tolerance r the regularity, or frequency, of

patterns similar to a given pattern of window length, m. Next, define

FmðrÞ ¼ ðN �mþ 1Þ�1
XN�mþ1

i¼1

ln Cm
i ðrÞ; ð2Þ

where ln is the natural logarithm. We define ApEn by

ApEnðm; r;NÞ ¼ FmðrÞ � Fmþ1ðrÞ: ð3Þ
Via some simple arithmetic manipulation, we deduce the important observation

that

�ApEn ¼ Fmþ1ðrÞ � FmðrÞ
¼ average over i of ln½conditional probability

thatjuðj þmÞ � uði þmÞj � r

given that juðj þ kÞ � uði þ kÞj � r for k¼0; 1; . . . ;m� 1�:
ð4Þ

Whenm¼ 2, as is often employed,we interpretApEnas ameasure of the difference

between the probability that runs of value of length 2will recurwithin tolerance r, and

the probability that runs of length 3 will recur to the same tolerance. A high degree of

regularity in the data would imply that a given run of length 2 would often continue

with nearly the same third value, producing a low value of ApEn.

ApEn evaluates both dominant and subordinate patterns in data; notably, it will

detect changes in underlying episodic behavior that do not reflect in peak occur-

rences or amplitudes (Pincus and Keefe, 1992), a point that is particularly germane

to numerous diverse applications. Additionally, ApEn provides a direct barometer

of feedback system change in many coupled systems (Pincus and Keefe, 1992;

Pincus, 1994).
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ApEn is a relative measure of process regularity, and can show significant

variation in its absolute numerical value with changing background noise char-

acteristics. Because ApEn generally increases with increasing process noise, it is

appropriate to compare data sets with similar noise characteristics, that is, from a

common experimental protocol.

ApEn is typically calculated via a short computer code; a FORTRAN listing for

such a code can be found in Pincus et al. (1991) ApEn is nearly unaffected by noise

of magnitude below r, the de facto filter level, and it is robust or insensitive to

artifacts or outliers: extremely large and small artifacts have little effect on the

ApEn calculation, if they occur infrequently.

Finally, to develop a more intuitive, physiological understanding of the ApEn

definition, a multistep description of its typical algorithmic implementation, with

figures, is presented in Pincus and Goldberger (1994).

IV. Implementation and Interpretation

A. Choice of m, r, and N

The value of N, the number of input data points for ApEn computations, is

typically between 50 and 5000. This constraint is usually imposed by experimental

considerations, not algorithmic limitations, to ensure a single homogeneous epoch.

On the basis of the calculations that included both theoretical analysis (Pincus and

Huang, 1992; Pincus and Keefe, 1992; Pincus, 1991) and numerous clinical appli-

cations (Fleisher et al., 1993; Kaplan et al., 1991; Pincus and Viscarello, 1992;

Pincus et al., 1991; 1993) we have concluded that for bothm¼ 1 andm¼ 2, and 50

� N � 5000, values of r between 0.1 and 0.25 SD of the u(i) data produce good

statistical validity of ApEn(m, r, N). For such r values, we demonstrated (Pincus

and Huang, 1992; Pincus and Keefe, 1992; Pincus, 1991) the theoretical utility of

ApEn(1, r) and ApEn(2, r) to distinguish data on the basis of regularity for both

deterministic and random processes, and the clinical utility in the aforementioned

applications. These choices of m and r are made to ensure that the conditional

frequencies defined in Eq. (4) are reasonably estimated from the N input data

points. For smaller r values than those indicated, one usually achieves poor

conditional probability estimates as well, while for larger r values, too much

detailed system information is lost.

To ensure appropriate comparisons between data sets, it is strongly preferred

that N be the same for each data set. This is because ApEn is a biased statistic; the

expected value of ApEn(m, r, N) generally increases asymptotically with N to a

well-defined, limit parameter denoted ApEn(m, r). Restated, if we had 3000 data

points, and chosem¼ 2, r¼ 0.2 SD, we would expect that ApEn applied to the first

1000 points would be smaller than ApEn applied to the entire 3000-point time

series. Biased statistics are quite commonly employed, with no loss of validity. As

an aside, it can be shown that ApEn is asymptotically unbiased, an important
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theoretical property, but that is not so germane to ‘‘everyday’’ usage. This bias is

discussed elsewhere (Pincus and Goldberger, 1994; Pincus and Huang, 1992), and

techniques to reduce bias via a family of e estimators are provided. However, note

that ultimately, attempts to achieve bias reduction are model specific; thus, as

stated earlier, it is cleanest to impose a (nearly) fixed data length mandate on all

ApEn calculations.

B. Family of Statistics

Most importantly, despite algorithmic similarities, ApEn(m, r, N) is not

intended as an approximate value of K-S entropy (Pincus and Huang, 1992; Pincus

et al., 1991; Pincus, 1991). It is imperative to consider ApEn(m, r, N) as a family of

statistics; for a given application, system comparisons are intended with fixed m

and r. For a given system, there usually is significant variation in ApEn(m, r, N)

over the range of m and r (Pincus and Huang, 1992; Pincus et al., 1991, 1993).

For fixed m and r, the conditional probabilities given by Eq. (4) are precisely

defined probabilitistic quantities, marginal probabilities on a coarse partition, and

contain a great deal of system information. Furthermore, these terms are finite,

and thus allow process discrimination for many classes of processes that have

infinite K-S entropy (see below). ApEn aggregates these probabilities, thus requiring

relatively modest data input.

C. Normalized Regularity

ApEn decrease frequently correlates with SD decrease. This is not a ‘‘prob-

lem,’’ as statistics often correlate with one another, but typically we desire an

index of regularity decorrelated from SD. We can realize such an index, by

specifying r in ApEn(m, r, N) as a fixed percentage of the sample SD of the

individual subject data set (time series). We call this normalized regularity. Nor-

malizing r in this manner gives ApEn a translation and scale invariance to

absolute levels (Pincus et al., 1993) in that it remains unchanged under uniform

process magnification, reduction, or constant shift higher or lower. Choosing r

via this procedure allows sensible regularity comparisons of processes with sub-

stantially different SDs. In most clinical applications, it is the normalized version

of ApEn that has been employed, generally with m ¼ 1 or m ¼ 2 and r ¼ 20% of

the SD of the time series.

D. Relative Consistency

Earlier we commented that ApEn values for a given system can vary significantly

with different m and r values. Indeed, it can be shown that for many processes,

ApEn(m, r, N) grows with decreasing r like log(2r), thus exhibiting infinite varia-

tion with r (Pincus and Huang, 1992). We have also claimed that the utility of

ApEn is as a relative measure; for fixed m and r, ApEn can provide useful
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information. We typically observe that for a given time series, ApEn(2,0.1) is quite

different from ApEn(4, 0.01), so the question arises as to which parameter choices

(m and r) to use. The guidelines above address this, but the most important

requirement is consistency. For noiseless, theoretically defined deterministic dy-

namic systems, we have found that when K-S entropy(A) � K-S entropy(B), then

ApEn(m, r)(A) � ApEn(m, r)(B) and conversely, for a wide range of m and r.

Furthermore, for both theoretically described systems and those described by

experimental data, we have found that when ApEn(m1, r1)(A) � ApEn(m1, r1)

(B), then ApEn(m2, r2)(A) � ApEn(m2, r2)(B), and conversely. This latter property

also generally holds for parameterized systems of stochastic (random) processes, in

which K-S entropy is infinite. We call this ability of ApEn to preserve order a

relative property. It is the key to the general and clinical utility of ApEn. We see no

sensible comparisons of ApEn(m, r)(A) and ApEn(n, s)(B) for systems A and B

unless m ¼ n and r ¼ s.

From a more theoretical mathematical perspective, the interplay between

meshes [(m, r) pair specifications] need not be nice, in general, in ascertaining

which of two processes is ‘‘more’’ random. In general, we might like to ask this

question: Given no noise and an infinite amount of data, can we say that process A

is more regular than process B? The flip-flop pair of processes (Pincus and Huang,

1992) implies that the answer to this question is ‘‘not necessarily’’: in general,

comparison of relative process randomness at a prescribed level is the best one can

do. That is, processes may appear more random than processes on many choices of

partitions, but not necessarily on all partitions of suitably small diameter (r).

The flip-flop pair is two i.i.d. processes A and B with the property that for any

integer m and any positive r, there exists s < r such that ApEn(m, s)(A) < ApEn

(m, s)(B), and there exists t < s such that ApEn(m, t)(B) < ApEn(m, t)(A). At

alternatingly small levels of refinement given by r, process B appears more random

and less regular than process A followed by appearing less random and more

regular than process A on a still smaller mesh (smaller r). In this construction, r can

be made arbitrarily small, thus establishing the point that process regularity is a

relative [to mesh, or (m, r) choice] notion.

Fortunately, for many processes A and B, we can assert more than relative

regularity, even though both A and B will typically have infinite K-S entropy. For

such pairs of processes, which have been denoted as completely consistent pairs

(Pincus and Huang, 1992), whenever ApEn(m, r)(A) < ApEn(m, r)(B) for any

specific choice of m and r, it follows that ApEn(n, s)(A) < ApEn(n, s)(B) for all

choices of n and s. Any two elements of {MIX(p)} (defined below), for example,

appear to be completely consistent. The importance of completely consistent pairs

is that we can then assert that process B is more irregular (or random) than process

A, without needing to indicate m and r. Visually, process B appears more random

than process A at any level of view. We indicate elsewhere (Pincus and Goldberger,

1994) a conjecture that should be relatively straightforward to prove, that would

provide a sufficient condition to ensure that A and B are a completely consistent

pair, and would indicate the relationship to the autocorrelation function.
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E. Model Independence

The physiologic modeling of many complex biological systems is often very

difficult; one would expect accurate models of such systems to be complicated

composites, with both deterministic and stochastic components, and interconnect-

ing network features. The advantage of a model-independent statistic is that it can

distinguish classes of systems for a wide variety of models. The mean, variability,

and ApEn are all model-independent statistics in that they can distinguish many

classes of systems, and all can be meaningfully applied to N > 50 data points. In

applying ApEn, therefore, we are not testing for a particular model form, such as

deterministic chaos; we are attempting to distinguish data sets on the basis of

regularity. Such evolving regularity can be seen in both deterministic and stochas-

tic models (Pincus and Huang, 1992; Pincus and Keefe, 1992; Pincus, 1991; Pincus,

1994).

F. Statistical Validity: Error Bars for General Processes

Ultimately, the utility of any statistic is based on its replicability. Specifically, if a

fixed physical process generates serial data, we would expect statistics of the time

series to be relatively constant over time; otherwise, we would have difficulty

ensuring that two very different statistical values implied two different systems

(distinction). Here, we thus want to ascertain ApEn variation for typical processes

(models), so we can distinguish data sets with high probability when ApEn values

are sufficiently far apart. This is mathematically addressed by SD calculations of

ApEn, calculated for a variety of representative models; such calculations provide

‘‘error bars’’ to quantify probability of true distinction. Via extensive Monte Carlo

calculations, we established the SD of ApEn (2, 0.2 SD, 1000) < 0.055 for a large

class of candidate models (Pincus and Huang, 1992; Pincus and Keefe, 1992). It is

this small SD of ApEn, applied to 1000 points from various models, that provides

its utility to practical data analysis of moderate-length time series. For instance,

applying this analysis, we deduce that ApEn values that are 0.15 apart represent

nearly 3 ApEn SDs, indicating true distinction with error probability nearly p ¼
0.001. Similarly, the SD of ApEn(1, 0.2 SD, 100) < 0.06 for many diverse models

(Pincus and Huang, 1992; Pincus and Keefe, 1992), thus providing good replica-

bility of ApEn with m ¼ 1 for the shorter data length applications.

G. Analytic Expressions

For many processes, we can provide analytic expressions for ApEn(m, r). Two

such expressions are given by Theorems 1 and 2 (Pincus, 1991):

Theorem 1. Assume a stationary process u(i) with continuous state space. Let

m(x, y) be the joint stationary probability measure on R2 for this process, and p(x)
be the equilibrium probability of x.
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Then

ApEn(1, r)

¼ �
ð
mðx; yÞ log

ðyþr

z¼y�r

ðxþr

w¼x�r

mðw; zÞdwdz
�ðxþr

w¼x�r

pðwÞdw
� �

dxdy:

Theorem 2. For an i.i.d. process with density function p(x) for any m � 1,

ApEnðm; rÞ ¼ �
ð
pðyÞ log

ðyþr

z¼y�r

pðzÞdz
� �

dy:

Theorem 1 can be extended in straightforward fashion to derive an expression

for ApEn(m, r) in terms of the joint [(mþ 1)-fold] probability distributions. Hence,

we can calculate ApEn(m, r) for Gaussian processes, as we know the joint proba-

bility distribution in terms of the covariance matrix. This important class of

processes (for which finite sums of discretely sampled variables have multivariate

normal distributions) describes many stochastic models, including solutions to

ARMA (autoregressive-moving average) models and to linear stochastic differen-

tial equations driven by white noise.

Moreover, from a different theoretical setting, ApEn is related to a parameter in

information theory, conditional entropy (Blahut, 1987). Assume a finite state space,

where the entropy of a random variable X, Prob(X ¼ aj) ¼ pj, is H(X):¼ –
P

pj log

pj, and the entropy of a block of random variables X1, . . ., Xn ¼ H(X1, . . ., Xn):¼ –P P
. . .

P
pn (aj1, . . ., ajn) log pn (aj1, . . ., ajn). For two variables, the conditional

entropy HðY k XÞ ¼ HðX ;Y Þ �HðXÞ; this extends naturally to n variables.

Closely mimicking the proof of Theorem 3 of Pincus (1991), the following theorem

is immediate: for r < minj 6¼kjaj � akj;ApEnðm; rÞ ¼ HðXmþ1 k X1; . . . ;XmÞ; thus
in this setting, ApEn is a conditional entropy. Observe that we do not assume that

the process is mth-order Markov, that is, that we fully describe the process; we

aggregate the mth-order marginal probabilities. The rate of entropy

¼ limn!1HðXn k X1; . . . ;Xn�1Þ is the discrete state analog of the K-S entropy.

However, we cannot go from discrete to continuous state naturally as a limit; most

calculations give 1. As for differential entropy, there is no fundamental physical

interpretation of conditional entropy (and no invariance; see Blahut, 1987, p. 243)

in continuous state.

V. Representative Biological Applications

ApEn has recently been applied to numerous settings both within and outside

biology. In heart rate studies, ApEn has shown highly significant differences in

settings in which moment (mean, SD) statistics did not show clear group distinc-

tions (Fleisher et al., 1993; Kaplan et al., 1991; Pincus and Viscarello, 1992; Pincus

et al., 1991; 1993) including analysis of aborted SIDS infants and of fetal distress.

Within neuromuscular control, for example, ApEn showed that there was greater

control in the upper arm and hand than in the forearm and fingers (Morrison and
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Newell, 1996). In applications to endocrine hormone secretion time series data

based on as few as N ¼ 60 points, ApEn has shown vivid distinctions (P < 10–10;

nearly 100% sensitivity and specificity in each study) between normal and tumor-

bearing subjects for GH (Hartman et al., 1994), adrenocorticotropin (ACTH) and

cortisol (van den Berg et al., 1997), and aldosterone (Siragy et al., 1995), with the

tumorals markedly more irregular, a pronounced and consistent gender difference

in GH irregularity in both human and rat (Pincus et al., 1996b), highly significant

differences between follicle stimulating hormone (FSH) and luteinizing hormone

(LH) both in sheep (Pincus et al., 1998) and in humans (Pincus et al., 1997), and a

positive correlation between advancing age and each of greater irregularity of (1)

GH (Veldhuis et al., 1995) and of (2) LH and testosterone (Pincus et al., 1996a).

We next discuss briefly the gender difference findings in GH, to further develop

intuition for ApEn in an application context.

A. Sample Application: Gender Differences in GH Serum Dynamics

In two distinct human subject studies (employing, respectively, immunoradio-

metric assays and immunofluorimetric assays), women exhibited significantly

greater irregularity than their male counterparts, P < 0.001 in each setting, with

almost complete gender segmentation via ApEn in each context (Pincus et al.,

1996b). ApEn likewise vividly discriminates male and female GH profiles in the

adult intact rat (Gevers et al., 1998; Pincus et al., 1996b), P < 10–6, with nearly

100% sensitivity and specificity (Fig. 3A). More remarkably, in rats that had been

castrated prior to puberty, the ApEn of GH profiles in later adulthood is able to

separate genetically male and female animals (Gevers et al., 1998). Among

intact animals and rats treated prepubertally either with a long-acting GnRH

agonist or surgical castration, the following rank order of ApEn of GH

release emerged, listed from maximally irregular to maximally regular: intact

female, GnRH-agonist-treated female, ovariectomized female, orchidectomized

male, GnRH-agonist-treated male, and intact male animal (Gevers et al., 1998),

illustrated in Fig. 1. ApEn was highly significantly different between the pooled

groups of neutered female and neutered male animals, P< 10–4, confirmed visually

in Fig. 3B.

More broadly, this application to the rat studies indicates the clinical utility of

ApEn. ApEn agrees with intuition, confirming differences that are visually ‘‘obvi-

ously distinct,’’ as in the comparisons in Figs. 1A and F, intact male versus female

rats. Importantly, ApEn can also uncover and establish graded and oftentimes

subtle distinctions, as in comparisons of Figs. 1B-E, the neutered subject time

series. Furthermore, these analyses accommodated both a point-length restriction

of N ¼ 60 samples (10-h dark period, 10-min sampling protocol) and a typically

noisy environment (due to assay inaccuracies and related factors), representative

of the types of constraints that are usually present in clinical and laboratory

settings.
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VI. Relationship to Other Approaches

A. Feature Recognition Algorithms

The orientation of ApEn is to quantify the amount of regularity in time series

data as a single parameter (number). This approach involves a different and

complementary philosophy than do algorithms that search for particular pattern

features in data. Representative of these latter algorithms are the pulse detection

algorithms central to endocrine hormone analysis, which identify the number of
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peaks in pulsatile data and their locations (Urban et al., 1988). When applied to

clearly pulsatile data, such pulse detection algorithms have provided significant

capability in the detection of abnormal hormone secretory patterns. However,

such algorithms often ignore ‘‘secondary’’ features whose evolution may provide

substantial information. For instance, ApEn will identify changes in underlying

episodic behavior that do not reflect changes in peak occurrences or amplitudes,

whereas the aforementioned pulse identification algorithms generally ignore such

information. Also, ApEn can be applied to those signals in which the notion of a

particular feature, such as a pulse is not at all clear, for example, an EEG time

series. We recommend applying feature recognition algorithms in conjunction with

ApEn when there is some physical basis to anticipate repetitive presence of the

feature.

B. Statistics Related to Chaos

The historical development of mathematics to quantify regularity has centered

around various types of entropy measures. Entropy is a concept addressing system

randomness and predictability, with greater entropy often associated with more

randomness and less system order. Unfortunately, there are numerous entropy

formulations, and many entropy definitions cannot be related to one other (Pincus,

1991). K-S entropy, developed by Kolmogorov and expanded on by Sinai, allows

one to classify deterministic dynamic systems by rates of information generation

(Kolmogorov, 1958). It is this form of entropy that algorithms such as those given

by Grassberger and Procaccia (1983a) and by Eckmann and Ruelle (1985) esti-

mate. There has been keen interest in the development of these and related algo-

rithms (Takens, 1983) in the last few years, as entropy has been shown to be a

parameter that characterizes chaotic behavior (Shaw, 1981).

However, K-S entropy was not developed for statistical applications, and it has

major debits in this regard. The original and primary motivation for K-S entropy

was to handle a highly theoretical mathematics problem: determining when two

Bernoulli shifts are isomorphic. In its proper context, this form of entropy is

primarily applied by ergodic theorists to well-defined theoretical transformations,

for which no noise and an infinite amount of ‘‘data’’ are standard mathematical

assumptions. Attempts to utilize K-S entropy for practical data analysis represent

out-of-context application, which often generates serious difficulties, as it does

here. K-S entropy is badly compromised by steady, (even very) small amounts of

noise, generally requires a vast amount of input data to achieve convergence

(Ornstein and Weiss, 1990; Wolf et al., 1985), and is usually infinite for stochastic

(random) processes. Hence a ‘‘blind’’ application of the K-S entropy to practical

time series will only evaluate system noise, not the underlying system properties.

All of these disadvantages are key to the present context as most biological time

series likely comprise both stochastic and deterministic components.

ApEn was constructed along lines thematically similar to those of K-S entropy,

though with a different focus: to provide a widely applicable, statistically valid
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formula that will distinguish data sets by a measure of regularity (Pincus et al.,

1991; Pincus, 1991). The technical observation motivating ApEn is that if joint

probability measures for reconstructed dynamics that describe each of two systems

are different, then their marginal probability distributions on a fixed partition,

given by conditional probabilities as in Eq. (4), are likely different. We typically

need orders of magnitude fewer points to accurately estimate these marginal

probabilities than to accurately reconstruct the ‘‘attractor’’ measure defining the

process. ApEn has several technical advantages in comparison to K-S entropy for

statistical usage. ApEn is nearly unaffected by noise of magnitude below r, the filter

level; gives meaningful information with a reasonable number of data points; and

is finite for both stochastic and deterministic processes. This last point gives ApEn

the ability to distinguish versions of composite and stochastic processes from each

other, whereas K-S entropy would be unable to do so.

Extensive literature exists about understanding (chaotic) deterministic dynamic

systems through reconstructed dynamics. Parameters such as correlation dimen-

sion (Grassberger and Procaccia, 1983b), K-S entropy, and the Lyapunov spec-

trum have been much studied, as have been techniques to utilize related algorithms

in the presence of noise and limited data (Broomhead and King, 1986; Fraser and

Swinney, 1986; Mayer-Kress et al., 1988). Even more recently, prediction (fore-

casting) techniques have been developed for chaotic systems (Casdagli, 1989;

Farmer and Sidorowich, 1987; Sugihara and May, 1990). Most of these methods

successfully employ embedding dimensions larger than m ¼ 2, as is typically

employed with ApEn. Thus in the purely deterministic dynamic system setting,

for which these methods were developed, they reconstruct the probability structure

of the space with greater detail than does ApEn. However, in the general (stochas-

tic, especially correlated stochastic process) setting, the statistical accuracy of the

aforementioned parameters and methods is typically poor; see Pincus (1991),

Pincus and Singer (1996), Pincus (1995) for further elucidation of this operational-

ly central point. Furthermore, the prediction techniques are no longer sensibly

defined in the general context. Complex, correlated stochastic and composite

processes are typically not evaluated, because they are not truly chaotic systems.

The relevant point here is that because the dynamic mechanisms of most biological

signals remain undefined, a suitable statistic of regularity for these signals must be

more ‘‘cautious,’’ to accommodate general classes of processes and their much

more diffuse reconstructed dynamics.

Generally, changes in ApEn agree with changes in dimension and entropy

algorithms for low-dimensional, deterministic systems. The essential points here,

ensuring broad utility, are that (1) ApEn can potentially distinguish a wide variety

of systems: low-dimensional deterministic systems, periodic and multiply periodic

systems, high-dimensional chaotic systems, and stochastic and mixed (stochastic

and deterministic) systems (Pincus and Keefe, 1992; Pincus, 1991); and (2) ApEn is

applicable to noisy, medium-sized data sets, such as those typically encountered in

biological time series analysis. Thus, ApEn can be applied to settings for which the
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K-S entropy and correlation dimension are either undefined or infinite, with good

replicability properties as discussed below. Evident, yet of paramount importance,

is that the data length constraint is key to note; for example, hormone secretion

time series lengths are quite limited by physical (maximal blood drawing)

constraints, typically <300 points.

C. Power Spectra, Phase Space Plots

Generally, smaller ApEn and greater regularity correspond in the spectral

domain to more total power concentrated in a narrow frequency range, in contrast

to greater irregularity, which typically produces broader banded spectra with more

power spread over a greater frequency range. The two opposing extremes are (1)

periodic and linear deterministic models, which produce highly peaked, narrow-

banded spectra, with low ApEn values; and (2) sequences of independent random

variables, for which time series yield intuitively highly erratic behavior, and for

which spectra are very broad banded, with high ApEn values. Intermediate to

these extremes are autocorrelated processes, which can exhibit complicated spec-

tral behavior. These autocorrelated aperiodic processes can be either stochastic or

deterministic chaotic. In some instances, evaluation of the spectral domain will be

insightful, when pronounced differences occur in a particular frequency band. In

other instances, there is oftentimes more of an ensemble difference between the

time series, both viewed in the time domain and in the frequency domain, and the

need remains to encapsulate the ensemble information into a single value to

distinguish the data sets.

Also, greater regularity (lower ApEn) generally corresponds to greater ensemble

correlation in phase space diagrams. Such diagrams typically display plots of some

system variable x(t) versus x(t – T), for a fixed ‘‘time lag’’ T. These plots are quite in

vogue, in that they are often associated with claims that correlation, in conjunction

with aperiodicity, implies chaos. A cautionary note is strongly indicated here. The

labeling of bounded, aperiodic, yet correlated output as deterministic chaos has

become a false cognate. This is incorrect; application of Theorem 6 in Pincus

(1992) proves that any n-dimensional steady-state measure arising from a deter-

ministic dynamic system model can be approximated to arbitrary accuracy by that

from a stochastic Markov chain. This then implies that any given phase space plot

could have been generated by a (possibly correlated) stochastic model. The corre-

lation seen in such diagrams is typically real, as is the geometric change that reflects

a shift in ensemble process autocorrelation in some comparisons. However, these

observations are entirely distinct from any claims regarding underlying model

form (chaos vs. stochastic process). Similarly, in power spectra, decreasing power

with increasing frequency (oftentimes labeled 1/f decay) is also a property of

process correlation, rather than underlying determinism or chaos (Pincus, 1994).
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VII. Mechanistic Hypothesis for Altered Regularity

It seems important to determine a unifying theme suggesting greater signal

regularity in a diverse range of complicated neuroendocrine systems. We would

hardly expect a single mathematical model, or even a single family of models, to

govern a wide range of systems; furthermore, we would expect that in vivo, each

physiologic signal would usually represent the output of a complex, multinodal

network with both stochastic and deterministic components. Our mechanistic

hypothesis is that in a variety of systems, greater regularity (lower ApEn) corre-

sponds to greater component and subsystem autonomy. This hypothesis has been

mathematically established via analysis of several very different, representational

(stochastic and deterministic), mathematical model forms, conferring a robustness

to model form of the hypothesis (Pincus and Keefe, 1992; Pincus, 1994). Restated,

ApEn typically increases with greater system coupling and feedback, and greater

external influences, thus providing an explicit barometer of autonomy in many

coupled, complicated systems.

Many endocrine hormone findings, including those indicated above, suggest

that hormone secretion pathology usually corresponds to greater signal irregulari-

ty. Accordingly, a possible mechanistic understanding of such pathology, given

this hypothesis, is that healthy, normal endocrine systems function best as rela-

tively closed, autonomous systems (marked by regularity and low ApEn values),

and that accelerated feedback and too many external influences (marked by

irregularity and high ApEn values) corrupt proper endocrine system function.

It would be very interesting to attempt to experimentally verify this hypothesis in

settings where some of the crucial network nodes and connections are known, via

appropriate interventions to normal neuroendocrine (more generally, biological

network) flow, coupled with signal analysis at one or more output sites.

VIII. Cross-ApEn

Cross-ApEn is a measure of asynchrony between two time series (Pincus and

Singer, 1996; Pincus et al., 1996). As for ApEn, it is a two-parameter family of

statistics, withm and r taking the same meaning as in the ApEn setting, herein fixed

for application to the paired time series {u(i)}, {v(i)}. Cross-ApEn measures,

within tolerance r, the (conditional) regularity or frequency of v patterns similar

to a given u pattern of window length m. It is typically applied to standardized u

and v time series. Greater asynchrony indicates fewer instances of (sub)pattern

matches, quantified by larger cross-ApEn values. Figure 4, taken from a recent

study of paired ACTH-cortisol dynamics in Cushing’s disease (Roelfsema et al.,

1988), illustrates the cross-ApEn quantification, with greater ACTH-cortisol

secretory asynchrony in the diseased subject, compared to the control.

Cross-ApEn is generally applied to compare sequences from two distinct yet

intertwined variables in a network. Thus, we can directly assess network, and not
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just nodal, evolution under different settings, for example, to evaluate uncoupling

and/or changes in feedback and control. Hence, cross-ApEn facilitates analyses of

output from myriad complicated networks, avoiding the requirement to model the

underlying system. This is especially important as accurate modeling of

(biological) networks is often nearly impossible—even a full description of all

system nodes and pathways is typically unknown in most biologic systems, to

say nothing of subsequent good mathematical approximations of the resultant

internetwork dynamics. The key point, similarly for ApEn, is that full model

specification is not required to realize an effective discrimination strategy. Further-

more, of course, there is a paucity of general multivariate time series statistical

tools, as discussed further below.
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In addition to the evident means to potentially discriminate network aspects of

systems, cross-ApEn allows us to now address the following critical, yet generic,

network issue: Are system changes primarily nodal (one-variable) or, rather,

pathway or central control alterations (multivariate)? An answer to this question

is not only essential to basic system understanding, but also a prime determinant in

choosing, for example, therapy/intervention strategies to attempt to restore patho-

biologic milieus to more normative settings. Also, given multiple-node networks,

we can successively probe pairwise, via cross-ApEn, to determine the weakest or

altered (paired) links in the system. Furthermore, in cross-ApEn applications,

paired (u, v) signal inputs can be within known subnetworks, for example, the

FSH-LH hormone secretory system, or alternatively, from less obviously related,

broader networks, for example, the EEG-LH system. Analysis of this latter setting

allows us to address obliquely central control changes, in instances in which direct

evaluation of the same would be effectively impossible. Concomitantly, to generate

the u, v paired time series, one can utilize (quite) distinct sampling frequencies for

each series. The technical point is that because we are interested in discrimination,

rather than full model specification of the joint measure, we only require a fixed

(common) protocol applied throughout to all data sets in a study.

The precise definition, introduced in Pincus and Singer (1996), Definition 5,

given next, is thematically similar to that for ApEn.

A. Definition of Cross-ApEn

Let u ¼ [u(1), u(2), . . ., u(N)] and v ¼ [v(1), v(2), . . ., v(N)] be two length - N

sequences. Fix input parametersm and r. Form vector sequences x(i)¼ [u(i), u(iþ 1),

. . ., u(iþ m – 1)] and y(j)¼ [v(j), v(jþ 1), . . ., v(jþ m – 1)] from u and v, respectively.

For each i�N –mþ 1, setCm
i (r)(vjju)¼ (number of j�N –mþ 1 such that d[x(i), y

(j)]� r)/(N – m þ 1), where d[x(i), y(j)] ¼ maxk¼ 1,2,. . .,m [ju(i þ k – 1) – v(j þ k – 1)j],
that is, the maximum difference in their respective scalar components. The Cm

i (r)

values measure within a tolerance r the regularity, or frequency, of (v–) patterns

similar to a given (u –) pattern of window length m.

Then define Fm(r) (vjju) as the average value of ln Cm
i (r) (vjju), and, finally,

define cross-ApEn(m, r, N)(vjju) ¼ Fm(r) (vjju) – Fmþ1(r) (vjju).
Typically, we apply cross-ApEn with m ¼ 1 and r ¼ 0.2 to standarized u and v

time series data, that is, for each subject, we apply cross-ApEn(1, 0.2) to the {u*(i),

v*(i)} series, where u*(i) ¼ [u(i) – mean u]/SD u and v*(i) ¼ [v(i) – mean v]/SD v.

This standardization, in conjunction with the choice of m and r, ensures good

replicability properties for cross-ApEn for the data lengths to be studied. To

establish a theoretical statistical validity of cross-ApEn as so employed, we studied

a range of two-variable vector AR(2) processes, and several types of coupled two-

variable analogs of the ‘‘variable lag’’ process described below, for each of which

we applied cross-ApEn(1, 0.2) to standardized time series (x, y pair) outputs, 50

replicates of N ¼ 150-point data lengths per process. For each process studied, SD

(cross-ApEn) was �0.06, the SD calculated from the cross-ApEn values from the
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50 replicates; this imparts reasonable replicability properties similar to that for

ApEn (Pincus and Huang, 1992; Pincus and Keefe, 1992; Pincus et al., 1996a). This

degree of reproducibility is not unexpected as, qualitatively, cross-ApEn is a

parameter that aggregates low-order, two-variable joint distributions at a moder-

ately coarse resolution (determined by r).

As a representative example of application of cross-ApEn to biological data, we

now consider the following study.

B. LH-T Study, Men

In recent years, many studies have been concerned with LH and testosterone (T)

serum concentration time series in both younger and older men, both to better

understand the physiology of reproductive capacity and, clinically, to assess, for

example, a loss of libido, or decreased reproductive performance. Furthermore,

there is considerable interest in determining whether a hypothesized male climac-

teric (or so-called andropause) at least partially analogous to menopause in the

woman exists and, if so, in what precise sense. While considerable insight has

already been gained from many studies, nontrivial controversies remain

concerning several classes of findings, including primary determinations of wheth-

er overall mean levels of LH and T decrease with increasing age.

A study was performed to determine possible secretory irregularity shifts with

aging within the LH-T axis (Pincus et al., 1996a). Serum concentrations were derived

for LH and T in 14 young (21–34 yr) and 11 older (62–74 yr) healthy men. For each

subject, blood samples were obtained at frequent (2.5-min) intervals during a sleep

period, with an average sampling duration of 7 h. Although mean (and SD) of LH

and T concentrations were indistinguishable in the two age groups, for each of LH

and T, older men have consistently and highly significantly more irregular serum

reproductive-hormone concentrations than younger men: for LH, aged subjects had

greater ApEn values (1.525 � 0.221) than younger individuals (1.207 � 0.252),

P < 0.003, while for testosterone, aged subjects had greater ApEn values (1.622 �
0.120) than younger counterparts (1.384 � 0.228), P < 0.004.

Probably a yet mechanistically more important finding in this study (Pincus

et al., 1996a) was seen via cross-ApEn analysis. Cross-ApEn was applied to the

paired LH-T time series; statistically, even more vividly than for the irregularity

(ApEn) analyses, older subjects exhibited greater cross-ApEn values (1.961 �
0.121) compared to younger subjects (1.574 � 0.249), P < 10–4, with nearly

100% sensitivity and specificity, indicating greater LH-T asynchrony in the older

group (Fig. 5). Moreover and notably, no significant LH-T linear correlation

(Pearson R) differences were found between the younger and older cohorts, P >
0.62 (Fig. 5). Several possibilities for the source of the erosion of LH-testosterone

synchrony are discussed (Pincus et al., 1996a), although a clear determination of

this source awaits future study. Mechanistically, the results implicate (LH-T)

network uncoupling as marking male reproductive aging, for which we now have

several quantifiable means to assess.
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As another endocrinologic example of cross-ApEn utility, in a study of 20

Cushing’s disease patients versus 29 controls (Roelfsema et al., 1988), cross-

ApEn of ACTH-cortisol was greater in patients (1.686 � 0.051) than in controls

(1.077 � 0.039), P < 10–15, with nearly 100% sensitivity and specificity, suggesting

compromise of hormonal pathways and feedback control in diseased subjects, atop

that previously seen for more localized nodal secretory dynamics of each hormone

individually (van den Berg et al., 1997). Figure 4 displays representative serum

profiles from this study. Additionally, healthy men and women showed progressive

erosion of bihormonal ACTH-cortisol synchrony with increased aging (Roelfsema

et al., 1988) via cross-ApEn, similar to the LH-T erosion of synchrony in men

noted above, suggesting that increased cross-ApEn (greater asynchrony) of paired

secretory dynamics is an ubiquitous phenomenon with advancing age.

C. Complementarity of ApEn and Cross-ApEn to Correlation and Spectral Analyses

Mathematically, the need for ApEn, and particularly for cross-ApEn, is clarified

by considering alternative parameters that might address similar concepts. In

comparing two distinct signals or variables (e.g., to assess a degree of synchrony),

primary parameters that one might employ include the cross-correlation function

(including Pearson R) and the cross-spectrum (Chatfield, 1989), with single-vari-

able counterparts, the autocorrelation function and the power spectrum. Evalua-

tion of these parameters often is insightful, but with relatively short length data

sets, statistical estimation issues are nontrivial and, moreover, interpretation of the

sample cross-correlation function is highly problematic, unless one employs a

model-based prefiltering procedure (Chatfield, 1989, p. 139). Furthermore, ‘‘stan-

dard’’ spectral estimation methods such as the FFT (fast Fourier transform) can be
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shown to be inconsistent and/or so badly biased that findings may be qualitatively

incorrect, especially in the presence of outliers and nonstationarities. This is vividly

demonstrated by Thomson (1990) who recently developed a superior multiple-

data-window technique with major advantages compared to other spectral estima-

tion techniques (Kuo et al., 1990; Thomson, 1990). These difficulties are mirrored

in the cross-spectrum, in addition to an often serious bias in estimation of coher-

ency in short series.

Most importantly, the autocorrelation function and power spectrum, and their

bivariate counterparts, are most illuminating in linear systems, for example,

SARIMA (seasonal autoregressive integrated moving average) models, for which

a rich theoretical development exists (Box and Jenkins, 1976). For many other

classes of processes, these parameters are often relatively ineffective at highlighting

certain model characteristics, even apart from statistical considerations. To illus-

trate this point, consider the following simple model, which we denote as a

‘‘variable lag’’ process: this consists of a series of quiescent periods, of variable

length duration, interspersed with identical positive pulses of a fixed amplitude and

frequency. Formally, we recursively define an integer time-valued process denoted

VarLag whose ith epoch consists of (a quiescent period of) values ¼ 0 at times ti–1
þ 1, ti–1 þ 2, . . ., ti–1 þ lagi, immediately followed by the successive values sin(p/6),
sin(2p/6), sin(3p/6), sin(4p/6), sin(5p/6), sin(6p/6)¼ 0 at the next 6 time units, where

lagi is a random variable uniformly distributed on (randomly chosen between) the

integers between 0 and 60, and ti–1 denotes the last time value of the (i – 1)st sine-

pulse. Figure 6A displays representative output from this process, with Fig. 6B

giving a closer view of this output near time t ¼ 400. The power spectrum and

autocorrelation function calculations shown in Figs. 6C and E were calculated

from a realization of length N ¼ 100,000 points. (The somewhat coarse sampling

of the pulse in the above process definition was chosen to approximate typical

sampling resolution in actual clinical studies.)

Processes consisting of alternatingly quiescent and active periods would seem

reasonable for biologists to consider, as they appear to model a wide variety of

phenomena. However, within mathematics, such processes with a variable quies-

cent period are not commonly studied. To the biologist, output from the above

model would be considered smoothly pulsatile, especially with the identical pulses;

the variable lag process would be most readily distinguished from its constant lag

counterpart (for which lagi ¼ 30 time units for all i) via a decidedly positive SD

for the interpulse duration time series, in the variable lag setting, as opposed to

SD ¼ 0 (constant interpulse duration) in the constant lag setting. The essential

point here, however, is that for VarLag, the power spectrum and autocorrelation

function somewhat confound, as seen in Figs. 6C and E. On the basis of these

figures alone, the pulsatile nature of the time series realizations is hardly evident,

and for all k� 6, the autocorrelation coefficient rk at lag k is insignificantly different

from 0. In contrast, the power spectrum and autocorrelation function confirm the

periodicity of the constant lag analog, shown in Figs. 6D and F, as expected.

Significantly, the issues here are in the parameters, rather than in statistical
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inadequacies based on an insufficiently long output, or on artifacts (outliers), as

Figs. 6C-F were derived from calculations based on 100,000 points from a purely

theoretical model.
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Similar limitations of the spectra and autocorrelation function are inherent to

wide classes of processes. From a general mathematical framework, we can

construct large classes of variable lag processes simply by considering point

processes (Bremaud, 1981), in which we replace the ‘‘point’’ occurrence by a

pulse occurrence, the pulse itself of either a fixed or variable form. The associated

counting process could be of any character, and need not be so special as Poisson

or renewal (as in the above example). Also, variable lags between events to be

compared are the normative case in nonlinear (deterministic and stochastic)

differential equations, in Poisson clumping models (Aldous, 1989), and in output

variables in typical (adaptive) control theory models and queueing network

models. Notably, for many two-dimensional analogs of variable lag processes,

and indeed for many two-dimensional systems in which no small set of dominant

frequencies encapsulates most of the total power, the cross-spectrum and the

cross-correlation function often will similarly fail to highlight episodicities in the

underlying model and data, and thus fail to highlight concomitant changes to

such episodic components.

In contrast to the autocorrelation function and spectral differences between the

above variable lag and constant lag processes, the respective ApEn(1, 20% SD)

values for the two processes are in close agreement: mean ApEn ¼ 0.195 for the

variable lag process, while ApEn ¼ 0.199 for the constant lag setting. This agree-

ment in ApEn values manifests the primary requirement of matching (sub)patterns

within data, while relaxing the requirement of a dominant set of frequencies at

which these subpatterns occur. The two-variable analog of ApEn, given by cross-

ApEn, similarly enables one to assess synchrony in many classes of models. It thus

should not be surprising that in many studies, for example, the LH-T study (Pincus

et al., 1996a), cross-correlation (Pearson R) does not show significant group

differences, whereas cross-ApEn does (as in Fig. 5).

It should be emphasized, nonetheless, that Figs. 6C-F neither invalidate spectral

power and (lagged) autocorrelation calculations, nor do they violate a properly

oriented intuition. The broad-banded spectrum in Fig. 6C, and the negligible

lagged autocorrelation in Fig. 6E for lag � 6 time units, primarily reflect

the independent, identically distributed, relatively broad distribution of the vari-

able lagi. Visually this conforms to viewing Fig. 6A from afar, in effect (nearly)

ignoring the nature of each pulse, and instead de facto primarily focusing on the

‘‘random’’ timing of the peaks as the process of interest. The viewpoint taken by

ApEn is thus complementary to the spectrum and correlogram, more de facto

focusing on (close-up) similarities between active pulses, for example, from the

perspective given in Fig. 6B, while in effect nearly ignoring the nature of the

quiescent epoch aspect of the process. The utility of ApEn and cross-ApEn

to biologists is based on the recognition that in many settings, changes in the

episodic character of the active periods within time series appear to mark physio-

logic and pathophysiologic changes—thus there is a concomitant need for

quantitative methods that primarily address this perspective, for example, ApEn

and cross-ApEn.
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IX. Toward More Faithful Network Modeling

In modeling general classes of real biologic networks, we anticipate that any

single homogeneous model form, such as deterministic dynamic systems, ARMA

models, stochastic differential equations, or Markov chains or processes, is inade-

quate. At the least, we would expect faithful models in many settings to incorpo-

rate queueing network and (adaptive) control theory considerations, as well as the

likelihood that different components in a network are defined by polymorphous

and distinct mathematical model forms. Queueing models arise naturally in multi-

node network analysis with interconnections; control models arise from consider-

ing the brain (or some focal component) as an intelligent central processor,

possibly altering system characteristics on the basis of, for example, a threshold

response. Queueing theory has developed largely within communication (traffic)

theory (Gross and Harris, 1985) and computer network analysis (Allen, 1990;

Jackson, 1957), while control theory has developed toward optimizing perfor-

mance in engineering systems (Fleming and Rishel, 1975). Notably, analytical

developments from these fields may not be directly suitable to physiologic network

modeling, not surprisingly as these fields were not driven by biological context.

Two physiologically motivated problems within these fields that seem worthy of

significant effort are to describe the behavior of (1) queueing networks in which

some nodes are coupled oscillators, and (2) (adaptive) control systems in which

there is a balking probability p with which the control strategy is not implemented.

Problem (2) could model some diseases, in which messages may not reach the

controller or the controller may be too overwhelmed to respond as indicated.

Several ‘‘decision theoretic’’ modeling features that fall under the umbrella of

queueing theory seem especially appropriate (and timely) to impose on many

biological networks, to achieve faithful characterizations of true network proto-

cols, both qualitatively as well as quantitatively. These aspects of traffic theory

include (1) ‘‘broadcast’’ signaling (of a central controller); (2) priority service; (3)

alternative routing hierarchies; (4) ‘‘finite waiting areas’’ for delayed messages,

incorporating the possibility (and consequences) of ‘‘dropped’’ or lost messages;

and (5) half-duplex transmission, in which on a given pathway between two

sources, only one source at a time may use the transmission pathway. In addition,

we must always clarify the ‘‘network topology’’ or routing configuration among

nodes in a network, that is, determine which pairs of nodes have (direct) pathways

to one another, before beginning to address quantitative specifications of signal

transmission along the putative pathways. All of these features can be described

quantitatively, via decision-theoretic point processes and, typically, resultant net-

work performance is then evaluated by large-scale numerical programs that ‘‘sim-

ulate’’ the stochastic environment (Law and Kelton, 1991). General versions of

such programs require considerable expertise and time to write, and are commer-

cially available from a few sources, though regrettably, these are quite expensive to

procure, and are usually targeted to specialists. Furthermore, only in very
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specialized settings do the mathematical descriptions of the decision-theoretic

constraints allow for purely analytic (as opposed to simulation, that is, so-called

‘‘numerical Monte Carlo’’ methods) solutions. This is quite possibly the reason

why this essential yet specialized branch of applied probability theory is relatively

unknown.

The above perspective strongly motivates the requirement that for effective and

broadest utility, statistics developed for general network analysis be model inde-

pendent, or at least provide robust qualitative inferences across a wide variety of

network configurations. The observation that both ApEn and cross-ApEn are

model independent, that is, functionals of the presented sequences (time series),

and are not linked to a prescribed model form, fits squarely with this perspective.

X. Spatial (Vector) ApEn

A spatial (vector) version of ApEn was recently developed to quantify and

grade the degrees of irregularity of planar (and higher dimensional) arrangements

(Singer and Pincus, 1998). Spatial ApEn appears to have considerable potential,

both theoretically and empirically, to discern and quantify the extent of changing

patterns and the emergence and dissolution of traveling waves, throughout multi-

ple contexts within both biology and chemistry. This is particularly germane to the

detection of subtle or ‘‘insidious’’ structural differences among arrays, even where

clear features or symmetries are far from evident.

One initial application of spatial ApEn will facilitate an understanding of both

its potential utility and, simultaneously, of precisely what the quantification is

doing. In Singer and Pincus (1998), we clarified and corrected a fundamental

ambiguity (flaw) in R. A. Fisher’s specification of experimental design (Fisher,

1925; 1935). Fisher implicitly assumed throughout his developments that all Latin

squares (n row � n column arrangements of n distinct symbols where each symbol

occurs once in each row and once in each column) were equally and maximally

spatially random, and subsets of such Latin squares provided the underpinnings of

experimental design. In the example below, even in the small sized 4 � 4 Latin

square case, we already see that spatial ApEn quantifies differences among the

candidate squares. (We then proposed an experimental design procedure based on

maximally irregular Latin squares, eliminating the flaw (Singer and Pincus, 1998).

The precise definition of spatial ApEn is provided as Definition 1 in Singer and

Pincus (1998). Thematically, again, it is similar to that for ApEn, both in the form

of comparisons (determining the persistence of subpatterns to matching subpat-

terns), and in the input specification of window length m and de facto tolerance

width r. The critical epistemologic novelty is that in the planar and spatial case,

given a multidimensional array A and a function u on A (spatial time series), we

specify a vector direction v, and consider irregularity in A along the vector

direction v. We denote this as vector-ApEnv (m, r)(u); in instances in which the

array values are discrete, for example, integers, as in the Latin square example
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below, we often set r to 0, thus monitoring precise subpattern matches, and

suppress r in the vector-ApEn notation, with the resultant quantity denoted

vector-ApEnv(m) (u). Descriptively, vector-ApEnv(m)(u) compares the logarithmic

frequency of matches of blocks of length m (for m � 1) with the same quantity for

blocks of length m þ 1. Small values of vector-ApEn imply strong regularity, or

persistence, of patterns in u in the vector direction v, with the converse interpreta-

tion for large values. The vector direction v designates arrangements of points on

which the irregularity of u is specified, a priori, to be of particular importance. For

example, if v¼ (0, 1), then vector-ApEn measures irregularity along the rows of A,

and disregards possible patterns, or the lack thereof, in other directions; v ¼ (1, 0)

focuses on column irregularity; and v ¼ (1, 2) or (2, 1) or (–1, 2) emphasizes

knight’s move (as in chess) patterns. In typical applications, it is necessary to

guarantee irregularity in two or more directions simultaneously. This requires

evaluation of vector-ApEn for a set V of designated vectors. For example, simul-

taneous row, column, and diagonal irregularity assessment entails calculation of

vector-ApEn for all elements v in V ¼ {(1, 0); (0, 1); (1, –1); (1, 1)}.

Example 1 illustrates vector-ApEn for four Latin squares, and as noted above,

also clarifies the remarks concerning Fisher’s ambiguity in the specification of

experimental design.

Example 1

Consider the following four 4 � 4 Latin squares.

A B C D

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

2 3 4 1 3 4 1 2 4 3 2 1 3 1 4 2

3 4 1 2 4 3 2 1 3 1 4 2 2 4 1 3

4 1 2 3 2 1 4 3 2 4 1 3 4 3 2 1

:

ForA, vector-ApEn(1,0)(1)¼ vector-ApEn(0,1)(1)¼ 0; for B, vector-ApEn(1,0)(1)¼
vector-ApEn(0,1)(1) ¼ 0.637; for C, vector-ApEn(1,0)(1) ¼ 0.637, and vector-

ApEn(0,1)(1) ¼ 1.099; and for D, vector-ApEn(1,0)(1) ¼ vector-ApEn(0,1)(1) ¼ 1.099.

These calculationsmanifest differing extent of feature replicability in the (1, 0) and (0,

1) directions, with A quite regular in both directions, B intermediately irregular in

both directions, C maximally irregular in rows, yet intermediate in columns, and D

maximally irregular in both rows and columns. Alternatively, in A, for example, in

rows, there are three occurrences each of four pairs [(1, 2), (2, 3), (3, 4), and (4, 1)], and

no occurrences of the other eight possible pairs. In B, in rows, four pairs occur

twice [(1, 2), (2, 1), (3, 4), and (4, 3)], while four pairs occur once [(1, 4), (2, 3), (3, 2),

and (4, 1)]. In D, in rows, each of the 12 pairs (i, j), 1 � i, j � 4, i 6¼ j, occur precisely

once. (Similar interpretation follows readily for columns.)

Several broad application areas illustrate the proposed utility of vector-ApEn to

frequently considered settings within biology and chemistry. First, we anticipate

that vector-ApEn will bear critically on image and pattern recognition determina-

tions (Grenander, 1993), to assess the degree of repeatability of prescribed features.

Sets of base atoms would be shapes of features of essential interest; moreover, these
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can be redefined (as indicated in Singer and Pincus, 1998) either on the same scale

as the original atoms, or on a much larger scale, thus providing a more macro-

scopic assessment of spatial irregularity.

Also, many models within physics and physical chemistry are lattice-based

systems, for example, the nearest neighbor Ising model and the classical Heisen-

berg model, which have been employed to model a magnet (via spin), a lattice gas,

alloy structure, and elementary particle interactions (Israel, 1979). Determining

relationships between changes in vector-ApEn in these models and physical corre-

lates would seem highly worthwhile, either theoretically or experimentally. Also,

within solid-state physical chemistry, we speculate that grading the extent of array

disorder may prove useful in assessing or predicting (1) crystal and alloy strength

and/or stability under stresses; (2) phase transitions, either liquid-to-gas, solid-to-

liquid, or frigid-to-superconductive; and (3) performance characteristics of

semiconductors.

Lastly, the analysis of traveling waves oftentimes requires a quantification of

subtle changes, particularly as to the extent of formation and, conversely, the

extent of dissolution or dissipation of wave fronts, above and beyond an identifi-

cation of primary wave ‘‘pulses’’ and resultant statistical analyses. Although

considerable signal-to-noise analysis methodology has been developed for and

applied to this setting, to clarify wave fronts, in the ubiquitous instances where

the extent of insidious or subordinate activity is the primary feature of interest, a

critical and further assessment of the wave patterns is required, to which vector-

ApEn should readily apply, both in two- and three-dimensional settings. This

recognition may be particularly critical near the genesis of an upcoming event of

presumed consequence. One representative, quite important application of this

perspective is to (atrial) fibrillation and arrhythmia detection within cardiac

physiology.

XI. Summary and Conclusion

The principal focus of this chapter has been the description of both ApEn, a

quantification of serial irregularity, and of cross-ApEn, a thematically similar

measure of two-variable asynchrony (conditional irregularity). Several properties

of ApEn facilitate its utility for biological time series analysis: (1) ApEn is nearly

unaffected by noise of magnitude below a de facto specified filter level; (2) ApEn is

robust to outliers; (3) ApEn can be applied to time series of 50 or more points, with

good reproducibility; (4) ApEn is finite for stochastic, noisy deterministic, and

composite (mixed) processes, the last of which being likely models for complicated

biological systems; (5) increasing ApEn corresponds to intuitively increasing pro-

cess complexity in the settings of (4); and (6) changes in ApEn have been shown

mathematically to correspond to mechanistic inferences concerning subsystem

autonomy, feedback, and coupling, in diverse model settings. The applicability

to medium-sized data sets and general stochastic processes is in marked contrast to
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capabilities of ‘‘chaos’’ algorithms such as the correlation dimension, which are

properly applied to low-dimensional iterated deterministic dynamical systems. The

potential uses of ApEn to provide new insights in biological settings are thus myriad,

from a complementary perspective to that given by classical statistical methods.

ApEn is typically calculated by a computer program, with a FORTRAN listing

for a ‘‘basic’’ code referenced above. It is imperative to view ApEn as a family of

statistics, each of which is a relative measure of process regularity. For proper

implementation, the two input parameters m (window length) and r (tolerance

width, de facto filter) must remain fixed in all calculations, as must N, the data

length, to ensure meaningful comparisons. Guidelines for m and r selection are

indicated above. We have found normalized regularity to be especially useful, as in

the GH studies discussed above; ‘‘r’’ is chosen as a fixed percentage (often 20%) of

the subject’s SD. This version of ApEn has the property that it is decorrelated from

process SD—it remains unchanged under uniform process magnification, reduc-

tion, and translation (shift by a constant).

Cross-ApEn is generally applied to compare sequences from two distinct yet

interwined variables in a network. Thus, we can directly assess network, and not

just nodal evolution, under different settings—for example, to directly evaluate

uncoupling and/or changes in feedback and control. Hence, cross-ApEn facilitates

analyses of output from myriad complicated networks, avoiding the requirement

to fully model the underlying system. This is especially important as accurate

modeling of (biological) networks is often nearly impossible. Algorithmically and

insofar as implementation and reproducibility properties are concerned, cross-

ApEn is thematically similar to ApEn.

Furthermore, cross-ApEn is shown to be complementary to the two most

prominent statistical means of assessing multivariate series, correlation and

power spectral methodologies. In particular, we highlight, both theoretically and

by case study examples, the many physiological feedback and/or control systems

and models for which cross-ApEn can detect significant changes in bivariate

asynchrony, yet for which cross-correlation and cross-spectral methods fail to

clearly highlight markedly changing features of the data sets under consideration.

Finally, we introduce spatial ApEn, which appears to have considerable poten-

tial, both theoretically and empirically, in evaluating multidimensional lattice

structures, to discern and quantify the extent of changing patterns, and for the

emergence and dissolution of traveling waves, throughout multiple contexts within

biology and chemistry.
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I. Update

A part of the basic scientific method is to postulate and compare conflicting

hypotheses, which purport to describe specific experimental results. The present

chapter describes a novel approach to distinguish models with Approximate

Entropy (ApEn; Pincus, 2000, 2010). This chapter provides a comparison of two

models of longitudinal growth in children; the Saltation and Stasis model (Johnson

and Lampl, 1995; Johnson et al., 1996, 2001; Lampl and Johnson, 1993, 1997,

1998a, 2000; Lampl et al., 1992, 2001) versus the smooth continuous growth

model. Nevertheless, the basic approach has broad applicability.
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The Saltation and Stasis model (Lampl et al., 1992) describes longitudinal

growth as a series of very short duration growth events followed by a stasis or

refractory period. Most other models of growth assume a slowly varying, continu-

ous growth hypothesis. ApEn (Pincus, 2000, 2010) is a measure of the short-term

temporal irregularity of a time-series and is thus perfect to distinguish models such

as these. In the present case, a bootstrap approach was utilized to evaluate the

distribution of the expected ApEn values for each of these two models. It was

observed that these distributions did not overlap and that the ApEn of the experi-

mental data was within the expected distribution for the Saltation and Stasis

model.

II. Introduction

Researchers are commonly faced with having to differentiate among two or

more hypotheses (i.e., theories, models, etc.) based on how well they describe the

actual experimental data. Frequently, this is done by translating the mechanistic

theory, or hypothesis, into a mathematical model and then ‘‘fitting’’ the model to

the experimental data. This ‘‘fitting’’ process is commonly done by a least squares

parameter estimation procedure (Bates and Watts, 1988; Johnson, 1994; Johnson

and Faunt, 1992; Johnson and Frasier, 1985; Nelder and Mead, 1965).

When the quality of the ‘fit’ of the experimental data is significantly different

between the models (i.e., theories), they can usually be distinguished by applying

the goodness-of-fit criteria (Armitage, 1977; Bard, 1974; Bevington, 1969; Box and

Jenkins, 1976; Daniel, 1978; Draper and Smith, 1981; Johnson and Straume, 2000;

Straume and Johnson, 1992), such as a runs test. However, if these tests are not

conclusive, how can the researcher distinguish between the theories?

This chapter presents a unique application of ApEn (Johnson and Straume,

2000; Pincus, 1991, 1992, 1994, 2000), ApEn, to distinguish between models of

growth in children (Johnson, 1993, 1999; Johnson and Lampl, 1994, 1995; Johnson

et al., 1996; Lampl and Johnson, 1993, 1997, 1998a,b; Lampl et al., 1992, 1995,

1997, 1998). While this specific example is only applicable to some types of experi-

mental data, it does illustrate the broad applicability of ApEn.

Historically, growth (Johnson, 1993, 1999; Johnson and Lampl, 1994, 1995;

Johnson et al., 1996; Lampl and Johnson, 1993, 1997, 1998a,b; Lampl et al.,

1992, 1995, 1997, 1998) has been considered to be a smooth, continuous process

that varies little from day to day. In this model, growth rates change gradually on a

timescale of months or years, and not hours or days. However, when Lampl et al.

measured the lengths and heights of infants and adolescents at daily intervals, it

was observed that large changes in growth rates occured between some days and

no growth occured between other days (Johnson, 1993, 1999; Johnson and Lampl,

1994, 1995; Johnson et al., 1996; Lampl and Johnson, 1993, 1997, 1998a,b; Lampl

et al., 1992, 1995, 1997, 1998). These daily observations led to the development of

the saltation and stasis hypothesis and the mathematical model of growth (Johnson,
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1993, 1999; Johnson and Lampl, 1994, 1995; Johnson et al., 1996; Lampl and

Johnson, 1993, 1997, 1998a,b; Lampl et al., 1992, 1995, 1997, 1998).

The saltation and stasis hypothesis states growth (i.e., saltation) occurs over a

very short time and then the organism enters a refractory period of little or no

growth (i.e., stasis). In this context, ‘‘a very short time’’ means less than the interval

between the measurements and ‘‘little or no growth’’ means less than what could be

measured.

Previously, we utilized the classical goodness of-fit criteria (Armitage, 1977;

Bard, 1974; Bevington, 1969; Box and Jenkins, 1976; Daniel, 1978; Draper and

Smith, 1981; Johnson and Straume, 2000; Straume and Johnson, 1992), such as

autocorrelation, to demonstrate that the saltation and stasis model provided a

better description of the experimental observations than is obtainable withthe

more classical growth models. However, for some data sets, the goodness-of-fit

tests do not provide a clear distinction between the models and hypotheses. With

these data sets in mind, we developed a new method to distinguish models of

growth that are based on a modified version of the ApEn, metric of experimental

data.

The basic procedure for the use of ApEn to distinguish these models involves

calculation of the ApEn value for the original data sequence and the expected ApEn

values, with standard errors, for each of the growth models. The observed ApEn

value is then compared with the distributions of expected ApEn values for each of

the growth models being tested. ApEn quantifies the regular versus the irregular

nature of a time series. This test of adequacy of the growth models is based on the

fact that the degree of regularity of the experimental observations is quantifiable.

III. Definition and Calculation of ApEn

ApEn was formulated by Pincus to statistically discriminate a time series by

quantifying the regularity of a time series (Pincus, 1991, 1992, 1994, 2000). Of

particular significance is the ability of ApEn to reliably quantify the regularity of a

finite length time series, even in the presence of noise and measurement inaccuracy.

This is a property unique to ApEn and one that is not shared by other methods

common to nonlinear dynamic systems theory (Pincus, 1994).

Specifically, ApEn measures the logarithmic likelihood of patterns of a run in a

time series that are close form consecutive observations and remain close evenwhen

considered as m þ 1 consecutive observations. A higher probability of remaining

close (i.e., greater regularity) yields smaller ApEn values, whereas, greater indepen-

dence among sequential values of a time series yields larger ApEn values.

Calculation of ApEn requires prior definition of the two parametersm and r. The

parameterm is the length of run to be compared (as alluded to above) and r is a filter

(the magnitude that will discern ‘‘close’’ and ‘‘not close’’ as described below). ApEn

values can only be validly compared when computed for the samem, r, andN values

(Pincus, 1994), where N is the number of data points in the time series
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being considered. Thus, ApEn is specified as ApEn(m,r,N). For optimum statistical

validity, ApEn is typically implemented using m values of 1 or 2 and r values of

approximately 0.2 standard deviations of the series being considered (Pincus, 1994).

ApEn is calculated according to the following formula (Pincus, 1994): Given N

data points in a time series, u(1), u(2), . . ., u(N), the set ofN�mþ 1 possible vectors,

x(i), are formed withm consecutive u values such that x(i)¼ [u(i), . . ., u(iþm� 1)]T,

i ¼ 1, 2, . . ., N � m þ 1. The distance between vectors x(i), and x( j), d [x(i), x( j)], is

defined as the maximum absolute difference between corresponding elements of the

respective vectors. For each of the N � m þ 1 vectors x(i), a value for Cm
i ðrÞ is

computed by comparing all N � m þ 1 vectors, x(j) to vector x(i) such that

Cm
i rð Þ ¼ number of xðjÞ for which d½xðiÞ; xðjÞ� � r

N �mþ 1
: ð1Þ

These N �mþ 1 Cm
i ðrÞ values measure the frequency with which patterns that

are similar to the pattern given by x(i) of length m within tolerance r, were

encountered. Note that for all i, x(i) is always compared relative to x(i) (i.e., to

itself), so that all values of Cm
i ðrÞ are positive. Now, define

Fm rð Þ ¼

XN�mþ1

i¼1

lnCm
i ðrÞ

N �mþ 1
ð2Þ

from which the ApEn(m, r, N) is given by

ApEnðm; r;NÞ ¼ FmðrÞ � Fmþ1ðrÞ ð3Þ
ApEn, defined in this way, can be interpreted (with m ¼ 1, for example) as a

measure of the difference between (1) the probability that runs of length 1 will

recur within the tolerance r and (2) the probability that runs of length 2 will recur

within the same tolerance (Pincus, 1994).

IV. Modifications of ApEn Calculation for this Application

Two modifications were made to the standard methods for calculation of ApEn

for the present use. The ApEn calculation is normally performed on a stationary

time series (i.e., a series of data where the mean of the data is not a function of

time). Clearly, measures of growth such as height generally increase with time and

consequently the ApEn values were calculated on these nonstationary time series.

This is the first modification. As described above, ApEn(m, r, N) is a function of

the run length size m; r the magnitude that will discern ‘‘close’’ and ‘‘not close’’;

andN the length of the time series. Normally, r is expressed in terms of the standard

deviation of the stationary time series; r is expressed in terms of the experimental

variability or uncertainty of the time series. When applied to a nonstationary time

series (e.g., growth) it is more logical to express r in terms of the actual
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measurement uncertainties. Thus, the second modification of the ApEn calculation

was to express r in terms of the known levels of error in measurement.

V. Growth Models

Numerous mathematical models are available for describing the growth process.

The saltation and stasis model is unique in that it is based on a mechanistic

hypothesis that describes how growth proceeds. This mechanistic hypothesis was

translated into a mathematical form, where growth is described as a series of

distinct instantaneous events of positive growth (i.e., saltations) that are separated

by stasis or periods of no growth:

Height ¼
Xi

k¼1

Gi; ð4Þ

where the summation is over each of the observations, andGi is zero during a stasis

interval but has a positive value for the measurement intervals where a saltation

occurred.

This mathematical model does not require that the saltation events be instanta-

neous. It simply requires that the growth events occur in a lesser time period

compared to the interval between the observations. Under these conditions, the

experimental observations do not contain any information about the actual shape

of the saltation event and thus can simply be approximated as a step function.

Virtually all other growth models (Gasser et al., 1990; Karlberg, 1987; Preece

and Baines, 1978) assume that growth is a smooth continuous process that varies

little from day to day. These models assume that small changes in growth rates

occur on a timescale of months or years, and not by hours or days. Furthermore,

virtually all of these models are not based on a hypothesis or a theory. These

models are simply empirical descriptions of growth. They are generally formulated

to describe only a few observations per year. Thus, these models do not—and

cannot—describe growth patterns that vary on a daily time frame.

It is impossible to test a set of experimental data against every possible slowly

varying smooth, continuous mathematical form. Consequently, we decided to use

an exponential rise

Height ¼ A0 � A1e
�kTime

and/or polynomials of order 1-6

Height ¼
X6

i¼1

AiTimei

as surrogates for the infinite number of possible slowly varying empirical mathe-

matical forms that can be utilized to describe growth.
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VI. Expected Model-Dependent Distribution of ApEn

The expected distributions of ApEn values for any growth model (e.g., saltation

and stasis, polynomial, exponential) are evaluated by using a Monte Carlo proce-

dure. This involves simulating a large number of growth patterns and observing

the distribution of the resulting ApEn values.

The first step in this Monte Carlo procedure is to fit, using least squares, a

particular growth model to a particular set of experimental observations. This

provides an optimal model-dependent description of the growth pattern (i.e., the

best calculated curve for the particular model) and a set of residuals. The residuals

are the differences between the experimental observations and calculated optimal

curve.

The next step is to simulate a large number (e.g., 1000) of calculated growth

patterns for the particular growth model. These calculated growth patterns are the

best calculated curves for the particular model with ‘‘pseudorandom noise’’ added

to it. The expected model-dependent distribution of the ApEn values is then

calculated from the ApEn values for each of the large number of simulated

model-dependent growth patterns.

The ‘‘pseudorandom noise’’ can be generated by three possible methods. First,

the noise can be calculated by generating a Gaussian distribution ofpseudorandom

numbers with a variance equal to the variance of the residuals and a mean of zero.

Second, the actual residuals can simply be shuffled (i.e., selected in a random order)

and added back to the best calculated curve in a different order. Third, the actual

residuals can be shuffled with replacement, as is done in the bootstrap procedures

(Efron and Tibshirani, 1993). The ‘‘shuffled with replacement’’ choice means that

for each of the simulated growth patterns �37% of the residuals are randomly

selected and not used while the same number of the remaining residuals are used

twice to obtain the requisite number of residuals. A different 37% of the residuals

are selected for each of the simulated growth patterns. The order of the selected

residuals is randomized (i.e., shuffled) before they are added back to the calculated

growth pattern.

The expected distribution of the ApEn values, as determined for each of the

growth models, is compared with the observed ApEn value from the experimental

observations. The observed ApEn value will be within either one or more distribu-

tions or may be within none. The conclusion of this test is that if the observed

ApEn value is within an expected distribution for a particular mathematical

model, then the data are consistent with that model. Conversely, if the observed

ApEn value is not within an expected distribution for a particular mathematical

model, then the data are inconsistent with that model. If the observed ApEn is

within the expected distributions for more than one model, then these models

cannot be distinguished by this test.
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VII. Example of this Use of ApEn

Figure 1 presents a typical set of daily experimental observations of the height of

an infant. The solid line, in Fig. 1, corresponds to the saltation and stasis analysis

of these data. The intervals of saltation and stasis are visually obvious. The

analysis of these data by the saltation and stasis model indicated that there were

13 statistically significant (P < 0.05) saltations at days 94, 106, 117, 119, 132, 144,

159, 168, 175, 183, 192, 201, and 216. These saltations are not at regular intervals;

they are episodic and not periodic. The average saltation amplitude in this infant

was 0.9 cm. The standard deviation of the differences (i.e., residuals) between the

calculated optimal saltation and stasis model and the experimental observations is

0.3 cm.

The irregular nature of the distributions in Fig. 2, and those that follow, is due to

the fact that only 1000 Monte Carlo cycles were used for their generation. These

distributions become increasingly smooth as the number of Monte Carlo cycles

used increases. However, 1000 cycles are usually sufficient to characterize the

distributions and only require a few seconds on a 450-MHz Pentium II PC.

The various model-dependent distributions of ApEn(2, 0.4, 118) for the data

shown in Fig. 1 are presented in Fig. 2. The panels, from top to bottom, corre-

spond to the expected distribution for the saltation and stasis model,the expected

distributions for first- through sixth-degree polynomials, the Karlberg infant

model (Karlberg, 1987), and the exponential rise model. These distributions are

the results of 1000 Monte Carlo cycles, with the noise being generated by shuffling

the residuals. The nonstationary height series was not detrended. The value of r

was set at 0.4 cm, and not at a fraction of the standard deviation of the data points.

The square in each of the panels in Fig. 2 is the actual observed ApEn(2, 0.4, 118)
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Fig. 1 A typical set of daily experimental observations of the height of an infant. The solid line

corresponds to the saltation and stasis analysis of these data. The saltation and stasis model analysis

indicated that there were 13 statistically significant (P < 0.05) saltations at 94, 106, 117, 119, 132, 144,

159, 168, 175, 183, 192, 201, and 216 days.
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value for the original data. It is clear (from the figure) that this value is consistent

with the expected distribution for the saltation and stasis model and that it is

inconsistent with the other models. Although not shown, the ApEn(1, 0.4, 118)

values provide analogous results.

Figure 3 presents the same analysis as in Fig. 2, except that the nonstationary

time series was detrended by subtracting the best least squares straight line before

the analyses were performed. Clearly, while the results are numerically slightly

different, the conclusions remain the same. Again, the ApEn(1, 0.4, 118) values

provide analogous results (not shown).
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Fig. 2 The various model-dependent distributions of ApEn(2, 0.4, 118) for the data presented

in Fig. 1. The panels from top to bottom correspond to the expected distribution for the saltation

and stasis model; the expected distribution for first- through sixth-degree polynomials; the Karlberg

infant model; and the exponential rise model. The square in each of the panels is the actual observed

ApEn(2, 0.4, 118) value for the original data. These analyses are the results of 1000 Monte Carlo cycles

with the noise being generated by shuffling the residuals. The nonstationary height series was not

detrended.
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When the analysis, as depicted in Fig. 2, was repeated with the pseudorandom

noise being created by either shuffling with replacement (i.e., a bootstrap) or by a

Gaussian distribution, the results were virtually identical to those shown in Fig. 2.

Consequently, the plot of these results is not repeated.

Figure 4 presents the same analysis as is presented in Fig. 2 except that the r

value was set to 0.2 cm. Note that while the figure appears somewhat different, the

conclusions remain the same. When r is increased to 0.6 cm, the results are

virtually identical to those shown in Fig. 2. It is interesting to note that the

ApEn(1, 0.2, 118) distributions (not shown) do not exhibit a reversal of magnitude

that the ApEn(2, 0.2, 118) distributions show.

From a comparison of Figs. 2 and 4, it appears that at some intermediate value

of r (e.g., 0.27) the ApEn(2, 0.27, 118) distributions coincide, but the models

cannot be distinguished by that metric (not shown). However, as shown in
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Fig. 3 The same analysis as presented in Fig. 2 except that the nonstationary time series was

detrended by subtracting the best least squares straight line before the analyses were performed.
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Fig. 5, the ApEn(1, 0.27, 118) distributions are clearly distinguishable. The ApEn

(2, 0.27, 118) distributions are clearly distinguishable if the time series is detrended.

This is shown in Fig. 6.

VIII. Conclusion

This chapter presents examples of how ApEn, can be used to distinguish be-

tween mathematical models and their underlying mechanistic hypotheses that

purport to describe the same experimental observations. If the expected distribu-

tions of ApEn for the different models do not overlap, then it is expected that the

ApEn can be utilized to distinguish these models and hypotheses. However, if the

distributions overlap significantly, then no conclusion can be drawn.
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Fig. 4 The same analysis as presented in Fig. 2 except that the value of r was decreased to 0.2 cm. The

nonstationary height series was not detrended.
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From the various figures shown above, it is obvious that the ApEn distributions

are fairly robust to variations in the values of m and r. The ApEn distributions do

not appear to be sensitive, in these examples, to the method of random noise

generation (i.e., pseudorandom number generator, shuffling, or boot-strapping)

for the Monte Carlo process.

Furthermore, the ApEn distributions appear to be relatively insensitive to the

stationary nature of the data when the value of r is expressed as an absolute

quantity that is dependent on known experimental measurement errors. However,

as shown in Fig. 6, there are cases where the results are better if the data are

detrended. Using a straight line as a detrending function is both sufficient and

preferable.
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Fig. 5 The ApEn(1, 0.27, 118) distributions for the data in Fig. 1. The nonstationary height series was

not detrended.
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I. Introduction

The Kalman filter is a linear filtering algorithm that was developed in the early

1960s to solve estimation and control problems in engineering such as monitoring

the position and velocity of a satellite orbiting the earth using signals received at

ground tracking stations (Kalman, 1960; Meinhold and Singpurwalla, 1983). The

algorithm significantly reduced the amount of information that had to be stored

and the computational costs required to analyze such problems in two ways; one

by assuming that the probability densities of the noise and error in the systems are

well approximated by their first two moments and, two, by taking advantage of the

inherent Markov structure of the problem. The Markov property means that

information about the system that is required to describe its state at time t depends
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only on the history that was summarized at the last time, say t � 1. A complete

description of the history of the system did not have to be retained. In the case of

an orbiting earth satellite, the state of the system may contain, among other

information, the position and velocity of the satellite.

To define the Kalman filter algorithm, we first define the observation equation

Yt ¼ Ftyt þ zt ð1Þ
and the system equation

yt ¼ Gtyt�1 þ wt; ð2Þ
where yt is the state vector at time t, Ft is a known transformation matrix, Yt is the

observed data, zt is a random variable with mean zero, and the covariance matrix

Zt, Gt describes the expected change in position and velocity of the satellite over

time, and wt is a random perturbation with mean zero and with covariance matrix

Wt. The random variables zt and wt are assumed to be uncorrelated. Let

Y �
t�1 ¼ ðY1; . . . ;Yt�1Þ. Starting with ŷt�1jt�1 and St�1jt�1 the estimates, respective-

ly, of the state vector and covariance matrix at time t � 1, the Kalman filter

algorithm is defined by the following set of equations:

ŷtjt�1 ¼ Gtŷt�1jt�1 ð3aÞ

Rtjt�1 ¼ Gt

X
t�1jt�1

GT
t þWt ð3bÞ

Kt ¼ Rtjt�1F
T
t ½FtRtjt�1F

T
t þ Zt��1 ð3cÞ

ŷtjt ¼ ŷtjt�1 þ Kt½Yt � Ftŷtjt�1� ð3eÞ
X

tjt ¼ ½I � KtFt�Rtjt�1 ð3dÞ

given the initial conditions y0 and S0, Eq. (3a) is the prior mean and Eq. (3b) is the

prior variance. The latter describes the error in the prediction of yt, given ŷtjt�1 and

Y*t�1. The matrix Kt is the Kalman gain, ŷtjt is the Kalman filter estimate of the

state vector given Y*t, and Stjt is the posterior variance of yt, given Y*t.

Schweppe (1965) showed that, under the assumption that zt and wt are Gaussian

random variables, important computational savings could be made by using the

Kalman filter to evaluate the Gaussian likelihood functions for models with the

Markov structure. Statisticians later realized that, in addition to this application,

theKalman filter greatly facilitated the computation of posterior probability densities

in Bayesian linear models with Gaussian errors and the estimation of model para-

meters when data were missing in Gaussian models with a Markov structure. In this

chapter, we illustrate some of the computational problems to which the Kalman filter

has been successfully applied in statistics. Section II illustrates its use to evaluate a

Gaussian likelihood, where the observational error process is a Gaussian, serially

correlated, noise. In Section III, we describe how the Kalman filter can be used to
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compute posterior densities for Bayesian statistical models. Section IV demonstrates

the use of theKalman filter in evaluating aGaussian likelihood as part of the expecta-

tion and maximization (EM) algorithm. In Section V, we mention some extensions.

II. Evaluating Gaussian Likelihood Using the Kalman Filter

To illustrate how the Kalman filter may be used to evaluate a Gaussian likeli-

hood function, we consider the problem of modeling human biological rhythm

data. Core temperature data are an often-studied biological rhythm, used to

estimate the properties of the human biological clock (Czeisler et al., 1989,

1990). Brown and Czeisler (1992) showed that a reasonable statistical description

of core temperature data, collected on the constant routine protocol, is given by the

two harmonic regression and first-order serial correlated noise model. To define

the model, we assume that a sequence of temperature measurements y1, . . ., yN is

made on a human subject and that these data obey Eq. (4)

yt ¼ st þ vt ð4Þ
for t ¼ 1, . . ., N where

st ¼ mþ
X2
r¼1

Ar cos
2pr
t

t

0
@

1
Aþ Br sin

2pr
t

t

0
@

1
A

vt ¼ ant�1 þ et

ð5Þ

and it is assumed that jaj < 1 and the et values are distributed as Gaussian random

variables with mean zero and variance se
2. Let y ¼ (y1, . . ., yN)

T), B ¼ (m, A1, B1,

A2, B2)
T, and n ¼ (n1, . . ., nN)

T and we define

XðtÞ ¼

1 cos
2p
t

0
@

1
A sin

2p
t

0
@

1
A cos

4p
t

0
@

1
A sin

4p
t

0
@

1
A

⋮ ⋮ ⋮ ⋮ ⋮

1 cos
2p
t
N

0
@

1
A sin

2p
t
N

0
@

1
A cos

4p
t
N

0
@

1
A sin

4p
t
N

0
@

3
5

2
666666666664

3
777777777775

to be the N � 5 harmonic regression design matrix. Equation (4) may then be

rewritten in the matrix notation as

y ¼ XðtÞBþ n: ð6Þ
From the assumption that the et values are Gaussian random variables, it

follows that n is a multivariate Gaussian random vector with zero mean and an

N � N covariance matrix which we denote as G. Given B, t, a, and s2e , the joint

probability density of the core temperature data is
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f ðyjB; t; a; s2e Þ ¼
1

2ps2e

� �N=2

jGj�1=2
exp � 1

2s2e
SN

� �
; ð7Þ

where jGj is the determinant of G and

SN ¼ ½y� XðtÞB�TG�1½y� XðtÞB�
¼ fL½y� XðtÞB�gTfL½y� XðtÞB�g; ð8Þ

where G�1 ¼ LTL is the inverse of G, and L is the Cholesky factor of G�1. An

objective of the core temperature data analysis is to estimate the model parameters

B, t, and a, using maximum likelihood, so that the phase and amplitude of the

circadian rhythm of the subject may be determined (Brown and Czeisler, 1992). As

n obeys a first-order autoregression, the model has a Markov structure (Jones,

1980). This, combined with the fact that the et terms are Gaussian in nature,

suggests that the Kalman filter may be used to evaluate the likelihood function,

which can then be numerically maximized to estimate the model parameters. As

minimizing the �2 log likelihood is equivalent to and more tractable numerically

than maximizing the likelihood, the computational algorithm is developed in terms

of the �2 log likelihood function. Taking logarithms of both sides of Eq. (7) yields

logf ðB; t; a; s2e jyÞ ¼ �N

2
logðs2e Þ �

SN

2s2e
� 1

2
logjGj �N

2
logð2pÞ; ð9Þ

where we write f ðB; t; a; s2e jyÞ to indicate that we are viewing Eq. (7) as a function

of the parameters B, t, a, and s2e for the fixed, observed data vector, y.

Differentiating Eq. (9) with respect to s2e yields

d logf ðB; t; a; s2e jyÞ
ds2e

¼ � N

2s2e
þ SN

2 s2eð Þ2
: ð10Þ

Setting the right-hand side equal to 0 and solving for s2e gives its maximum-

likelihood estimate,

ŝ2e ¼
SN

N
: ð11Þ

Substituting Eq. (11) into Eq. (9), neglecting the constants, and multiplying both

sides by �2 gives

�2 logf ðB; t; ajyÞ ¼ logðSNÞ þ logjGj; ð12Þ
which is the �2 log likelihood. In analyses where it is important to distinguish

between Eqs. (9) and (12), �2 times of the left-hand side of Eq. (9) is called the

�2 log likelihood, and Eq. (12) is the concentrated �2 log likelihood, since its

dependence on s2e has been removed. As this distinction is not important in

our problem, we refer to Eq. (12) as the �2 log likelihood. The model parameters

that minimize �2 log f(B, t, ajy) are the maximum-likelihood estimates (Priestly,

1981). We denote them as B̂; t̂, and â. To minimize Eq. (12), we note first that

the minimization problem is only two-dimensional because, given t and a,

190 Emery N. Brown and Christopher H. Schmid



the maximum-likelihood estimate of B is the generalized least-squares estimate

which is defined as

B̂ðt; aÞ ¼ ½X�ðtÞTX�ðtÞ��1
X�ðtÞTy�;

where X* (t) ¼ LX(t) and y* ¼ Ly. If we substitute B̂ðt; aÞ for B in Eq. (12), the

�2 log likelihood becomes

�2 logf ðt; ajyÞ ¼ logðŜNÞ þ logjGj; ð13Þ
where

ŜN ¼ ½y� � X �ðtÞB̂ðt; aÞ�T ½y� � X �ðtÞB̂ðt; aÞ�:
The technical problem that needs to be solved in order to minimize Eq. (13) is to

efficiently compute Ly, LX(t), and jGj at each step of a numerical minimization

algorithm. Computing L is equivalent to performing a Gram-Schmidt orthogona-

lization on the vectors that define the column space of G (Wecker and Ansley,

1983). Given the Markov structure and the Gaussian error properties of the

problem, these tasks can be efficiently accomplished by using the Kalman filter.

Let Xj be the jth column of X(t), X*j be the jth column of X*(t), and yt,j be a 1 � 1

dimensional state vector for j¼ 1, . . ., 5. It follows fromWecker and Ansley (1983)

that the Kalman filter yields the following algorithm for computing the t, jth

element of LX:

ytjt�1j ¼ Gtyt�1jt�1;j ð14aÞ

Rtjt�1 ¼ Gt

X
t�1jt�1

Gt þ 1 ð14bÞ

dt ¼ FtRtjt�1F
T
t ð14cÞ

X �
t;j ¼ Xt;j � Ftytjt�1;j�d�1=2

t ð14dÞ

ytjt;j ¼ ytjt�1;j þ Rtjt�1F
T
t ½Xt;j � Ftytjt�1;j�d�1

t ð14eÞ
X

tjt ¼ Rtjt�1½I � FT
t FtRtjt�1�d�1

t ð14fÞ
for t ¼ 1, . . ., N and j ¼ 1, . . ., 5, where the implicit observation equation is Xt,j ¼
Ftyt,j, Ft ¼ 1, and Gt ¼ a. The determinant of G is

jGj ¼
YN
t¼1

dt:

Equation (14d) is the step added to the standard Kalman filter algorithm to

carry out the Gram-Schmidt procedure. The Kalman filtering procedure is repeat-

ed five times, once for each column of X. The vector Ly is computed similarly by
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substituting Yt for Xt,j in Eq. (14d), with the implicit observation equation Yt ¼ Ft

yt. It follows from Jones (1980) that the initial conditions are y0 ¼ 0 and S0 ¼ 1.

Estimation of t and a is carried out using nonlinear minimization procedures to

minimize Eq. (13). The advantage of using the Kalman filter for this model is that

G�1 and jGj are computed in a highly efficient manner; this involves the computing

of only the reciprocals and needs no submatrix inversions. The first-order auto-

regression model is a special case of the general autoregressive moving average

process of orders p and q [ARMA(p,q)] (Priestly, 1981). For this more general error

model, the order of the largest submatrix which must be inverted with the Kalman

filter algorithm is max (p, q þ 1), instead of possibly N, for an arbitrary, unpat-

terned covariance matrix. The Cholesky factor algorithm, described in Eqs. (14a)–

(14f), extends easily to the case in which v is any ARMA(p, q) process. The initial

conditions for the algorithm are given in Jones (1980).

III. Computing Posterior Densities for Bayesian Inference
Using the Kalman Filter

Bayesian inference is an approach to statistical analysis based on the Bayes0 rule
in which the probability density of a model parameter y is determined conditional

to the observed experimental data, Y. This conditional probability density of y
given Y is defined as

f ðyjYÞ ¼ f ðyÞf ðY jyÞ
f ðY Þ ;

where f(y) is the prior probability density of y, which summarizes the knowledge of

y before observing Y, f(Yjy) is the likelihood of Y given y, and

f ðY Þ ¼
ð
f ðyÞf ðY jyÞdy

is a normalizing constant. Duncan and Horn (1972) and Meinhold and Singpur-

walla (1983) demonstrated that the Kalman filter could be used to compute the

posterior densities for certain Gaussian linear models in Bayesian statistics. For

the satellite tracking problem mentioned earlier, we might wish to characterize the

uncertainty in our determination of the state of the satellite at time t given the data

at time Y �
t . This may be expressed formally, in terms of the Bayes’ rule, as

f ðytjY �
t Þ ¼

f ðytjY �
t�1Þ

f ðYtjyt;Y �
t�1Þ

f ðY �
t Þ: ð15Þ

In this case f ðytjY �
t�1Þ summarizes the uncertainty in the knowledge of the state

of the satellite at time t, given that the observations made up to time t - 1, and

f ðYtjyt;Y �
t�1Þ describe the likelihood of the observations at time t,and given the

expected state of the system at time t and the observations made up to time t - 1.

From the specifications of the model stated in Section I and the Gaussian
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assumptions on wt and vt,it can be shown that the density f ðytjY �
t�1Þ is Gaussian

with mean vector ŷtjt�1 and covariance matrixRtjt�1 [Eq. (3b)], and that the density

f ðytjY �
t Þ [Eq. (3c)] and covariance matrix Stjt [Eq. (3d)] (Meinhold and Singpur-

walla, 1983). The manipulations required to compute the probability density of

f ðytjY �
t Þ are entirely defined by the Kalman filter because yt depends linearly on

yt�1 and also because any Gaussian density is completely described by its mean and

its covariance matrix. This suggests that in Bayesian statistical models having

similar structure, the Kalman filter can be used to compute posterior probability

densities.

For example, consider the regression model

Y ¼ XBþ e;

whereY is anN� 1 vector of observations,X is anN� p design matrix, B is a p� 1

vector of regression coefficients, and e is an N � 1 Gaussian error vector with zero

mean and a known covariance matrix G. To complete the Bayesian formulation of

the problem, we assume that the prior probability density of B is Gaussian with

mean m and variance S. We are interested in computing the posterior probability

density of B when given Y. Each observation gives information about the regres-

sion coefficient, so if we define the state vector as Bt ¼ B, then for t ¼ 1, . . ., N we

have the following observation and state equations

Yt ¼ XT
t Bt þ et;

Bt ¼ GtBt�1;

where Xt is the tth row of X and Gt is a p� p identity matrix. Applying the Kalman

filter, as defined in Eqs. (3a)–(3e), for t ¼ 1, . . ., N with Ft ¼ XT
t , Wt ¼ 0, Zt ¼ G

and initial conditions y0¼ B0 and S0¼ S, yields the posterior mean and covariance

matrix of B, when Y is given. In a closed form, the mean and covariance matrix

were given by Lindley and Smith (1972) as

EðBjY Þ ¼ ðXTG�1X þ S�1Þ�1ðXTG�1Y þ S�1B0Þ;
VarðBjY Þ ¼ ðXTG�1X þ S�1Þ�1:

IV. Missing Data Problems and the Kalman Filter

The sequential manner in which the Kalman filter can be used to evaluate

Gaussian likelihoods has led to the development of an efficient technique for

handling missing data in a time series estimation problem. If we intend to collect

data from time t ¼ 1, . . ., N and some of the observations Yt are missing, then the

fact that these data are not observed must be accounted for in the parameter

estimation. As many statistical time series models are linear, have a Markov

structure, and assume Gaussian errors, three approaches to evaluating the likeli-

hood function with missing data are possible. The first approach fills in the missing

observations with a simple estimate such as the mean. Of the three possibilities,
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this is the least desirable because it fails to account for the random variation in the

distribution of the missing data and also ignores the structure of the model in the

problem. The second approach is to evaluate the likelihood, as illustrated in Eqs. (9)

through (14). As the observations are not assumed to be evenly spaced, the Kalman

filter algorithm proceeds directly fromYt toYtþk, assuming kmissing observations.

The likelihood is then maximized, as described in Section II. Jones (1980) has

described this method for fitting ARMA models with missing observations.

The third approach is to perform the maximum-likelihood estimation with

the EM algorithm (Dempster et al., 1977). Under the assumptions that the missing

data are missing at random and that the sampling density of the data belongs to

the exponential family, the EM algorithm takes in to account the unobserved

information by replacing the missing components of the sufficient statistics of

the data with their expected values which are conditional on the observed data.

Missing at random means there is no relation between the value of the

missing observation and the probability that it is not observed. To define the

EM algorithm, we follow the discussion in Little and Rubin (1987) and let Yobs

denote the observed data, Ymiss denote the missing data, and b denote the model

parameter to be estimated. The log likelihood for the observed data may then be

written as

log f ðbjYobsÞ ¼ log f ðbjYobs;YmissÞ � log f ðYmissjYobs; bÞ ð16Þ
Assuming that an estimate of b, say bð‘Þ, is given and taking expectations of both

sides of Eq. (16) with respect to f(Ymiss j Yobs, b) we obtain

log f ðbjYobsÞ ¼ Qðbjbð‘ÞÞ �Hðbjbð‘ÞÞ; ð17Þ
where

Qðbjbð‘ÞÞ ¼
ð
log f ðbjYobs;YmissÞf ðYmissjYobs; b

ð‘ÞÞdYmiss ð18Þ

and

Hðbjbð‘ÞÞ ¼
ð
log f ðYmissjYobs; bÞf ðYmissjYobs; b

ð‘ÞÞdYmiss:

The EM algorithmmaximizes Eq. (17) by iterating them between the expectation

(E) step [Eq. (18)], in whichQðbjbð‘ÞÞ is determined given bð‘Þ,and the maximization

(M) step, given below, in which a bð‘þ1Þ is found such that

Qðbð‘þ1Þjbð‘ÞÞ � Qðbð‘Þjbð‘ÞÞ
It canbe shown that the termHðbjbð‘ÞÞ neednot be considered in order tomaximize

the log likelihood of the observed data in Eq. (17) (Little and Rubin, 1987). For a

linear time series model with a Markov structure and Gaussian errors, evaluating

Qðbjbð‘ÞÞ entails computing EðYmissjYobs; b
ð‘ÞÞ and CovðYmissjYobs; b

ð‘ÞÞ because, as
noted in Section III, any Gaussian density is completely described by its mean and

covariance matrix. The parameter bð‘þ1Þ is estimated by maximizing Qðbð‘þ1Þjbð‘ÞÞ.
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For many probability densities belonging to the exponential family, bð‘þ1Þ can be

analytically derived by equating the estimated complete sufficient statistics to their

expected values and solving the same. For more general probability densities, it is

found numerically. Iteration between the E and M steps is continued until bð‘Þ

converges.

Shumway and Stoffer (1982) have applied the EM algorithm for estimating and

predicting total physician expenditures using time series data from the Social

Security Administration (1949–1973) and the Health Care Financing Administra-

tion (1965–1976). They used a state-space model with Gaussian observation errors

to account for the differences in the two estimates of expenditure. They showed

that the expectation and covariance of the unknown true expenditures, which were

conditional on the observed data, and the current estimates of the model para-

meters could be efficiently computed by combining the Kalman filter with the

fixed-interval smoothing algorithm (Ansley and Kohn, 1982) and the state-space

covariance algorithms. For the Kalman filter algorithm defined in Eqs. (1)–(3), the

associated fixed-interval smoothing algorithm is

ŷtjN ¼ ŷtjt þ Atðŷtþ1jN � Gtþ1ŷtjtÞ ð19aÞ

At ¼ StjtGT
tþ1R

�1
tþ1jtðt ¼ N � 1; . . . ; 1Þ ð19bÞ

StjN ¼ Stjt þ AtðStþ1jN � Rtþ1jtÞAT
t ð19cÞ

and the state-space covariance algorithm is

St;ujN ¼ AtStþ1;ujN ðt < u � NÞ ð20Þ
for t ¼ N � 1, . . ., 1, where ŷtjN is the expected value of the state vector given Y �

N ,

StjN is the covariance matrix of the state vector when given Y �
N , and St,ujN is the

covariance between the state vectors yt and yu when given Y �
N . The form of the

state-space covariance algorithm given in Eq. (20) is according to DeJong and

MacKinnon (1988). The ŷtjN terms represent EðYmissjYobs; b
ð‘ÞÞ, whereas, the

CovðYmissjYobs; b
ð‘ÞÞ terms are determined from StjN and St,ujN. Embedding the

Kalman filter, the fixed-interval smoothing algorithm, and the state-space covari-

ance algorithm into the E step efficiently exploits the Markov structure and linear

Gaussian error features;characteristics of many statistical time series models.

The Kalman filter and the EM algorithm approaches to the time series missing

data problem may also be used when covariates are introduced. They yield the

same parameter estimates even if the covariates are completely observed. If there

are missing observations in both the covariates and in the time series, then the EM

algorithm is the preferred method of analysis, as shown by Schmid (2010) in an

investigation that studied the relation between children’s lung function and their

age, height, gender, and airway responsiveness.

The fixed-interval smoothing algorithm in Eqs. (19a)–(19c) was developed orig-

inally as an extension to the Kalman filter for sequential estimation problems in

which the observation interval is fixed; and it is important that the state vector
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estimate at each time point be dependent on all the data (Sage and Melsa, 1971).

The algorithm has a clear interpretation in terms of the satellite tracking problem.

The state vector ŷtjN represents a corrected estimate of the position and velocity of

the satellite, after observing all the ground tracking data from time 1 to N. We see

from Eq. (19a) that the estimate ŷtjN is arrived at by taking a linear combination of

ŷtjt and ŷtþ1jN .

V. Extensions of the Kalman Filter Algorithm

Many extensions of the Kalman filter algorithm are possible. First, the linear

assumption in the state-space model may be relaxed, so that both the transition

equation and the observation equation become nonlinear functions of the state

vectors. Examples of these models and the computational algorithms to estimate

them are described by Sage and Melsa (1971), Kitagawa (1987), and Carlin et al.

(1992) Second, the Gaussian assumption may be replaced with more general error

models. Kitagawa (1987), West and Harrison (1989), and Carlin et al. (1992),

discuss some of these extensions. Third, the combined Kalman filter and fixed-

interval smoothing algorithms may be viewed as a special case of a graphical model

in which the N nodes are arranged in a line, and in which the model information

first propagates across the nodes from left to right and then propagates from right

to left. The information from the observed data enters at each node, as the

algorithm makes its first pass from left to right. In a general graphical model, the

nodes may be aligned in any spatial configuration, the information may propagate

in any direction between the nodes, and the errors are not necessarily Gaussian

(Lauritzen and Spiegelhalter, 1988). These models have tremendous flexibility and

are gaining greater use since their computational complexity is becoming less of an

issue (Spiegelhalter et al., 1993). Finally, Dempster (2010) has developed, in terms

of belief functions, a general extension of the Kalman filter principles that is

appropriate for computation with both probabilistic and nonprobabilistic infor-

mation. Meehan (1993) has successfully applied these methods to solve the pro-

blems of estimating the posterior probability densities of the parameters in a

stochastic differential equation model of diurnal corstisol patterns.
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I. Introduction

Many random processes generating data for which statistical analyses are

required involve multiple sources of variation. These sources represent random-

ness introduced at different levels of a nested data structure. For example, in a
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multicenter study, responses vary within individuals, between individuals, within

sites, and between sites. When the multiple measurements taken on individuals are

intended to be replicates, the variation is called measurement error.

For example, in a study of growth that we will explore in detail later, measure-

ments of height were taken daily for 3 months on a young child. Despite careful

attention to the measurement process, multiple observed readings taken consecu-

tively in a 10-min time span were not identical. In addition to this measurement

variability, each child measured varied with respect to the amount of growth and

the time at which growth occurred. We will see how a hierarchical model can

address these issues.

The standard statistical approach for describing processes with multiple com-

ponents of variation uses mixed models of fixed and random effects. The fixed

effects are quantities about which inference is to be made directly, whereas the

random effects are quantities sampled from a population about which inference is

desired. Typically, the variance components of the process represent the variances

of these populations. An alternative method of description consists of a hierarchy

of simpler models, each of which describes one component of variation with a

single random effect.

Meta-analysis, a technique used to pool data from different studies in order to

estimate some common parameter such as a treatment effect in medical studies, is a

particular example of this type (Carlin, 1992; DuMouchel, 1990; Morris and

Normand, 1992; Smith et al., 1995).Assume that yt represents the observed treatment

effect from the tth study. The objective of the analysis is to synthesize the results of all

of the studies, either summarizing them in a single number as an average treatment

effect applicable to all of the studies or as a set of effects describing different

subgroups of individuals or studies. Let yt be the parameters describing the tth

study and let these study-level parameters be expressed in terms of a set of parameters

z common to all the studies. The hierarchy of models can then be expressed as

ytjyt � f ðytjytÞ t ¼ 1; 2; . . . ;T ð1Þ

ytjz � gðytjzÞ t ¼ 1; 2; . . . ;T ; ð2Þ

where the notation indicates that f is the probability distribution of yt given yt and
g is the distribution of yt given z. If inference is desired only about z, the two

expressions can be combined to describe a distribution for yt in terms of z, but the
hierarchical structure permits inference also to be made about the study-specific

parameters yt.
This hierarchical structure defines the dependence between the many system

parameters in such a way that the model can have enough parameters to fit the data

while not being overfit. Nonhierarchical models are not as effective because they

must either model only the population structure or be overparameterized to

describe the individual structure. To the extent that these studies are exchangeable
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a priori, the hierarchical structure also permits the use of information from one

study to give a more accurate estimate of the outcome of another study.

The different levels of variation may be further characterized by ascribing causes

to them on the basis of covariates. Thus, in Eq. (2), z may consist of regression

parameters that describe the effect of covariates, creating systematic differences

between studies. Model checking may be accomplished by extending the model to

incorporate nonlinearity and test for robustness to assumptions.

Maximum likelihood computation of mixed models, a standard technique for

fitting hierarchical structures such as those given by Eqs. (1) and (2), assumes

normality of the parameter estimates. Although adequate for the large amount of

data usually available to estimate the common parameters z, asymptotic methods fail

to give good estimates for the study-specific parameters ytwhen data are sparse in the
tth study, especially if the underlying processes are not Gaussian. In such instances,

external information about model parameters may be needed to inform the current

data. This external information can be incorporated by setting up a Bayesian model.

Bayesian inference is an approach to statistical analysis based on Bayes rule in

which model parameters y are considered as random variables in the sense that

knowledge of them is incomplete. Prior beliefs about model parameters y are

represented by a probability distribution p(y) describing the degree of uncertainty

with which these parameters are known. Combining this prior distribution with the

data in the form of a likelihood for these parameters leads to a posterior distribu-

tion p(yjY) of the belief about the location of the unknown parameters y condi-

tional on the data Y. This posterior probability density of y given Y is defined as

f ðyjYÞ ¼ f ðyÞf ðY jyÞ
f ðYÞ ;

where f(y) is the prior probability density of y,f(Yjy) which is the likelihood of Y

given y, and

f ðYÞ ¼
ð
f ðyÞf ðY jyÞdy

is the marginal distribution of the data and serves as a normalizing constant so that

the posterior density integrates to one as required by the rules of probability

densities. Statements of the probability of scientific hypotheses and quantification

of the process parameters follow directly from this posterior distribution.

A Bayesian version of the hierarchical model can be set up by simply placing a

probability distribution on the population parameter z in the second stage. Thus,

together with Eqs. (1) and (2), we have a third stage

z � hðzÞ; ð3Þ
where the function h represents the prior distribution of z. Of course, the Bayesian

model is not restricted to only three stages, although in practice this number is

often sufficient.
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The use of Bayesian methodology has several advantages. It provides a formal

framework for incorporating information gained from previous studies into the

current analysis. As the data collected accrue and are analyzed, conclusions can be

revised to incorporate the new information. The information from new data is

combined with knowledge based on previously processed information (possibly

data) to reach a new state of knowledge. The Bayesian analysis also provides

estimates of the model parameters and their uncertainties in terms of complete

posterior probability densities. Furthermore, inference is not restricted just to

model parameters. Posterior densities of any functions of the model parameters

may be simply computed by resampling methods to be discussed later.

Since its original description by Lindley and Smith (1972). the Bayesian hierar-

chical model has become a standard tool in Bayesian applications applied to

problems in such diverse areas as corporate investment (Smith, 1973), growth

curves (Fearn, 1975; Strenio et al., 1983), and educational testing (Rubin, 1981).

A text of case studies in biometrical applications of Bayesian methods devoted an

entire section to different hierarchical models (Berry and Stang, 1996) and a panel

of the National Academy of Sciences advocated the hierarchical model as a general

paradigm for combining information from different sources (Graver et al., 1992).

Before describing tools for computing hierarchical models in Section III, we

discuss the Gaussian model in the next section. Not only is this the most commonly

employed hierarchical structure, but it also permits an illuminating interpretation

of model parameters as averages between quantities in different levels of the

structure. We will illustrate this interpretation using a state-space representation

and computation of the Gaussian form of the Bayesian hierarchical model by

forward and backward Kalman filter algorithms (Brown and Schmid, 1994).

The connection between Bayesian linear models and the Kalman filter has been

previously made in several contexts. Duncan and Horn (1972) and Meinhold and

Singpurwalla (1983) illustrated how the Kalman filter could be used to estimate the

means and marginal covariance matrices of the random variables in the nonhier-

archical Bayesian linear model with Gaussian error. As part of the E-step in an EM

algorithm, Shumway and Stoffer (1982) combined the Kalman filter and the fixed-

interval smoothing algorithms (Ansley and Kohn, 1982) to compute the posterior

densities of both the state vectors and the missing data in a Gaussian linear state-

space model with measurement error. Schmid extended their model to a general

first-order autoregressive model for continuous longitudinal data (Schmid, 1996).

Wecker and Ansley (1983) also combined the Kalman filter and fixed-interval

smoothing algorithms to compute sequentially approximate posterior densities

of the state-space vectors in a polynomial spline model.

We illustrate the application of these algorithms to meta-analysis with an

example in Section IV. Section V describes a hierarchical model for saltatory

growth and Section VI outlines Monte Carlo methods needed to compute non-

Gaussian hierarchical models. Section VII presents some methods for model

checking and we close with a brief conclusion in Section VIII.
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II. The Gaussian Model

Assuming Gaussian probability distributions, we can express the three-stage

hierarchical model as follows. The first stage describes a linear model relating the

response yt to a set of predictors Xt as

yt ¼ Xtbt þ et et � Nð0;VtÞ ð4Þ
for t¼ 1, . . ., Twhere yt is anNt-dimensional vector of data on the tth experimental

unit, Xt is a known Nt � p design matrix, bt is a p-dimensional vector of regression

coefficients, and «t is an Nt-dimensional error vector with covariance matrix Vt.

We assume that «t and «u are uncorrelated for t6¼ u.

The second stage describes the prior distribution of each bt as

bt ¼ Ztg þvt vt � Nð0;W1Þ; ð5Þ
where Zt is a known p � q design matrix, g is a q-dimensional vector of hyper-

parameters, vt is distributed as a p-dimensional Gaussian random vector with

covariance matrixW1, and the random errors vt andvu are uncorrelated for t 6¼ u.

The third stage defines the prior distribution for g as

g ¼ G0g0 þ n n � Nð0;W2Þ ð6Þ
in terms of a known q � r matrix G0, r hyperparameters g0, and a q-dimensional

vector n distributed as Gaussian with covariance matrix W2. Prior knowledge of

the hyperparameters in the third stage is often imprecise and a noninformative

prior distribution such as one defined by W�1
2 ¼ 0 is frequently used.

The objective of the Bayesian analysis for the hierarchical model is to compute

the marginal and joint posterior densities of the random variables (btjy�t ;g0;
W1;W2) for t ¼ 1, . . ., T and (gjy�t ;g0;W1;W2) where y�t ¼ ðy1; . . . ; ytÞ. Because
of the linear structure of the model and its Gaussian error assumptions, it suffices

to determine the first two moments of these densities.

For the present, assume the covariance matrices Vt, W1, and W2 to be known.

This is not a serious limitation because the algorithms are easily fit into an iterative

scheme, such as Gibbs sampling (Gilks et al., 1996), for simultaneously estimating

the mean and variance parameters.

It might appear that this three-stage model has too many parameters for the

amount of data collected. But note that by collapsing Eqs. (4)–(6), we can express

yt as a normal distribution with mean XtZtG0g0 and variance Vt þ XtW1X
0
tþ

XtZtW2Z
0
tX

0
t. The parameters describing the data are simply g0, Vt, W1, and W2.

If Nt ¼ 1, the model reduces to a regression with parameters g0 conditional on the

variance parameters.

A. State-Space Formulation

A state-space model typically provides aMarkov representation of a system that

evolves over time or space. It is defined by two equations: the state equation, which

describes the temporal or spatial evolution of the system, and the observation
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equation, which defines the relationship between the observed data and the true

state of the system. For the three-stage model in Eqs. (4)–(6), a state equation is

written as

ut ¼ Ftut�1 þv�
t ð7Þ

for t ¼ 1, . . ., T where ut ¼ bt

g

� �
, v�

t ¼
vt

0

� �
is a (p þ q) vector with zero mean

and covariance matrix W�
1 ¼

W1 0

0 0

� �
, Ft ¼ 0 Zt

0 Iq

� �
is the (p þ q) � (p þ q)

transition matrix, and Iq is the q � q identity matrix. An observation equation is

written as

yt ¼ X�
t ut þ et; ð8Þ

where X�
t is the Nt � 2p matrix defined as X�

t ¼ ðXt0Þ.
The state-space model divides g and the bt among the state vectors ut so that

they may be estimated sequentially by the Kalman filter, fixed-interval smoothing,

and state-space covariance algorithms working sequentially forward and then

backward in time as each piece of data yt is incorporated. Starting with initial

estimates û0 and S0 of the state vector and its covariance matrix, the forward pass

uses the Kalman filter to compute the expectation and covariance of ut given y�t for
t¼ 1, . . ., T. The final forward step gives the correct expectation and covariance for

uT, but the estimated moments of ut for t< T are incompletely updated, using only

the data up to time t. Therefore, starting with the completely updated uT, the fixed-
interval smoothing and covariance algorithms work back from time T to time 0,

updating ût and St for y�u when u > t, finally obtaining the fully updated moments

ûtjT and StjT. The details of one step for each of these algorithms follow.

B. Kalman Filter

Starting with ût�1jt�1, the estimate of ut–1 given y�t�1, and its covariance matrix

St–1jt–1, the Kalman filter algorithm for this state-space model is

ûtjt�1 ¼ Ftût�1jt�1 ð9Þ

Stjt�1 ¼ FtSt�1jt�1F
T
t þW�

1 ð10Þ

Kt ¼ Stjt�1X
�T
t ðX�

tStjt�1X
�T
t þ VtÞ�1 ð11Þ

ûtjt ¼ ûtjt�1 þ Ktðyt � X�
t ûtjt�1Þ ð12Þ

Stjt ¼ ðIpþq � KtX
�
t ÞStjt�1 ð13Þ
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for t ¼ 1, . . ., T where û0 ¼ ZtG0g0

G0g0

� �
and S0 ¼ W1 þ ZtW2Z

T
t ZtW2

W2Z
T
t W2

� �
are

the initial mean and covariance matrices, respectively.

C. Fixed-Interval Smoothing Algorithm

The associated fixed-interval smoothing algorithm is

ûtjT ¼ ûtjt þ Atðûtþ1jT � ûtþ1jtÞ ð14Þ

At ¼ StjtFT
tþ1S

�1
tþ1jt ð15Þ

StjT ¼ Stjt þ AtðStþ1jT � Stþ1jtÞAT
t ð16Þ

recursively computed from t ¼ T –1, . . ., 1 where ûtjT and StjT are, respectively, the

estimate of ut and its covariance matrix given Y�
T . The initial conditions, ûT jT and

STjT, are obtained from the last step of the Kalman filter. Thus, computation of

ûtjT and StjT requires only the output of ûtþ1jT and Stjt from the tth forward step

and the output of ûtþ1jT and Stþ1jT from the previous backward step.

D. State-Space Covariance Algorithm

The state-space covariance algorithm (DeJong and Mackinnon, 1988) gives the

covariance between ûtjT and ûujT as

St;ujT ¼ AtStþ1;ujT t < u � T : ð17Þ
By the definitions of the Kalman filter and the fixed-interval smoothing algo-

rithm, the probability density of (btjy�T , g0,W1,W2) is the Gaussian density whose

mean vector is the first p components of ûtjT and whose covariance matrix is the left

upper

p � p submatrix of StjT. The probability density of (gjy�T , g0, W1, W2) is the

Gaussian density whose mean is the second q components of any ûtjT and whose

covariance matrix is the right lower q � q submatrix of any StjT. The posterior

covariance between bt and g is given by the off-diagonal blocks of StjT for t¼ 1, . . .,
T, whereas the posterior covariance between bt and bu for t6¼ u is given by the left

upper p � p submatrix of St,ujT. The posterior covariance between bt and g can be

used to assess the proximity of the tth experimental unit to the mean of the second

stage of the hierarchy.

When no order dependence is assumed a priori among the yt values, the esti-

mates of the posterior densities are independent of the sequence in which the data

enter the algorithm. The sequence chosen determines only the point in the algo-

rithm at which a particular posterior density is estimated. As we show next, the
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Kalman filter updating makes the effect on the posterior densities of adding new

data simple to understand and simple and quick to compute.

E. Quantifying Contribution of New Information

Consider the simplest form of the model where each unit has one response

(i.e., Nt ¼ 1) and a simple mean is estimated at each stage so that

yt ¼ bt þ et ð18Þ

bt ¼ gþ ot ð19Þ

g ¼ g0 þ n: ð20Þ
Because only the Kalman (forward) filter is needed to compute the posterior of g,

we only need to examine Eqs. (9)–(13) to understand how the population mean g is
computed.

Let us write g(t–1) for the expectation Eðgjy�t�1Þ of g given y�t�1. Application of

Eqs. (11)–(13) gives the expectation of g after the new datum yt is observed as the

weighted average

gðtÞ ¼ ð1� o1Þgðt�1Þ þ o1yt ð21Þ
with posterior variance

V ðgjy�t Þ ¼ V ðtÞ
g ¼ ð1� o1ÞVgðt�1Þ ; ð22Þ

where the weight o1 ¼ Vgðt�1Þ=ðVgðt�1Þ þW1 þ VtÞ.
The updated posterior mean for g is a compromise between the previous estimate

of the mean, g(t–1), and the new data, yt. If the new observation, yt, is larger than

expected, then the expectation of g will increase; if it is smaller than expected, the

expected value of g will decrease. Large measurement variability of the new data

(large Vt), large between-unit variation (large W1), or precise prior information

about g (small Vgðt�1Þ) leads to small changes in g. Conversely, substantial change in
the posterior of g will occur when yt is precisely measured, experimental units are

homogeneous, or g is not well estimated.

The posterior variance is reduced by an amount related to the previous estimate

of the variance Vgðt�1Þ , the variance of the new data Vt, and the between-unit

variance W1. Reduction is greatest when Vt and W1 are small relative to Vgðt�1Þ

because then the tth unit is providing a lot of information relative to that provided

by previous units.

These conditions are intuitively reasonable. If the new data are imprecisely

measured, we should not have much confidence in them and therefore would not

want them to affect our model estimates substantially. Likewise, large between-

unit variation implies only a loose connection between the units and so a new
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observation will have less effect on the existing structure. Finally, new data should

be less influential if we already have a good estimate of the population mean.

To consider information about bt, we note that from Eq. (9), the best estimate of

bt before seeing yt is the population mean g(t–1) and the estimated precision is

Vgðt�1Þ þW1, namely, the variance of the population mean plus the variance of the

random effect. Applying Eqs. (11)–(13) gives

Eðbtjy�t Þ ¼ bðtÞt ¼ ð1� o2Þgðt�1Þ þ o2yt ð23Þ
and

V ðbtjy�t Þ ¼ VbðtÞt
¼ o2Vt ¼ ð1� o2ÞðVgðt�1Þ þW1Þ; ð24Þ

where o2 ¼ ðVgðt�1Þ þW1Þ=ðVgðt�1Þ þW1 þ VtÞ.
The updated posteriormean for bt is a compromise between the priormean, g(t–1),

and the new data, yt. A precisely estimated data value (small Vt), substantial prior

between-unit heterogeneity (large W1), or a poor prior estimate of g [large Vgðt�1Þ ]

will give more weight to yt. The last condition follows from the idea that if prior

knowledge of bt, as expressed by the current knowledge g(t–1) of g, is imprecise, the

previous observations will have little information to give about bt.
The posterior variance is also closely related to the precision of the new data.

If yt is well estimated so that Vt is small, then its associated random effect bt will
also be well estimated. Furthermore, even if Vt is not small, but the prior variance

Vgðt�1Þ þW1 is small relative to Vt, then bt can be precisely estimated using infor-

mation from previous units.

In general, data on new units have the greatest effect on current posterior

estimates if the new data are precisely measured and the new units and current

unit are closely related. The filtering equations, therefore, quantify the amount of

information provided by new data and the effect of the complete hierarchical

structure on the posterior distributions of model parameters. Knowledge about a

unit-specific parameter depends not just on the data gathered on that unit, but

through the model, on information gathered from other units. As data collection

proceeds, the influence of new units on population parameters decreases, but the

influence of the population parameters on the new units increases.

F. Simplified Computations for Incorporating Additional Data

The sequential form of these computations also leads to efficient incorporation

of new data. To update the posterior densities of bt and g when data from several

new experimental units yTþ1, . . ., yTþk are collected, we could combine the original

and new data into a single sequence and replace T with T þ k in the Kalman filter

algorithm, but this approach ignores the previous processing of the original data

and is therefore not computationally efficient.

A better method uses the stored ûtjt and Stjt from the original calculations as inputs

to aKalmanfilter, which proceeds forward from t¼Tþ 1 toTþ k. A backward pass

from t ¼ T to t ¼ 1 with the fixed-interval smoothing and state-space covariance

10. Bayesian Hierarchical Models 207



algorithms then completes updating the posterior density. This process saves the first

T steps of the forward filter compared to repeating the full algorithm.

When new studies are added incrementally and the second-stage regression

model is of primary interest, as it might be in meta-analysis, further efficiency

can be realized by skipping the backward pass. Rather, we can update the second-

stage regression estimates by running the forward algorithm one step further as

each new unit is added. When the regression model is sufficiently precise, we can

make one pass back through the data to update all the individual studies.

Another form of data accumulation occurs when new observations arrive for

experimental units yt for which some data have already been collected. In this case,

the structure of the problem is different because the updated bt are no longer

partially exchangeable given y*t. Hence, the Kalman filter, fixed-interval smooth-

ing algorithm, and state-space covariance algorithms as stated here cannot be

applied. In meta-analysis, at least, this type of accumulating data is uncommon

because new data usually represent new studies. Nevertheless, interim analysis of

several concurrent studies might contribute new data of this type.

III. Computation

The complete posterior distribution of g and b ¼ (b1, b2, . . ., bT) may be

expressed algebraically as

ðb;gÞjy � NðBh;BÞ
with

B�1 ¼ XTV�1XþV�1
1 �V�1

1 Z

�ZTV�1
1 ZTV�1

1 ZþW�1
2

� �
and h ¼ XTV�1y

W�1
2 G0g0

� �
;

where y is the vector of T observed responses,

X ¼
X1 0 � 0

0 X2 � 0

� � � �
0 0 � XT

0
BB@

1
CCA

V ¼
V1 0 � 0

0 V2 � 0

� � � �
0 0 � VT

0
BB@

1
CCA

V1 ¼
W1 0 � 0

0 W1 � 0

� � � �
0 0 ♦c W1

0
BB@

1
CCA
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and

Z ¼
Z1

Z2

�
ZT

0
BB@

1
CCA:

Inverting B is the major computational task in evaluating this joint posterior distri-

bution. The Kalman filter algorithm described in Section II is generally much faster

than brute force inversion as the number of observations and regression parameters

increases, but the SWEEP algorithm as described in Carlin (1990) is even quicker.

To compute by SWEEP, first express the hierarchical model as a multivariate

Gaussian density

y

b
g

0
@

1
A � N

my

mb

mg

0
@

1
A;

Sy Sy;b Sy;g

Sb;y Sb Sb;g

Sg;y Sg;b Sg

0
@

1
A

2
4

3
5

and put this in the following symmetric tableau (omitting the lower triangular

portion for ease of presentation)

ðy� myÞT �mTb �mTg
Sy Sy;b Sy;g

Sb Sb;g

Sg

For a general block matrix
A B

C D

� �
, sweeping on D gives

A� BD�1C BD�1

D�1C �D�1

� �
. The reverse operation, called reverse sweeping, that

undoes the sweeping operation changes
A B

C D

� �
into

A� BD�1C �BD�1

�D�1C �D�1

� �
.

Thus sweeping on y in the tableau above gives

ðy� myÞTS�1
y �mTb � ðy� myÞTS�1

y Sy;b �mTg � ðy� myÞTS�1
y Sy;g

�S�1
y S�1

y Sy;b S�1
y Sy;g

Sb � � � Sb;yS
�1
y Sy;b Sb;g � Sb;yS

�1
y Sy;g

Sg � Sg;yS
�1
y Sy;g

from which the joint posterior probability density [b, gjy] may be read directly.

The means of b and g are given by the negatives of the entries in the second and

third columns, respectively, of the first row. The entries in the last two rows give the

posterior covariance matrix of b and g.
Rather than sweeping y directly, it is actually more efficient to first sweep g and

b before sweeping y and then undo the sweeps on g and b by reverse sweeps to

reproduce the effect of sweeping on y alone. Though this modified SWEEP
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algorithm involves five sets of computations, efficiency is gained because the initial

sweeps on g and b diagonalize
P

y to the simple form s2e I so that y may be swept

quite simply analytically. This leaves only the smaller dimensional reverse sweeps

of g and b for numerical computation.

While the Kalman filter and SWEEP are each efficient algorithms for computing

the posteriors of the mean parameters g and b in Gaussian models, they assume

fixed variance parameters Vt, W1, and W2. Typically, variances will be unknown

and so these algorithms must be embedded inside a larger algorithm in which the

variances are first estimated and then the means are computed conditional on the

variances.

One algorithm that can be used for meta-analysis uses the result that the within-

study covariance matrices Vt are usually so well estimated from each study that

they may be assumed known (DuMouchel, 1990). To incorporate the uncertainty

arising from the between-study variance W1, average the conditional posterior

distribution of bt and g given W1 over the posterior distribution ofW1. Assuming

a noninformative prior for W2 so that W�1
2 ! 0 gives

½gjy�T ;W1�½W1jy�T � / ½W1�½gjW1�½y�T jg;W1�;
where the notation [YjX] represents the conditional density of the random variable

Y given the random variable X. Letting the prior distribution for [g, W1] be

constant, suggested in Berger (1985) as an appropriate form of a noninformative

prior distribution for hierarchical models, gives

½W1jy�T � / ½y�T jg;W1�=½gjy�T ;W1�:
Combining Eqs. (4) and (5), we have

y�t jg;W1 � NðXtZtg;Vt þ XtW1X
T
t Þ

and standard calculations show that

gjy�T ;W1 � Nðm;SÞ;
where m ¼ ðZ0

S�1
ZÞ�1

Z
0
S�1

y�T ,
P

is the diagonal matrix with diagonal elements

Vt þ W1, and Z is the matrix defined previously. If Vt and W1 are scalars, it can

then be shown using these last two expressions that the log posterior density forW1

above is proportional to

g ¼
XT
t¼1

log½ðVt þW1Þ��1 � logjZ0P�1
Zj

�
XT
t¼1

y2t =ðVt þW1Þ þ ðZ0P�1
y�T ÞT ðZ

0P�1
ZÞ�1ðZ0P�1

y�TÞ:

An estimate of the posterior for b and g may then be obtained using Monte

Carlo integration over this log posterior by setting up a grid of, say, 100 points that

span the range of the distribution of W1 and then computing the ergodic average
1

100

X100

k¼1
fkðb;gjW1Þ � gkðW1Þ where the fk and gk are evaluated at each of the 100
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points. Another technique for performing this numerical integration uses Markov

chain Monte Carlo (MCMC) and is discussed in Section VI.

IV. Example: Meta-Regression

To illustrate application of the Bayesian hierarchical linear model to meta-

analysis, we look at the effect of the time from chest pain onset until treatment

on the relative risk of mortality following thrombolytic therapy for acute myocar-

dial infarction. Eight large (>1000 patients) randomized control trials of the

thrombolytic agents streptokinase (SK), urokinase (UK), recombinant tissue plas-

minogen activator (tPA), and anistreplase (APSAC) have reported outcomes by

subgroups of patients according to time-to-treatment (AIMS Trial Study Group,

1988; ASSET Trial Study Group, 1988; EMERAS Collaborative Group, 1993;

GISSI Study Group, 1986; ISAM Study Group, 1986; ISIS-2 Collaborative

Group, 1988; LATE Study Group, 1993; USIM Collaborative Group, 1991).

The Bayesian hierarchical model may be used to perform a meta-analysis com-

bining the results from the subgroups in these studies. For the first stage, let yt be the

observed log relative risk in the tth subgroup having a Gaussian distribution

centered about the true subgroup relative risk bt with random error et having

variance s2e . The second stage describes the representation of bt as a simple linear

regression on time-to-treatment Timet with Gaussian error ot having variance W1,

that is, bt ¼ d0 þ d1 * Timet þ ot. Thus g ¼ d0
d1

� �
and Zt ¼ (1 Timet). Finally, the

third stage describes a Gaussian prior distribution for g with mean g0 and variance

W2. This hierarchical structure may be put into the state-space form of Eqs. (7) and

(8) by setting ut ¼
bt
d0
d1

0
@

1
A; Ft ¼

0 1 Timet
0 1 0

0 0 1

0
@

1
A, ut�1 ¼

bt�1

d0
d1

0
@

1
A;X�

t ¼ ð100Þ;

W�
t ¼

W1 0 0

0 0 0

0 0 0

0
@

1
A; andVt ¼ s2e .

Our objective is to compute the joint posterior density of bt and g. This may be

accomplished by the Kalman filter algorithms conditional on the variance compo-

nents Vt, W1, and W2 together with the Monte Carlo integration as presented

above.

Though averaging over the variance component makes the posterior strictly

non-Gaussian, the use of a uniform prior and the substantial amount of data

available make an asymptotic Gaussian posterior a good approximation. Figure 1

shows the posterior density ofW1 under both a constant regression model, bt ¼ d0,
and the model linear in time, bt ¼ d0 þ d1 Timet þ ot. The introduction of time-to-

treatment reduces the between-study variance so that the posterior mode forW1 is

essentially zero. Nevertheless, the skewness of the posterior indicates that it is quite

probable that W1 > 0.
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Table I shows the raw data (in terms of the percent risk reduction) for the

subgroups together with the point estimates and 95% confidence intervals based

on (1) the observed data, yt; (2) the posteriors for the bt (averaging over the

likelihood for W1); and (3) the regression line d0 þ d1 Timet. Figure 2 plots the

fitted regression line versus time-to-treatment superimposed on the observed point

estimates and Bayes estimates for the subgroups.

Table I shows that the Bayes estimate of each true study effect is a weighted

average of the observed effect yt and the regression estimate, d0þ d1 Timet. Figure 2

shows this weighting graphically with the Bayes estimates (represented by þ signs)

falling between the observed effects (squares) and the regression line. Larger

studies (denoted by bigger squares) get more weight; their Bayes estimates are

proportionately closer to the observed effect than to the regression line. Conversely,

smaller studies carry little weight; their Bayes estimates are pulled almost completely

into the regression line. The small amount of between-study variance, however,

shrinks all estimates close to the regression line.

Intuitively, if we believe the model, the exchangeability of the study means lets us

use information from the other studies to better estimate each treatment effect.

Thus, for the first subgroup, the GISSI-1 study patients with mean time-to-treat-

ment of 0.7 h, the Bayes estimate is a 28% reduction, between the 47% observed

reduction and the 25% average reduction at 0.7 h from the regression model.

Because the evidence from the other studies indicates less benefit, we downweight

the estimate from GISSI-1 toward the regression average. If we could discover

other factors that explained the additional benefit observed in GISSI-1, we could

incorporate them into the regression model, thus increasing the regression estimate

(and so the Bayes estimate) toward the observed relative risk for GISSI-1.
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Fig. 1 Unnormalized posterior density of between-study variance (W1) under models with and

without time-to-treatment as a regression variable.
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Table I
Mortality Data From Nine Large Placebo-Control Studies of Thrombolytic Agents After Myocardial Infarctiona

Study Year Time (h)

Treated Control yt bt d0 þ d1 * Time

Deaths Total Deaths Total Lower Mean Upper Lower Mean Upper Lower Mean Upper

GISSI-1 1986 0.7 52 635 99 642 27 47 61 17 28 38 16 25 34

ISIS-2 1988 1.0 29 357 48 357 6 40 61 15 26 36 14 25 35

USIM 1991 1.2 45 596 42 538 –45 3 35 12 22 33 14 25 35

ISAM 1986 1.8 25 477 30 463 –37 18 51 13 24 34 11 24 35

ISIS-2 1988 2.0 72 951 111 957 13 35 51 15 26 35 10 24 36

GISSI-1 1986 2.0 226 2381 270 2436 –1 14 28 12 21 30 10 24 36

ASSET 1988 2.1 81 992 107 979 2 25 43 14 24 33 10 24 36

AIMS 1988 2.7 18 334 30 326 –3 41 67 13 24 34 8 23 36

USIM 1991 3.0 48 532 47 535 –51 –3 30 10 21 31 7 23 36

ISIS-2 1988 3.0 106 1243 152 1243 12 30 45 15 24 33 7 23 36

EMERAS 1993 3.2 51 336 56 327 –25 11 37 11 22 31 6 23 37

ISIS-2 1988 4.0 100 1178 147 1181 13 32 46 14 24 32 3 22 37

ASSET 1988 4.1 99 1504 129 1488 2 24 41 13 22 31 3 22 37

GISSI-1 1986 4.5 217 1849 254 1800 2 17 30 12 20 28 1 21 37

ISAM 1986 4.5 25 365 31 405 –49 11 46 10 21 31 1 21 37

AIMS 1988 5.0 14 168 31 176 14 53 74 11 22 32 0 21 38

ISIS-2 1988 5.5 164 1621 190 1622 –5 14 29 10 19 27 –2 20 38

GISSI-1 1986 7.5 87 693 93 659 –17 11 32 7 17 26 –9 18 39

LATE 1993 9.0 93 1047 123 1028 4 26 42 8 18 27 –14 17 39

EMERAS 1993 9.5 133 1046 152 1034 –7 14 30 6 15 24 –16 16 39

ISIS-2 1988 9.5 214 2018 249 2008 –2 14 28 7 16 24 –16 16 39

GISSI-1 1986 10.5 46 292 41 302 –71 –16 21 0 13 24 –20 15 39

LATE 1993 18.0 154 1776 168 1835 –17 5 23 –9 6 18 –49 6 40

ISIS-2 1988 18.5 106 1224 132 1227 –3 20 37 –8 8 21 –51 5 40

EMERAS 1993 18.5 114 875 119 916 –27 0 21 –11 4 17 –51 5 40

aThe estimated true percent risk reduction (with 95% confidence limits) for each time subgroup is shown for the observed data and results from three

regression models: the fixed effects model, the Bayes model, and the estimate that would be predicted if a new study were performed with the same mean time

to treatment.



The Bayes confidence intervals are much narrower than those based solely on the

observed data because they have borrowed strength from the other studies to

increase the precision available from a single study.

An important clinical objective for cardiologists is determining the latest time at

which treatment still shows a benefit. All of the models demonstrate a benefit of

treatment in all of the studies, at least up until 18.5 h. The lower bound on the

confidence intervals is not as sanguine, of course, but the Bayes model shows some

benefit until at least 10.5 h even in the USIM study, which by itself showed little

benefit. The lower limits on the intervals about the regression estimates show that

we could reasonably expect benefit in any study for which the average time-to-

treatment was 5 h or less, but that random variation would make benefit more

uncertain if the time were greater than 5 h. Nevertheless, if we are concerned not

with the results from a single trial, but rather with pooled results, we can reason-

ably conclude that thrombolytic treatment is beneficial for at least the first 10.5

h after the onset of chest pain and perhaps for several hours after that also. These

conclusions are similar to those drawn by the Fibrinolytic Therapy Trialists’ (FTT)

Collaborative Group (1994).

To illustrate the updating features of the Kalman filter, Table II shows the

change in the estimates of the regression coefficients d0 and d1 (expressed on the

log relative risk scale) from the regression on time-to-treatment as the studies are

added in chronological order. Because d0 and d1 are second-stage parameters

common to each study, computing their posterior distribution requires only the

Kalman (forward) filter.
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Fig. 2 Estimated percent risk reduction versus time-to-treatment. The regression line is shown

together with the Bayes estimates (þ signs) and the observed estimates (squares). The size of the squares

is inversely proportional to the study variance.
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The dominating effect of the two largest studies, GISSI-1 and ISIS-2, is appar-

ent. These two studies reduce the standard errors substantially and also change

estimates of the mean and variance. The USIM study also shifts the estimates

substantially because its small treatment effects contrast with the larger ones from

other short time-to-treatment studies.

Table III shows that an individual study’s estimates can also be followed as the

algorithm progresses. On the basis of data from the subgroup of patients treated

within 1 h in GISSI-1, the estimate of the true effect of treatment for patients

treated within 1 h is a reduction in risk of 47% [¼ exp(–0.633)]. When data from the

rest of the GISSI-1 study are incorporated into a regression model, the reduction is

estimated to be only 28%. This reduction is shrunk to 25% on the basis of data

from all eight studies. Conversely, the estimated effect for patients treated after 9

h changes from a 9% increased risk (16% if only data from that subgroup are used)

to a 15% decreased risk with the information from the other eight studies.

This readjustment is not solely of academic interest. The results of the GISSI-1

study were so influential that not only did they establish SK as a standard

Table III
Three Different GISSI-1 Time Subgroup Estimates (with Standard Errors)a

Time subgroup (h) Subgroup only All GISSI-1 data All studies

<1 –0.633 (0.162) –0.330 (0.082) –0.287 (0.040)

1–3 –0.155 (0.085) –0.274 (0.064) –0.270 (0.036)

3–6 –0.184 (0.086) –0.167 (0.052) –0.237 (0.029)

63–9 –0.117 (0.139) –0.039 (0.084) –0.198 (0.026)

>9 0.149 (0.198) 0.089 (0.134) –0.159 (0.031)

aThe first are the observed estimates from each subgroup. The second are estimates for the subgroup

from a hierarchical model fit to all the GISSI-1 data. The third are estimates from a hierarchical model

fit to data from all eight studies.

Table II
Changing Estimates of Slope (d1) and Intercept (d0) as New Studies are Added

Study added

Intercept Slope

Estimate SE Estimate SE

GISSI-1 –0.360 0.093 0.0428 0.0192

ISAM –0.353 0.090 0.0421 0.0190

AIMS –0.373 0.089 0.0413 0.0189

Wilcox –0.380 0.082 0.0410 0.0183

ISIS-2 –0.315 0.050 0.0136 0.0072

USIM –0.291 0.048 0.0114 0.0071

EMERAS –0.293 0.044 0.0134 0.0056

LATE –0.296 0.043 0.0130 0.0048
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treatment for myocardial infarction, but they also convinced physicians that

effectiveness decreased as time since symptom onset increased. On the basis of

this study, treatment was advocated for patients who arrived within 6 h after

symptom onset (GISSI Study Group, 1986). The evaluation of this study by a

Bayesian hierarchical linear model derived from data that also include the other

large clinical trials of thrombolytic therapy suggests now that treatment is also

beneficial for patients arriving much later than 6 h after symptom onset.

V. Example: Saltatory Model of Infant Growth

Lampl et al. (1992) reported daily measurements of infants for whom whole-

body length appears to increase at discrete jumps, termed saltations, with much

longer intervening periods of no growth, termed stasis. Figure 3 shows daily

measurements of total recumbent length (height) of one infant taken over a 4-

month period (from day 321 to day 443 of age) using a specially designed infant

measuring board. The pattern of saltation and stasis is apparent in the figure,

although measurement error does introduce some uncertainty. Sources of this

error include the equipment, measurement technique, and the cooperation of the

individual subjects.

The within-individual variation may involve the random nature of the growth

events or could involve more systematic changes in growth patterns related to the

age of the child or individual genetic, physiologic, or environmental factors

modifying the growth rates. Between-individual variation would describe broad

characteristics of populations and subpopulations of individuals, for instance, the
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Fig. 3 Height measurements taken between one and six times daily over 4 months on a single infant.
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average height at a given age or the distribution of the mean amplitude or mean

stasis interval.

These requirements can be described with a three-level Bayesian hierarchical

model. The first level represents an individual’s height as the sum of the true height

and the error of measurement. The second level represents this true height in terms

of components that relate to the average height of similar individuals in the

population and to the specific growth characteristics of this individual. The third

level provides a probabilistic specification of growth in the population. This

hierarchical structure permits the growth measurements from one individual to

inform the growth distribution of another individual through the population

components in the model.

We can represent such saltatory growth as a stochastic process as follows. First,

let yt be the measured height andHt be the true height at time t for t¼ 1, . . ., T time

points measured on one individual. Then, take u ¼ (u1, u2, . . ., uK)
T to be the set of

times at which the saltations occur with huk , the saltation at time uk. Then

Ht ¼ Ht�1 þ
X

t�1<uk�t

huk

describes the true growth process and we observe

yt ¼ Ht þ et

where et is measurement error distributed as a Gaussian random variable with

mean 0 and variance s2e . We assume that the distribution of each saltation huk is

Gaussian with mean mh and variance s2h. This can be expressed by the equation

huk ¼ mh þ euk where euk � Nð0; s2hÞ. Conditional on the set of saltation times, u, the

problem may then be set up as a Bayesian hierarchical model as follows.

Let Jt represent the number of saltations that occur during the interval (t – 1, t],

let the prior distribution for the average amplitude, mh, be Gaussian with mean mh0
and variance s2h0 , and let the prior for the initial height,H0, be Gaussian with mean

m0 and variance s20. We can write this in the state-space form of Eqs. (7) and (8) as

Ht

mh

� �
¼ 1 Jt

0 1

� �
Ht�1

mh

� �
þ

X
t�1<uk�t

euk

0

0
@

1
A

and

yt ¼ ð 1 0 Þ Ht

mh

� �
þ et

so that

ut ¼ Ht

mh

� �
;Ft ¼ 1 Jt

0 1

� �
;X�

t ¼ ð 1 0 Þ;W�
1 ¼ Jts2h 0

0 0

� �
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and Vt ¼ s2e . Given the variances s2e and s2h and the prior distributions for mh and

H0, the computations for the Kalman filter are started by setting u0 ¼ m0
mh0

� �
and

S0 ¼ s20 0

0 s2h0

� �
. For simplicity, we assume that the variance components s2e and

s2h are fixed at ŝ2e ¼ 0:059 and ŝ2h ¼ 0:038 from a prior analysis using the EM

algorithm (Little and Rubin, 1987), and that u0 ¼ 73

0:94

� �
and S0 ¼ 4:7 0

0 4:9

� �
,

on the basis of values estimated from data from another infant. In fact, the results

turn out to be robust even to extreme changes in these prior values. Using Fig. 3,

we fix 12 saltations occurring on days 322, 325, 335, 341, 358, 366, 376, 395, 400,

418, 421, and 443. The assumptions of fixed variances and growth times are made

for pedagogical reasons in order to illustrate use of the Kalman filter. We will

discuss removal of these restrictions presently.

Table IV gives estimates and standard errors for the 12 saltations h ¼ (h1, h2,. . .,
h12), the mean saltation mh, and the initial heightH0 (Table IV). Figure 4 shows the

fitted growth curve overlaid on the data. The infant’s initial height was estimated

to be 73.6 (	0.3) cm (mean 	2 standard errors) and the estimated final height was

83.0 cm, a total growth of 9.4 cm. This corresponds to an average growth of

0.788 cm per growth event with individual growth amplitudes varying between

0.42 and 1.19 cm. These estimates are fairly precise with standard errors ranging

from 0.05 to 0.14 cm. All of the amplitudes are significantly different from zero,

indicating our choice of saltation times was reasonable.

Table IV
Posterior Means and Standard Errors of Model Para-
meters for Growth Amplitudes (h1, h2, . . ., h12), Mean
Growth (mh), and Initial Height (H0)

Parameter Mean SE

h1 0.904 0.139

h2 0.734 0.089

h3 0.876 0.059

h4 0.486 0.054

h5 0.704 0.048

h6 0.922 0.056

h7 0.963 0.050

h8 0.813 0.062

h9 0.421 0.062

h10 0.550 0.070

h11 0.900 0.071

h12 1.187 0.107

mh 0.788 0.058

H0 73.586 0.137
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VI. Incorporation of Variance Components

Computation of the full model with random variances and growth times requires

embedding the Kalman filter inside a larger MCMC algorithm that could incorpo-

rate the non-Gaussian structure of these components. A brief outline of MCMC is

therefore warranted.

Return to the basic Bayesian formula describing the posterior density of a

parameter y as

f ðyjYÞ ¼ f ðyÞf ðY jyÞ
f ðYÞ :

If we wish to calculate the posterior mean (or in fact any posterior moment), we

must evaluate the expectation of ywith respect to this density, EðyÞ ¼ Ð
yf ðyjYÞdy.

This involves an integration which, except in very simple problems, must be

performed numerically. In complex problems with many parameters, computing

the marginal density requires integrating over all parameters but one. This is

simply impossible for many real problems.

MCMC methods work by simulating a series of N draws from the correct

posterior distribution for each parameter in the model. With these simulated

draws, moments may be calculated simply by Monte Carlo integration. For

instance, the mean of yi is calculated simply from the average of all the drawn

values of the yi. Moreover, as draws from the complete joint posterior are avail-

able, we can compute the posterior of an arbitrary function g of the parameters by

simply averaging the values obtained by applying this function to the simulated

parameters, obtaining E½gðyÞ� 
 1
N

XN

i¼1
gðeuiÞ for the N draws eui from f(yjY).
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Fig. 4 Fitted curve from the hierarchical growth model overlaid on the data.
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The theory behind this method is too complex to describe other than briefly here.

Interested readers may refer to Gilks et al. (1996) and the many papers cited therein

for details. Consider starting a chain such that having drawn y(t–1) we can draw

from h(y(t)jy(t–1), y). Because this draw depends only on the previous state, it is a

Markov chain. Eventually, the chain will forget its starting value and it can be

shown that the chain will converge to its stationary distribution, which is the

correct posterior f(yjy). Thus, to simulate a Markov chain from the correct

posterior, we need only to be able to draw from h(y(t)jy(t–1), y). It is often simpler

to proceed one parameter at a time, simulating from hiðyðtÞi jyðt�1Þ
½i� ; yÞ where the

notation y[i] represents all members of y except the ith. If all of these full condi-

tional distributions can be sampled, the MCMC algorithm is described as the

Gibbs sampler. Except when conjugate distributions have been used, however,

not all of these full conditionals can be represented in terms of known densities that

can be simulated.

When the conditional density can be written down but not simulated, the

Metropolis-Hastings form ofMCMC can be used instead. This consists of drawing

yðtÞi from a transition density qiðyðtÞi jyðt�1Þ
½i� Þ that is constructed to resemble

hiðyðtÞi jyðt�1Þ
½i� Þ and then accepting this draw with probability

R ¼ min 1;
hiðyðtÞi jY ; yðt�1Þ

½i� Þqi yðt�1Þ
½i� jyðtÞi

� �

hi yðt�1Þ
i jY ; yðt�1Þ

½i�
� �

qiðyðtÞi jyðt�1Þ
½i� Þ

0
@

1
A:

This acceptance ratio can be seen as the ratio of the posterior probability that

yi ¼ yðtÞi conditional on the current draws of the other parameters to the condi-

tional posterior probability that yi ¼ yðt�1Þ
i weighted by the importance ratio

qiðyðt�1Þ
½i� jyðtÞi Þ=qiðyðtÞi jyðt�1Þ

½i� Þ. If the new drawn value has substantially higher poste-

rior probability than the previous value, the acceptance rate will be high. In the

Gibbs sampler, the transition density is qiðyðtÞi jyðt�1Þ
½i� Þ ¼ hiðyðtÞi jY ; yðt�1Þ

½i� Þ so that the

ratio is always one and the draw is always accepted. Gibbs sampling therefore uses

the optimal transition density if it can be found and if not uses a Metropolis-

Hastings step instead.

In the growth problem, the parameters for which posterior inference are desired

include thosedescribing the growthamplitude,fh;H0; mh; s2hg, themeasurement error

variance s2e , and the parameters f involved in describing the saltation times u. The

Kalman filter set out above describes the distribution of h,H0, mhjY, s2e , u,f. MCMC

is required to compute the full posterior. This is the subject of current research.

VII. Model Checking

Once models have been fit to data, it is important that they be checked against

the data to ensure that they describe the important features. Plots can help. Here,

we describe the idea of using posterior predictive checks to evaluate the accuracy of

a Bayesian model (Gelman et al., 1995). The basic idea is to simulate draws of the

220 Christopher H. Schmid and Emery N. Brown



outcomes from the model posterior and then to check these simulated responses

against the actual responses.

For a given realization of the parameters from an iteration of the MCMC

algorithm, we calculate the test statistic Tðyrepk ; ykÞ, a measure of discrepancy

where y
rep
k is a sample from the predictive distribution [yjyk]. Tðyrepk ; ykÞ is then

compared with T(yobs, yk) computed using the observed data yobs. A Bayesian

p valuemay then be computed from Pr½Tðyrepk ; ykÞ > Tðyobs; ykÞ�. As in the classical

hypothesis test, this p value will be small when the observed discrepancy is most

often higher than that would be expected if the data were generated from themodel.

A variety of test statistics may be employed to validate the model. Two standard

ones are given below:

1. An overall-goodness-of-fit test: T1ðy; yÞ ¼
PN

i¼1½yi � EðyijyÞ�=½VarðyijyÞ�
2. The test of maximal deviation: T2(y, y) ¼ maxjyi – E(yijy)j.
We can also tailor statistics to the problem at hand. For example, to evaluate the

growth model, we could examine the following test statistics:

1. Number of sign changes (a rough test of serial correlation):

T3ðy; qÞ ¼ fsgnðyi � EðyijqÞÞ1 sgnðyi � EðyijqÞÞg

2. Height at the end of observation: T4(y, y) ¼ yN

3. Largest growth increment: T5ðy; yÞ ¼ maxj�yi � �yi�1j
4. Largest stasis interval: T6ðy; yÞ ¼ flongest consecutive run such that

�yi � �yi�1 < k 8ig
5. Number of growth events: T7ðy; yÞ ¼

P
Ifð�yi � �yi�1Þ > kg for some constant

k where I is the indicator function.

All of these checks use the entire set of data. A second type of posterior check

examines how amodel predicts on new data. For this purpose, we can split each data

series into two parts using the first two-thirds to develop the model and the last third

to test the model (Carlin and Louis, 1996). For each realization yk, we can compute

y
pred
k from [ynewjyk, yold] where ynew represents the last third and yold the first two-

thirds of yobs. Bayesian p values are then computed from Pr½Tðypredk ; ykÞ >
Tðynew; ykÞ�.

VIII. Conclusion

Hierarchical models are becoming increasingly popular for representing proba-

bility structures with multiple components of variance. Bayesian forms of these

models allow a much more flexible description of model features and explicit

representation of prior information that may be combined with the data to

improve scientific inference. The computation of Bayesian models has been signifi-

cantly simplified byMCMC techniques, which now allow computation of complex
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probability models. Representation of a Bayesian hierarchical linear model in

state-space form and sequential computation by linear filters provides a useful

way to understand the model structure and the interrelationships among model

parameters, as well as to appreciate how new data update the posterior densities of

the parameters. In problems with an inherent temporal or ordered spatial struc-

ture, this representation can also facilitate model construction.
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I. Introduction

Repeated-measures study designs are popular in biomedical research because they

allow investigation of changes over time within individuals. These temporal changes

in subjects may themselves be of interest (e.g., to document the effects of aging), or

they may enable statistically powerful comparisons of different conditions within the

same individuals (e.g., in cross-over drug studies). Complications arise when analyz-

ing the longitudinal data from repeated-measures studies involving multiple sub-

jects, however, as the data from the different subjects must be combined somehow

for efficient analysis of the within-subjects changes. After all, the temporal changes

that the various subjects have in common are typically of greater interest than the

temporal profiles of each individual subject. The complications stem from the fact

that the data collected within a subject are not independent of each other—they are

correlated (and the magnitude of this correlation is usually not a priori known).1

The data from different subjects, on the other hand, are typically independent.

To properly analyze data from an experiment that combines multiple subjects with

multiple data points per subject, two distinct sources of variance in the overall data

set must be considered: between-subjects variance and within-subjects variance.

Statistical analysis techniques targeted specifically at longitudinal data must keep

these sources of variance separated (Burton et al., 1998).

In this chapter, we consider mixed-model regression analysis, which is a specific

technique for analyzing longitudinal data that properly deals with within- and

between-subjects variance. The term ‘‘mixed model’’ refers to the inclusion of both

fixed effects, which are model components used to define systematic relationships

such as overall changes over time and/or experimentally induced group differences;

and random effects, which account for variability among subjects around the

systematic relationships captured by the fixed effects. To illustrate how the

mixed-model regression approach can help analyze longitudinal data with large

interindividual differences, we consider psychomotor vigilance data from an

experiment involving 88 h of total sleep deprivation, during which subjects

received either sustained low-dose caffeine or placebo (Dinges et al., 2000; Van

Dongen et al., 2001). We first apply traditional repeated-measures analysis of

variance (ANOVA), and show that this method is not robust against systematic

interindividual variability. The data are then reanalyzed using linear mixed-model

regression analysis in order to properly take into account the interindividual

differences. We conclude with an application of nonlinear mixed-model regression

analysis of the data at hand, to demonstrate the considerable potential of this

relatively novel statistical approach. Throughout this chapter, we apply commonly

used (scalar) mathematical notation and avoid matrix formulation, so as to

provide relatively easy access to the underlying statistical methodology.

1 Counter-intuitively, it is precisely this feature of repeated-measures experimental designs that

makes them statistically powerful and efficient (Burton et al., 1998).
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II. Experiment and Data

A total of n¼ 26 healthy adult males (moderate caffeine consumers) participated

in a 10-day laboratory study. Following a 2-week period in which they refrained

from caffeine use, subjects entered the laboratory. After one adaptation night,

subjects had two baseline days with bedtimes from 23:30 until 07:30. They then

underwent 88 h of total sleep deprivation, during which time they were constantly

monitored and kept awake with mild social stimulation. The experiment concluded

with three recovery days. Every 2 h of scheduled wakefulness, subjects were tested

on a 30-min computerized neurobehavioral assessment battery, which included a

10-min psychomotor vigilance task (PVT). Psychomotor vigilance performance

was assessed by counting the number of lapses, defined as reaction times equal to

or greater than 500 ms, per 10-min test bout. For the purposes of the present

analyses, overall daytime performance was determined by averaging the test bouts

at 09:30, 11:30, 13:30, 15:30, 17:30, 19:30, and 21:30 for each day. This served to

average out the natural circadian (24-h) rhythm in performance data (Van Dongen

and Dinges, 2000). The first daytime period during the 88 h of wakefulness, before

any sleep loss was incurred, we call Day 0. The subsequent three daytime periods

we refer to as Days 1, 2, and 3.

Subjects were randomized to one of two conditions: n1 ¼ 13 subjects were

randomized to receive sustained low-dose caffeine (0.3 mg/kg body weight, or

about a quarter cup of coffee, each hour) and n2 ¼ 13 subjects were randomized

to receive placebo, in double-blind fashion. Caffeine or placebo pill administration

began at 05:30 after 22 h of sustained wakefulness, and continued at hourly

intervals for the remaining 66 h of total sleep deprivation. At 1.5-h intervals on

average, blood samples were taken via an indwelling intravenous catheter for

assessment of blood plasma concentrations of caffeine2 (these data were available

for 10 subjects in the caffeine condition only).

The present investigation focuses on whether caffeine mitigated the psychomotor

vigilance performance impairment resulting from total sleep deprivation, and if so, for

how long. Fig. 1 shows the psychomotor vigilance data (PVT lapses) for both condi-

tions, as well as the caffeine concentrations in blood plasma for the subjects in the

caffeine condition, during the 88 h of total sleep deprivation. The error bars (represent-

ing standard deviations) in this figure show large interindividual differences both in the

plasma concentrations of caffeine and in the levels of psychomotor vigilance im-

pairment, posing a challenge for the analysis of this data set. In addition, the random

assignment to condition resulted in differences between the average performance levels

for the twoconditions evenbefore the administrationof caffeineorplacebo.This is also

evident in Fig. 2, which shows the daytime averages for psychomotor vigilance perfor-

mance lapses for Day 0 (before pill administration) and across Days 1–3 (during pill

administration). The data points used to construct Fig. 2 are given in Table I.

2 Caffeine concentrations were assessed by EMIT enzyme multiplication immunoassay (Syva, Palo

Alto, CA).
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III. Repeated-Measures ANOVA

As a first analysis of the psychomotor vigilance performance data for the two

conditions across Days 0 through 3, we use a commonly applied technique called

repeated-measures ANOVA. Before describing repeated-measures ANOVA, we

describe the simpler situation in which subjects in N independent groups each

contribute only one observation to the overall data set, so that all data points are

mutually independent. The data points within each group are assumed to be

normally distributed with equal variance but possibly differing mean. If the

variance within the groups is relatively small compared to the variance among

the group means, then the differences among the means are significant, that is,

larger than could have reasonably arisen merely from variability in the data within

the groups. This forms the basis of one-way ANOVA, as is illustrated in Fig. 3.
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Fig. 1 Psychomotor vigilance task (PVT) lapses for the caffeine condition (downward error bars) and

the placebo condition (upward error bars), and caffeine concentrations in blood plasma for the caffeine

condition, across 88 h of total sleep deprivation. The curves represent condition averages; the error bars

represent the standard deviation over subjects (suggesting large interindividual differences). The arrow

indicates the beginning of hourly pill administration (caffeine or placebo).
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We define n as the total number of subjects, nj as the number of subjects for

group j ( j ¼ 1, . . ., N),Mj as the observed mean for group j, and s2j as the observed

variance for group j:

s2j ¼ fSiðyji �MjÞ2g=ðnj � 1Þ; ð1Þ
where i identifies the different subjects in the group (say, i¼ 1, . . ., nj) and yji are the

data points for these subjects. The variance components that form the basis of

ANOVA are usually expressed in terms of sums of squares (SS), such as the sum in

curly brackets in Eq. (1), and in terms of mean squares (MS), defined as the sum of

squares divided by the degrees of freedom (df). For the overall data set, which we

indicate with S, the variance is thus described by

SSðSÞ ¼
X

j

X
i
ðyji �MÞ2; dfðSÞ ¼ n� 1;MSðSÞ ¼ SSðSÞ=dfðSÞ; ð2Þ

where M is the grand mean of the data.

The common within-groups variance, indicated here with w, is estimated using

the group-specific variances:

SSðwÞ ¼
X

j

X
i
ðyji �MjÞ2; dfðwÞ ¼

X
j
ðnj � 1Þ ð3Þ

so that

MSðwÞ ¼ SSðwÞ=dfðwÞ ¼
X

j
ðnj � 1Þs2j =

X
j
ðnj � 1Þ: ð4Þ

The between-groups variance (i.e., the variance among the group means) can

then be computed from the difference between SS(S) and SS(w):
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Fig. 2 Average daytime lapses on the psychomotor vigilance task (PVT) for the caffeine condition

(open boxes) and the placebo condition (closed boxes) prior to pill administration (Day 0) and during

pill administration (Days 1–3). The boxes represent condition means; the error bars represent standard

errors of the mean.
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SSðbÞ ¼ SSðSÞ � SSðwÞ; dfðbÞ ¼ N � 1;MSðbÞ ¼ SSðbÞ=dfðbÞ: ð5Þ
To evaluate the statistical significance of the difference between the group means

(the ‘‘effect of condition’’), the one-way ANOVA F statistic [with df(b) and df(w)

degrees of freedom] is used3:

F ½dfðbÞ; dfðwÞ� ¼ MSðbÞ=MSðwÞ: ð6Þ
For the F test, it is assumed that the data are randomly sampled from normal

distributions, although ANOVA results are robust to departures from this as-

sumption. It is also assumed that the underlying distributions from which the

data within each group are sampled have equal variances.

Table I
Daytime Average Data in Two Experimental Conditionsa

Id Cond Day0 Day1 Day2 Day3

1 1 0.4 2.0 23.0 31.3

2 1 1.0 5.7 19.1 21.9

3 1 0.6 7.4 9.9 25.9

4 1 4.7 11.3 18.0 11.7

5 1 2.6 5.9 13.6 23.7

6 1 1.6 4.0 19.9 24.4

7 1 3.3 5.7 11.4 15.4

8 1 4.4 4.7 19.6 13.3

9 1 0.0 10.1 20.3 12.4

10 1 2.6 10.9 8.0 13.7

11 1 0.3 3.3 9.7 13.6

12 1 3.0 9.3 6.7 13.4

13 1 2.7 3.9 12.0 12.0

14 2 5.0 9.3 31.9 21.7

15 2 5.1 15.6 23.6 43.9

16 2 1.0 4.9 18.3 23.0

17 2 16.6 35.1 31.7 30.1

18 2 15.1 22.0 28.7 32.3

19 2 0.0 0.0 2.4 0.0

20 2 0.3 1.4 9.1 10.6

21 2 1.3 8.1 13.3 22.3

22 2 11.6 23.9 16.9 15.9

23 2 7.1 32.1 27.0 21.9

24 2 12.7 22.0 18.6 20.0

25 2 2.6 11.9 25.7 21.3

26 2 20.7 21.4 19.7 34.1

aDaytime averages are given for the number of psychomotor vigilance performance lapses per 10-min

test bout, for each of the subjects (column ‘‘id’’) in the caffeine condition (column ‘‘cond’’ value 1) and the

placebo condition (column ‘‘cond’’ value 2), across Days 0–3 of total sleep deprivation (columns ‘‘day0’’

through ‘‘day3’’).

3 When only two groups are compared [i.e., df(b) ¼ 1], the square-root of the F statistic in Eq. (6)

yields a t statistic for an equivalent t test with df(w) degrees of freedom.
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For the analysis of longitudinal data, the ANOVA method is adapted to com-

pare subsets of the data measured in the same subjects at different time points, so

as to test whether or not the mean for the subsets is the same at all time points. This

is called repeated-measures ANOVA, and it differs from one-way ANOVA in that

individual data points can no longer be assumed to be independent. If there is only

one experimental condition (i.e., N ¼ 1), the variance in the data (in terms of sums

of squares) is partitioned into two parts. One variance component is the variance

among the means over time, which in repeated-measures ANOVA is a within-

subjects factor as each subject is measured at all time points. The other variance

component is residual variance, which is the remaining variance within individual

subjects. The variance among the means over time is represented by

SSðAÞ ¼ n
X

t
ðmt �MÞ2; dfðAÞ ¼ T � 1; ð7Þ

where t identifies the different time points (t ¼ 0, . . ., T � 1), and mt is the mean at

time t. The residual variance can be computed as

SSðRÞ ¼
X

i

X
t
ðtit �mtÞ2 � SSðAÞ; dfðRÞ ¼ ðn� 1ÞðT � 1Þ; ð8Þ

where yit are the data points for subject i at time t. The following F statistic is used

to evaluate the statistical significance of the difference between the means of the

different subsets (the ‘‘effect of time’’)4:

F ½dfðAÞ; dfðRÞ� ¼ MSðAÞ=MSðRÞ: ð9Þ
Note that in this test for the effect of time, between-subjects variance (i.e.,

systematic differences among subjects over time) is automatically filtered out.

Fig. 3 Illustration of one-way analysis of variance (ANOVA) for two independent groups of eight

data points each. On the upper line, data points in the first group (upward triangles) and the second

group (downward triangles) show much overlap. The variances of the data in each of the groups, which

are illustrated by the arrows (corresponding to the one-standard-deviation intervals around the group

means), are relatively large compared to the variance between the group means, which is illustrated by

the black bar (corresponding to the one-standard-deviation interval around the mean of the group

means). Assuming normal distributions for the data, one-way ANOVA shows that these two groups are

not significantly different (F[1, 14] ¼ 0.03, p ¼ 0.96). On the lower line, data points in the first group

(upward triangles) and the second group (downward triangles) show less overlap. The variances of the

data in each of these groups are relatively small compared to the variance between the group means.

One-way ANOVA shows that these groups are significantly different (F[1, 14] ¼ 12.01, p ¼ 0.004).

4 The test for the effect of time is essentially a generalization of the paired-samples t test.

11. Mixed-Model Regression Analysis 231



The principles of one-way ANOVA and repeated-measures ANOVA can be

combined in a ‘‘mixed design’’ to compare independent conditions (groups) to each

other over time. The full factorial form of the mixed design provides tests for the

effect of time (applying to all conditions), for the effect of condition (applying to all

time points), and for the interaction of condition with time. The interaction effect

concerns any remaining systematic differences for the means among conditions

and over time, after those applying to all conditions and those applying to all time

points have been taken into account (Rosnow and Rosenthal, 1995). A mixed

design involves partitioning the variance into within-subjects and between-subjects

variance, with within-subjects variance represented by

SSðWÞ ¼
X

j

X
i

X
t
ðyjit �MjiÞ2; ð10Þ

where i identifies different subjects in each condition j ði ¼ P
j�1nj þ 1; . . . ;

P
jnjÞ;yjit

are the data points for these subjects at time points t, andMji is themeanover time for

these subjects. The between-subjects variance can be shown to be the difference

between the overall variance and the within-subjects variance (in terms of sums of

squares), as follows:

SSðBÞ ¼ SSðSÞ � SSðWÞ: ð11Þ
For the purpose of testing the effect of condition, the between-subjects variance

(in terms of sums of squares) is further partitioned into between-conditions vari-

ance (indicated by C ) and error variance (indicated by E ), as follows:

SSðEÞ ¼ T
X

j

X
i
ðMji �MjÞ2; dfðEÞ ¼

X
j
ðnj � 1Þ; ð12Þ

where Mj is the mean of all data for condition j, and

SSðCÞ ¼ SSðBÞ � SSðEÞ; dfðCÞ ¼ N � 1: ð13Þ
The following F statistic is then used to evaluate the effect of condition:

F ½dfðCÞ; dfðEÞ� ¼ MSðCÞ=MSðEÞ ð14Þ
For the purpose of testing the effect of time and the interaction effect, the within-

subjects variance is further partitioned into across-times variance (indicated by A)

as given by Eq. (7), interaction variance (indicated by I ), and residual variance

(indicated by R). The latter variance component is represented by

SSðRÞ ¼
X

j

X
i

X
t
½yjit � ðmjt þMji �MjÞ�2;dfðRÞ ¼

X
j
ðnj � 1ÞðT � 1Þ; ð15Þ

where mjt is the mean for condition j at time t. The interaction is then computed as

SSðIÞ ¼ SSðWÞ � SSðAÞ � SSðRÞ;dfðIÞ ¼ ðN � 1ÞðT � 1Þ: ð16Þ
The following F statistic is used to evaluate the effect of time5:

5 An adjustment must be made to SS(A) in the case of unequal numbers of subjects in the different

conditions. The details of this adjustment for a ‘‘proportional sampling model’’ are omitted here.
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F ½dfðAÞ; dfðRÞ� ¼ MSðAÞ=MSðRÞ: ð17Þ
Furthermore, the following F statistic is used to evaluate the interaction of

condition by time:

F ½dfðIÞ; dfðRÞ� ¼ MSðIÞ=MSðRÞ: ð18Þ
We refer to the literature for information about the derivation of these formulas

and for more in-depth discourses on repeated-measures ANOVA (Girden, 1992).

A. Repeated-Measures ANOVA Applied to the Data

Let us assume that we have the psychomotor vigilance performance data for

Days 0–3 of the sleep deprivation experiment stored in a spreadsheet, organized in

columns of n ¼ n1 þ n2 ¼ 26 rows each: a column listing the different subjects by

unique identifiers (named ‘‘id’’), a column indicating in which condition each

subject was (named ‘‘cond’’), and four columns for the subjects’ data from Day

0 until Day 3 (named ‘‘day0’’ through ‘‘day3,’’ respectively). This conforms to the

way the data are organized in Table I. To perform the calculations for repeated-

measures ANOVA, we use the following general linear model (GLM) command in

the computer software SPSS (2001):

GLM

day0 day1 day2 day3 BY cond

/WSDESIGN = time

/WSFACTOR = time 4

/DESIGN = cond.

The second line of this command identifies the data columns for the dependent

variables, as well as the between-subjects factor column indicating to which con-

ditions these data belong. The next two lines state that the dependent variables

constitute repeated measures of a single underlying variable ‘‘time’’ with four levels

(i.e., four different time points). The last line assigns the between-subjects factor

(i.e., condition), making this a mixed-design repeated-measures ANOVA.

Table II shows the results of this analysis, revealing a significant effect of time

and a significant effect of condition, but no significant interaction effect. We can

interpret these results with the help of Fig. 2.6 According to the analysis, psycho-

motor vigilance was reduced significantly over days of sleep deprivation (as

expected); and the placebo condition performed consistently worse than the

6 The use of figures or tables of the data is crucial for the interpretation of time effects and

interactions, because the results of repeated-measures ANOVA do not reveal the direction of changes

in the means over time or between conditions. Moreover, repeated-measures ANOVA is insensitive to

the order of the time points; if the data points of an upward effect are rearranged (in the same manner

for each subject) to form a downward effect, the ANOVA results remain the same. Repeated-measures

ANOVA also does not take into account the intervals between the time points; for typical applications,

the interval between all adjacent time points would be considered the same.
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caffeine condition. This latter finding included Day 0, before the beginning of pill

administration. Any additional difference between conditions due to the action of

caffeine (during Days 1–3, but not Day 0) should have led to an interaction effect

in this analysis, but no significant interaction was found. There is relatively

little statistical power in interaction effects, (Winer, 1971) however, making it

difficult to conclude with any degree of certainty that caffeine was ineffective in

this experiment.7

If the substantial interindividual variability in psychomotor vigilance perfor-

mance impairment during total sleep deprivation (Fig. 1) is systematic, as has been

previously reported (Van Dongen et al., 2003b), then there is reason to believe that

the repeated-measures ANOVA results are inaccurate. Repeated-measures

ANOVA does not distinguish variance due to systematic interindividual differ-

ences from random error variance (Girden, 1992), lumping these together as a

single source of variance. As a consequence, the result for the effect of condition in

the current analysis is unreliable, as is evident from the expression for SS(E) in

Eq. (12). Depending on the particular design, interindividual variability may lead

to overestimation or underestimation of statistical significance (Feldman, 1988).

In the present mixed design, the effect of condition is underestimated because of

systematic interindividual differences. Therefore, other analyses are warranted to

further investigate this data set.

Table II
Results from Mixed-Design Repeated-Measures ANOVAa

Effect SS df MS F p

Condition (C) 1082.8 1 1082.8 8.03 0.009

Error (E) 3235.1 24 134.8

Time (A) 3745.4 3 1248.5 39.88 <0.001

Interaction (I) 83.4 3 27.8 0.89 0.452

Error (R) 2253.9 72 31.3

aResults are shown from repeated-measures ANOVA of psychomotor vigilance performance data

over 4 days of sleep deprivation in two different conditions. The sums of squares (SS), the degrees of

freedom (df), and the means of squares (MS) for the different variance components are displayed. In

addition, the F statistics and p values for the effect of condition, effect of time, and interaction of

condition by time are given.

7 By expressing the data on Days 1–3 as relative to those on Day 0, the difference between the two

conditions prior to pill administration could be eliminated. Any consistent difference due to caffeine

(i.e., present throughout Days 1–3) should then result in a main effect of condition, which is statistically

more powerful than an interaction effect. On the other hand, by expressing the data as relative to those

on Day 0, the noise in the data for Day 0 would be propagated to the data for Days 1–3. For the present

data, it effectively makes no difference in study outcomes (effect of time: F[2, 48] ¼ 15.64, p < 0.001;

effect of condition: F[1, 24] ¼ 0.35, p ¼ 0.559; interaction effect: F[2, 48] ¼ 1.04, p ¼ 0.362).
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IV. Mixed-Model Regression Analysis

Regression analysis is essentially equivalent to ANOVA; while ANOVA focuses

on the variance in the data to assess differences between the means of subsets of the

data, however, regression analysis focuses on assessing the parameters of a model

(i.e., mathematical function) posited to describe the data set. Depending on the

criteria used to determine the optimal parameter values, regression analysis typically

involves minimization of the error variance8 (which, as we shall see, presents a

methodological connection between regression analysis and ANOVA9. Regression

analysis provides a richer framework thanANOVA, in that a wider variety of models

for the data can be evaluated.10 We focus here on mixed-model (or mixed-effects)

regression analysis,11 which means that the model posited to describe the data

contains both fixed effects and random effects. Fixed effects are those aspects of the

model that (are assumed to) describe systematic features in the data. Fixed effects

are used to determine expected or mean values for the subject population (as such,

they can be compared to the regression coefficients in a standard regression analysis

on pooled data, or to the effects of condition, time, and interaction in repeated-

measures ANOVA). Random effects are those aspects of the model that are allowed

to vary among subjects (i.e., parameters that take different values depending on

which individual subject the data are from). Random effects are variance components

that describe the variability (e.g., biological variability) in the observations around

the expected values as predicted by the fixed effects. In this chapter, random effects

will be indicated by Greek letters, to distinguish them from fixed effects.

To estimate model parameters in a standard regression analysis, the least-

squares method, which involves minimization of the error variance, can be used.

For mixed-model regression analysis, which requires more complicated computa-

tions to be made, an alternative method for parameter estimation is used: maxi-

mum likelihood estimation.8 The basic idea underlying maximum likelihood

estimation is that the data reflect the most probable outcome under the conditions

8 In standard regression analysis, as in ANOVA, minimization of the error variance can be achieved

by means of the least-squares method (i.e., minimization of the squares of the deviations between the

model predictions and the data points). In mixed-model regression analysis, (approximate) minimiza-

tion of the error variance is rather a by-product of the maximum likelihood approach used to estimate

the model parameters.
9 Note that regression analysis is not contingent upon having a complete data set. In traditional

repeated-measures ANOVA, however, a missing data point eliminates the entire subject from the data

set.
10 In contrast with repeated-measures ANOVA, regression analyses usually involve models that are

sensitive to the order of the time points, and take into account the intervals between the time points.
11 There are other regression techniques that could have utility with regard to the present data, such

as analysis of covariance (ANCOVA). However, ANCOVA is a fixed-effects method, and it is more

restricted than mixed-effects regression analysis (Feldman, 1988).
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specified in the model. Thus, given certain assumptions about the statistical distri-

bution(s) of the stochastic process(es) involved in the mechanisms that generated

the data (such as random between-subjects variability or noise), maximum

likelihood estimation involves finding the model parameter values that maximize

the likelihood of observing the data at hand.

To put this in mathematical equations, let us consider a mixed-effects model of

the form
yjit ¼ fjt þ �ji þ ejit; ð19Þ

where fjt is a function of t representing the fixed effects posited to describe the data

at the group level (i.e., for conditions j overall). The term �ji represents the random
effect—more precisely, the �ji are the subject-specific instances of the random

effect, for subjects i in conditions j (which are lumped together here), that are

usually assumed to arise from some family of parametric probability distributions

such as a normal distribution with zero mean and variance o2 over subjects (where

o2 is to be estimated). For the present purpose, the random effect is assumed to

be additive to the fixed effects fjt. The ejit represent independent noise assumed

to have a normal distribution with zero mean and variance s2 over subjects

(where s2 is to be estimated) for all times t. Further, the distributions of � and e
are assumed to be independent (i.e., zero covariance). Let us temporarily assume

there is only one group j, so that Eq. (19) can be simplified to

yit ¼ ft þ �i þ eit: ð20Þ
For each subject i, the likelihood li of observing the subject’s time series data yit

is given by

li ¼ PtcN½ft þ �i; s
2�ðyitÞ; ð21Þ

wherePt denotes multiplication over t (equivalent to St for summation), and c is a

(here irrelevant) normalization factor. N[ft þ �i; s
2] is the density function for a

normal distribution with mean ft þ �i and variance s2; in Eq. (21) this function is

evaluated at the data points yit. Assuming that the �i are taken from a normal

distribution N[0;o2](�i) with zero mean and variance o2 over subjects, we can

define the marginal likelihood Li to integrate �i out:

Li ¼ C

ð1

�i¼�1
li�N½0;o2�ð�iÞd�i; ð22Þ

where C is a normalization factor. The likelihood L of observing the entire data set

is then given by

L ¼ PiLi: ð23Þ
The likelihood L is a function of the parameters that contributed to its deriva-

tion: the (currently unspecified) parameters constituting the fixed effects ft, the

(between-subjects) variance o2 of the random effect, and the (within-subjects)

error variance s2. By maximizing the value of L, maximum likelihood estimates
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of these parameters are obtained.12 In practice, computer software is used to

estimate the parameters, as numerical approximation is needed to find the

parameter values that maximize L.

A. Linear Mixed-Model Regression Analysis Applied to the Data: Mixed-Model ANOVA

To illustrate the use of mixed-model regression analysis in practice, we first

replicate the repeated-measures ANOVA performed previously, using the data

presented in Fig. 2. The only essential difference with the repeated-measures

ANOVA is, of course, that we take systematic interindividual differences into

account. Because of the equivalence with repeated-measures ANOVA, this appli-

cation of mixed-model regression analysis is also known as mixed-model ANOVA.

The procedure involves explicit estimation of the model parameters, however, by

means of the maximum likelihood method outlined previously.

Let us define day indicator variables dtu, which equal 1 if t ¼ u and 0 otherwise,

and condition indicator variables cjk, which equal 1 if j ¼ k and 0 otherwise ( j ¼ 1

corresponds to the caffeine condition). We consider the following linear mixed-

effects model for the data:

yjit ¼ Iji þ dt1Y1 þ dt2Y2 þ dt3Y3 þ cj1ðdt0Z0 þ dt1Z1 þ dt2Z2 þ dt3Z3Þ þ ejit; ð24Þ
where parameter Iji is the intercept (which represents the mean for Day 0 in the

placebo condition), involving a random effect such that

Iji ¼ I0 þ �ji: ð25Þ
The �ji constitute the random effect for subjects i in conditions j (which are

lumped together), assumed to arise from a normal distribution with zero mean and

variance o2 over subjects (where o2 is not known in advance). Parameters Y1, Y2,

and Y3 represent the means for Days 1, 2, and 3 in the placebo condition,

respectively, expressed as differences from the intercept; and parameters Z0

through Z3 represent the means for Days 0 through 3 in the caffeine condition,

respectively, expressed as differences from their counterparts in the placebo condi-

tion. As an example, the data point for subject 5 in the caffeine condition (i.e.,

condition 1) on Day 2 is modeled as

y152 ¼ I0 þ �15 þ Y2 þ Z2 þ e152 ð26Þ
as all other terms in Eq. (24) cancel out.

12 Maximum likelihood (ML) parameter estimates tend to be (slightly) biased (Feldman, 1988). An

improved methodology called restricted maximum likelihood (REML) is available for linear mixed-

model regression analysis (but not for nonlinear mixed-model regression analysis). REML provides

unbiased parameter estimates that are preferable to those resulting from conventional ML in virtually

all cases (except when comparing models with different fixed-effects structures on the basis of the

likelihood ratio c2 statistic; SAS, 2001b). In this chapter, we report REML parameter estimates for all

linear mixed-effect regression analyses, and ML parameter estimates for all nonlinear mixed-model

regression analyses (for which REML is not available). For more on this topic, see Diggle et al. (1996).
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We assume that we have the psychomotor vigilance performance data for Days

0–3 of the sleep deprivation experiment stored in a spreadsheet, organized in

columns of (n1 þ n2) T ¼ 26 � 4 ¼ 104 rows each: a column listing the different

subjects (named ‘‘id’’), a column equivalent to the indicator variable cj1 indicating

in which condition each subject was (named ‘‘cond’’), four columns equivalent to

the indicator variables dtu (named ‘‘day0’’ through ‘‘day3’’) marking the day in the

experiment (such that column ‘‘dayu’’ equals 1 if the data in that row are from

day u and 0 otherwise), and a column for the data of each subject on each day

(named ‘‘y’’). For (nonessential) technical reasons, the spreadsheet must be

ordered by subject (i.e., all the data for a single subject must appear consecutively

in the spreadsheet).13 To perform the calculations for this linear mixed-model

regression analysis, we use the following PROC MIXED command in the

computer software SAS (2001a):

proc mixed;

class id;

model y = day1 day2 day3 day0*cond day1*cond day2*cond day3*
cond / solution;

random intercept / solution subject = id;

run;

The second line of this command specifies a categorical variable by which the

data are classified—as repeated measures were obtained for each subject, we

classify the data by subject (column ‘‘id’’). The third line codes for the fixed effects

in the model of Eq. (24). In the PROC MIXED command it is unnecessary to

explicitly specify the parameters of the model; each term on the second line

automatically has a parameter associated with it (e.g., ‘‘day1*cond’’ refers to Z1,

which is automatically multiplied by the value of column ‘‘day1’’ times the value of

column ‘‘cond,’’ i.e., by cj1 dt1). Furthermore, unless otherwise specified, an inter-

cept is automatically assumed to be included in the model. The ‘‘solution’’ option

requests that the parameter estimates be reported. The fourth line puts a random

effect on the intercept, with the random elements being the different subjects

(column ‘‘id’’) as specified in the ‘‘subject¼’’ option. The ‘‘solution’’ option

requests that the empirical best linear unbiased predictors (EBLUPs) of the

random effect for the individual subjects (i.e., the estimates for the �ji) be reported.
The ‘‘run’’ statement in the last line requests execution of the analysis.

13 Mixed-model regression analyses are robust against random deviations from a balanced design

(i.e., different numbers of observations among subjects) and randomly occurring missing values.

However, the PROC MIXED command in SAS expects missing values to be indicated in the data

spreadsheet by means of periods, so that the location of the missing values relative to the available

observations is clear. This can be circumvented by using the ‘‘repeated’’ statement in the PROCMIXED

command (SAS, 2001b).
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The previous command represents a complete analysis, but in order to get results

equivalent to those obtained with repeated-measures ANOVA, a few statements

must be added to the code:

proc mixed;

class id;

model y = day1 day2 day3 day0*cond day1*cond day2*cond day3*
cond / solution;

random intercept /solution subject = id;

estimate ‘‘effect of condition’’ day0*cond 0.25 day1*cond
0.25

day2*cond 0.25 day3*cond 0.25;

contrast ‘‘effect of time’’ day1 1 day1*cond 0.5 day0*cond
�0.5,

day2 1 day2*cond 0.5 day0*cond �0.5,

day3 1 day3*cond 0.5 day0*cond �0.5;

contrast ‘‘interaction effect’’ day1*cond 1 day0*cond �1,

day2*cond 1 day0*cond �1,

day3*cond 1 day0*cond �1;

run;

The contrast statements, appropriately labeled ‘‘effect of time’’ and ‘‘interaction

effect,’’ are equivalent to those effects in repeated-measures ANOVA. The contrast

for the effect of time again constitutes a test that the means over all subjects

(lumping the two conditions) are equal for all time points (i.e., for Day 0 vs.

Day 1, for Day 0 vs. Day 2, and for Day 0 vs. Day 3). As the number of subjects

in each condition is the same, this translates into the following three-fold null

hypothesis:

H0 :
I0 þ Z0=2 ¼ I0 þ Y1 þ Z1=2
I0 þ Z0=2 ¼ I0 þ Y2 þ Z2=2
I0 þ Z0=2 ¼ I0 þ Y3 þ Z3=2

8
<

: ð27Þ

which can be simplified as follows:

H0 :
Y1 þ Z1=2� Z0=2 ¼ 0

Y2 þ Z2=2� Z0=2 ¼ 0

Y3 þ Z3=2� Z0=2 ¼ 0:

8
<

: ð28Þ

The latter form of the null hypothesis is coded in the contrast statement for the

effect of time shown previously. For details about the formulation of the ‘‘con-

trast’’ statement in the PROC MIXED command, see the online SAS user’s guide

(SAS, 2001a).
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As with its equivalent in repeated-measures ANOVA, the contrast for the

interaction effect is essentially a test that the difference between the condition

means is the same for all time points (i.e., for Day 0 vs. Day 1, for Day 0 vs.

Day 2, and for Day 0 vs. Day 3). This translates into the following null hypothesis:

H0 :
Z0 ¼ Z1

Z0 ¼ Z2

Z0 ¼ Z3

8
<

: ð29Þ

which can be reformulated as follows:

H0 :
Z1 � Z0 ¼ 0

Z2 � Z0 ¼ 0

Z3 � Z0 ¼ 0:

8
<

: ð30Þ

The latter form of the null hypothesis is coded in the contrast statement for the

interaction effect shown previously.

In repeated-measures ANOVA, the effect of condition represents a test of

whether the grand means are the same for the different conditions. In the context

of Eq. (24), this corresponds to a test of the following null hypothesis:

H0 :
½I0 þ ðI0 þ Y1Þ þ ðI0 þ Y2Þ þ ðI0 þ Y3Þ�=4 ¼
½ðI0 þ Z0Þ þ ðI0 þ Y1 þ Z1Þ þ ðI0 þ Y2 þ Z2Þ þ ðI0 þ Y3 þ Z3Þ�=4 ð31Þ

which can be reduced to

H0 : ½Z0 þ Z1 þ Z2 þ Z3�=4 ¼ 0: ð32Þ
This leads directly to a simple test for the effect of condition, namely through

evaluation of the estimated value for [Z0 þ Z1 þ Z2 þ Z3]/4, the actual difference

between the grand means for the two conditions. This test for the effect of

condition is different, and more powerful, than the one available in repeated-

measures ANOVA. Moreover, it is robust against systematic interindividual dif-

ferences, as these are absorbed by the random effect for the intercept. In the PROC

MIXED command shown previously, the test is implemented by means of the

‘‘estimate’’ statement (SAS, 2001b), labeled ‘‘effect of condition’’ here. It yields the

estimated value of the expression at hand and automatically performs a t test

against zero, with the following df14:

dfc ¼ Sjðnj � 1ÞðT � rÞ; ð33Þ
where r is the number of random effects (which equals 1 in the present model).

Table III shows the results of the linear mixed-model regression analysis. The

effect of time and the interaction effect are identical to those found for repeated-

measures ANOVA (cf. Table II). The effect of condition is different, however, as

was to be expected. Provided that the assumption of a normal distribution for the

14 The resulting t statistic, when squared, yields the F statistic for an equivalent F test with 1, dfc
degrees of freedom.
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random effect is correct, in mixed-model regression analysis the effect of condition

is not influenced by systematic interindividual differences. Still, even with this

improved test for the effect of condition, the overall results are the same as for

repeated-measures ANOVA: a significant effect of time and a significant effect of

condition, but no significant interaction effect. Thus, psychomotor vigilance was

reduced significantly over days of sleep deprivation; and the placebo condition

performed consistently worse than the caffeine condition, as was already clear on

Day 0 (before pill administration began).

V. An Alternative Linear Mixed-Effects Model

As mentioned earlier, any effect of caffeine (during Days 1–3) on psychomotor

vigilance should have led to a significant interaction effect. However, as there is

relatively little statistical power in interaction effects (Winer, 1971), the results

from this mixed-model ANOVA (Table III) could not be much more helpful than

the results from the repeated-measures ANOVA (Table II) given that the interac-

tion effect is identical for the two approaches. Yet, the mixed-effects model

in Eq. (24) also yields a priori day-by-day comparisons between the conditions

(i.e., the parameters Z0 through Z3). These same comparisons would require post-

hoc tests in the repeated-measures ANOVA approach,15 which again would yield

results confounded by systematic interindividual variability in the data.

The ‘‘solution’’ option for the ‘‘model’’ statement in the PROC MIXED com-

mand shown previously produces the parameter estimates for the fixed effects in

the model, and automatically performs a t test against zero (with dfc degrees of

freedom) for each. The fixed effects ‘‘day0*cond’’ through ‘‘day3*cond’’ are of

interest as they correspond to the parameters Z0 through Z3. The results are shown

in Table IV, revealing a significant difference between the caffeine and placebo

conditions on Day 1 only. This finding would suggest that the effect of sustained

Table III
Results from Mixed-Model Anovaa

Effect Test Statistic Df p

Condition T 2.83 1 0.006

Time F 39.88 3, 72 <0.001

Interaction F 0.89 3, 72 0.452

aResults are shown from mixed-model regression analysis, mimicking repeated-measures ANOVA,

on psychomotor vigilance performance data over 4 days of sleep deprivation in two different conditions.

The type of test (F or t test), the value of the test statistic, the degrees of freedom, and the p value are

given for the effect of condition, effect of time, and interaction of condition by time. These effects are

defined equivalently to those for repeated-measures ANOVA (cf. Table II).

15 In SPSS, these specific tests can be obtained with the ‘‘parameter estimates’’ option for the

repeated-measures ANOVA procedure.
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low-dose caffeine was limited to the first day of administration. However, we are

still faced with the systematic (albeit nonsignificant) difference between conditions

on Day 0 (i.e., prior to pill administration; see Fig. 2). This makes it difficult to tell

to what extent the difference between conditions on Day 1 might be nonspecific

to caffeine.

The substantial flexibility we have in formulating a model for mixed-model

regression analysis is helpful to address this problem. As assignment to condition

in this double-blind study was random, the difference between conditions before

pill administration should be random and unrelated to condition. We may there-

fore consider a slightly modified (and more parsimonious) mixed-effects model for

the data:

yjit ¼ Iji þ dt1Y1 þ dt2Y2 þ dt3Y3 þ cj1ðdt1Z1 þ dt2Z2 þ dt3Z3Þ þ ejit ð34Þ
which is identical to the model in Eq. (24) except that the Z0 term for the difference

between conditions on Day 0 is left out. The estimated means for the two condi-

tions on Day 0 in this model are a function of the EBLUPs for the random effect on

the intercept in Eq. (25), as follows:

mj0 ¼ I0 þ Si�ji=nj: ð35Þ
As the mean of all the EBLUPs should be (almost) identical to zero (recall that

the �ji are assumed to arise from a normal distribution with zero mean), it follows

that (m10 þ m20)/2 ¼ I0.

To perform the calculations of the mixed-model regression analysis for Eq. (34),

we use the following PROC MIXED command in the computer software SAS:

proc mixed;

class id;

Table IV
Fixed Effects in Mixed-Model ANOVAa

Mixed-model ANOVA Repeated-measures ANOVA

Day t[72] p t[24] p

0 1.87 0.066 2.79 0.010

1 3.20 0.002 2.95 0.007

2 1.96 0.053 2.03 0.054

3 1.67 0.100 1.39 0.177

aThe table shows statistical tests of the differences in psychomoter vigilance performance between

conditions for each of the 4 days of total sleep deprivation. The t statistics (with 72 degrees of freedom)

and p values for these differences as resulting from mixed-model ANOVA are given. For comparison,

the t statistics (with 24 degrees of freedom) and p values for the equivalent (post-hoc) tests in repeated-

measures ANOVA are also shown.15 These latter results are confounded by the systematic interindivid-

ual variability in the data.
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modely = day1 day2 day3 day1*cond day2*cond day3*cond /
solution;

random intercept /solution subject = id;

run;

The EBLUPs are generated by the ‘‘solution’’ option to the ‘‘random’’ state-

ment. They are shown in Table V; substantial interindividual differences are

apparent. Using Eq. (35) and the parameter estimates for Eq. (34), we derive the

estimated means for each day in each of the two conditions to get a sense of how

well the model fits the data. The results are shown in Fig. 4. As expected, this model

Table V
EBLUPs Resulting from Mixed-Model ANOVAa

Id cond EBLUP

1 1 1.7

2 1 0.0

3 1 �0.8

4 1 �0.4

5 1 �0.4

6 1 0.4

7 1 �2.3

8 1 �1.1

9 1 �1.0

10 1 �2.5

11 1 �4.1

12 1 �3.0

13 1 �3.4

14 2 1.5

15 2 5.4

16 2 �2.6

17 2 10.4

18 2 7.4

19 2 �11.3

20 2 �7.6

21 2 �3.0

22 2 1.5

23 2 5.4

24 2 2.5

25 2 0.2

26 2 6.9

aEmpirical best linear unbiased predictors (EBLUPs) for the �ji in the

mixed-effects regression model of Eq. (34), representing subject-specific

deviations in the intercept relative to the overall intercept I0. The EBLUPs

are given in number of psychomotor vigilance performance lapses per 10-min

test bout, for each of the subjects (column ‘‘id’’) in the caffeine condition

(column ‘‘cond’’ value 1) and the placebo condition (column ‘‘cond’’ value 2).
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fits the means as accurately as the model of Eq. (24) or the repeated-measures

ANOVA approach (both of which provided a perfect fit to the means; cf. Fig. 2),

except on Day 0. This suggests that the distribution of the random elements (i.e.,

the subjects’ performance on Day 0) is not precisely normal.16

We make use again of the a priori day-by-day comparisons between the condi-

tions (i.e., fixed-effect parameters Z1 through Z3) in the model of Eq. (34) to

confirm the earlier tentative finding that the effect of sustained low-dose caffeine

was limited to the first day of pill administration. The estimated values for Z1

through Z3 and the t tests for whether they differ significantly from zero are shown

in Table VI. These results confirm the significant difference between the caffeine

and placebo conditions on Day 1 only, independently of the systematic interindi-

vidual differences in the data (i.e., independently of the random effect). Thus, we

have gained more definitive evidence that the effect of sustained low-dose caffeine

was limited to the first day of intake, despite the fact that plasma caffeine

concentrations were high throughout the 66 h of pill administration (Fig. 1).
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Fig. 4 Estimates for the daily means of lapses on the psychomotor vigilance task (PVT) for the caffeine

condition (lower curve) and the placebo condition (upper curve), derived from the model in Eq. (34). The

boxes represent condition means (with standard errors of the mean) for the actual data (see Fig. 2).

16 The estimate for I0 is 4.9 � 1.5 (mean � standard error). Inspection of Table V reveals that the

estimated subject-specific performance I0 þ hji on Day 0 is negative (i.e., less than zero lapses per 10-min

test bout) for some subjects (i¼ 19, 20). This anomaly again suggests that the distribution of the random

elements is not precisely normal. Specification of other types of distributions for the random effect(s),

such as the lognormal distribution that always yields positive values, is possible in SAS (2001b).

However, the results of mixed-effects modeling are not critically dependent on the assumptions about

the distribution of the random effect(s), especially if many repeated measures are available. See Olofsen

et al. (2010).
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VI. Nonlinear Mixed-Model Regression Analysis

We now shift our attention from linear mixed-model regression analysis to

nonlinear mixed-model regression analysis. Although linear and non-linear mixed-

effects models are formulated quite differently in most published literature and

computer software (e.g., see the online SAS user’s guide; SAS, 2001b, they are

actually intimately related, linear mixed-effects modeling being a special case of

nonlinear mixed-effects modeling (for this reason, we have standardized the notation

throughout this chapter). Nonlinear mixed-model regression is frequently needed to

analyze hypothesis-driven models (i.e., models that go beyond describing the data in

terms of unspecified changes over time and/or differences among conditions as in

ANOVA), as such models tend to include nonlinear combinations of fixed and/or

random effects.17 The extensive numerical calculations required for nonlinear

mixed-model regression analysis have become feasible in the last 5 years because

of the increasing computational power of standard computer hardware.We can take

advantage of this development for the further analysis of our study data.

Considering the evidence we gathered thus far that the attenuation of perfor-

mance impairment by caffeine dissipated over days of sleep deprivation, we won-

der about the precise duration of the efficacy of sustained low-dose caffeine in this

experiment. We therefore consider the following mixed-effects model for the study

data as a function of days t18:

Table VI
Day-by-Day Comparisons in Linear Mixed-Model Regression
Analysisa

Day Z t[72] P

1 6.9 2.58 0.012

2 3.2 1.21 0.231

3 2.4 0.88 0.382

aDifferences in psychomotor vigilance performance between conditions

are shown for each of the 3 days of total sleep deprivation following the

beginning of pill administration (i.e., Days 1–3), as assessed with the adjust-

ed mixed-effects regression model of Eq. (34). The differences in the number

of lapses Z and the corresponding t statistics (with 72 degrees of freedom)

and p values are given.

17 Hybrid models, containing mixed-model ANOVA elements as well as hypothesis-driven compo-

nents, can be readily constructed from the formulas in this chapter, and typically require nonlinear

mixed-model regression analysis as well.
18 It is generally advisable to centralize the independent (and dependent) variables of a regression

analysis (i.e., adding constants to each so that the ranges of values they take center on zero). This

practice tends to reduce the covariance among model parameters (especially in linear regression models)

and promotes the reliability of model convergence. In Eq. (36), however, centralization is problematic

for the independent variable t, since the term b0 t
s would be undefined for t < 0.
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yjiðtÞ ¼ Iji þ b0t
s � ½ð1� dt0Þcj1zðtÞ� þ ejiðtÞ; ð36Þ

where model parameters I and e and indicator variables c and d are defined as in the

previous sections. The function b0t
s has previously been shown to describe the data

in the placebo condition (Van Dongen et al., 2003a); it involves a curvature

parameter 0 < s < 1 and a scale factor b0. The term between square brackets

represents the hypothesized temporal change in caffeine’s efficacy—for the caffeine

condition only and on Days 1–3 only (i.e., during caffeine pill administration). We

hypothesize that beginning with the first pill (i.e., on Day 1), the efficacy z(t) of

hourly administration of caffeine diminishes exponentially over days t:

zðtÞ ¼ ae�ðt�1Þ=T0 ; ð37Þ
where a is a scale factor andT0 is a time constant for the decline of caffeine’s efficacy.

The model of Eq. (36), though linear in the random effect included in the intercept Iji
of Eq. (25), cannot be cast in the form of a linear mixed-model regression model, and

must be subjected to nonlinear mixed-model regression analysis.

Let us assume that we have the psychomotor vigilance performance data for Days

0–3of the sleepdeprivation experiment stored in a spreadsheet similar to that described

in the previous sections, with a column listing the different subjects (named ‘‘id’’), a

column indicating the days (named ‘‘t’’), a column equivalent to the indicator factor

[(1 � dt0) cj1] (named ‘‘caff’’), and a column for the data of each subject on each day

(named ‘‘y’’).19 For technical reasons, the spreadsheet must again be ordered by

subject.Toperform the calculations for thenonlinearmixed-model regressionanalysis,

we use the following PROCNLMIXED command in the computer software SAS:

proc nlmixed;

parms

i0 = 5.0,

s2i = 25.0,

b0 = 10.0,

a = 20.0,

s= 0.5,

t0 = 1.0,

s2e = 35.0;

z= a*caff*exp (�(t � 1)/t0);

if t = 0 then v = 0;

else v = t**s;

19 For model convergence and reliability of analysis outcomes in PROC NLMIXED, it is desirable

that the dependent variable y and the independent variabes of the model (in this case only t) have

comparable ranges (i.e., same order of magnitude). Linear transformations should be used as necessary

to accomplish this.
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model y � normal (i0 + vari + b0*v � z, s2e);

random vari � normal (0,s2i) subject=id out=ebes;

run;

The ‘‘parms’’ part of this command introduces the seven parameters of the model,

and their initial values20 (which the computer software requires to begin the calcula-

tions). The parameters are ‘‘i0’’ for the intercept I0, ‘‘s2i’’ for the variance o
2 of the

random effect � for the intercept as in Eq. (25), ‘‘b0’’ and ‘‘a’’ for scale factors b0 and

a in Eqs. (36) and (37), respectively, ‘‘s’’ for the curvature parameter s, ‘‘t0’’ for the

time-constant T0, and ‘‘s2e’’ for the variance s2 of the error term e. These are all the
parameters explicitly and implicitly contained in the model of Eq. (36). The ‘‘z¼ . . .’’
line in the command computes the function z(t) of Eq. (37). The ‘‘if t¼0 . . .’’ part of
the command is necessary because SAS does not adopt the convention that ts¼ 0 for

t ¼ 0. Thus, we introduce a substitute variable ‘‘v’’ defined by v ¼ ts for t > 0 and

v ¼ 0 for t ¼ 0; v replaces ts in Eq. (36) without changing the model.

The ‘‘model’’ statement defines the representation for the data y as normally

distributed random fluctuations with variance s2 (i.e., ‘‘s2e’’) around the model of

Eq. (36). That model is described by the following code in the ‘‘model’’ statement:

i0 þ variþ b0 � v� z

which follows directly from Eqs. (36) and (37), except for the term ‘‘vari’’ that

represents the random effect for the intercept. This random effect is defined in the

‘‘random’’ statement as a normal distribution with mean zero and varianceo2 (i.e.,

‘‘s2i’’); the declaration ‘‘subject¼id’’ specifies that the random effect pertains to

variability among subjects. Finally, the ‘‘out¼’’ option stores the empirical Bayes

estimates (EBEs) for the random effect �ji (the equivalent of the EBLUPs in linear

mixed-model regression analysis) in a spreadsheet called ‘‘ebes.’’

Table VII shows the parameter estimates resulting from the nonlinear mixed-

model regression analysis. Of primary interest is the estimate for T0 (i.e., 1.2336

before rounding), from which we can derive the half-life T0.5 of the efficacy of

sustained low-dose caffeine using the following expression:

e�T0:5=T0 ¼ 0:5: ð38Þ
It follows that T0.5¼ 0.86 days. Thus, it appears that sustained low-dose caffeine

lost half of its efficacy in less than a day, which is consistent with what we derived

using linear mixed-model regression analysis (see previously). This finding could

reflect a rapid build-up of tolerance to caffeine. Alternatively, the build-up of

sleepiness during the extended sleep deprivation could have simply overwhelmed

the stimulating effect of caffeine after about a day.

20 Depending on the complexity of the model, the choice for the initial values can be critical for

model convergence and for the success of the analysis. Proper initial values can often be derived from a

two-stage analysis of the same data (Burton et al., 1998; Feldman, 1988).
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The relatively large standard error in Table VII for the T0 estimate would seem

to indicate that the effect of sustained low-dose caffeine in this experiment may not

be very robust. In fact, the estimate for T0 is not significantly different from zero

(t[25] ¼ 1.08, p ¼ 0.29). This warrants investigation of whether removal from the

model of this parameter, and thereby the entire function z(t), would constitute a

significant deterioration inhowwell themodel describes the data.This can be assessed

with the likelihood ratio test, which involves calculation of �2 times the natural

logarithm of the likelihood (i.e., the value of �2 log L) for the full model (with all

parameters included) and for the reduced model (with the parameters that might be

unnecessary being removed). By subtracting the �2 log L value for the full model

from the corresponding value for the reducedmodel, the likelihood ratio is computed.

This statistic approximately has a w2 distribution, and the difference in the number of

free parameters between the full and reduced models determines the df for that

w2 distribution (see the online SAS user’s guide; SAS, 2001b). Using the likelihood

ratio test, wefind that inclusionof parameterT0 (and thereby alsoparametera) results

in a significant improvement over the model without T0 (w
2[2]¼ 7.50, p ¼ 0.024).

It is useful also to graphically check how well the nonlinear mixed-effects model

of Eq. (36) fits the data. Using Eq. (35), we first estimate the means for the two

conditions on Day 0 in this model, which are a function of the EBEs for the

random effect on the intercept in Eq. (36). The EBEs are shown in Table VIII;

they are similar to those found for the linear mixed-effects regression model of

Eq. (34) (cf. Table V). Fig. 5 shows the nonlinear mixed-effects model overlaid on

the group mean data. It appears that the model in Eq. (36) fits the means well,

except on Day 0. As in the model of Eq. (34), this suggests that the distribution of

the random effect for the intercept among subjects is not precisely normal. How-

ever, Fig. 5 is reassuring with regard to the approximate validity of the hypothe-

sized dissipation profile in Eq. (37), at least as it pertains to the group means.

Table VII
Parameter Estimates for Nonlinear Mixed-Effects Regression Modela

Parm Name Est SE

I0 i0 4.8 1.5

o2 s2i 27.0 10.1

b0 b0 10.1 1.9

a a 7.0 2.6

s s 0.44 0.15

T0 t0 1.2 1.1

s2 s2e 29.5 4.8

aResults are shown from nonlinear mixed-model regression analysis of psy-

chomotor vigilance performance data over 4 days of sleep deprivation, using the

hypothesis-driven model in Eq. (36) to assess the duration of the efficacy of

sustained low-dose caffeine (relative to placebo). As computed using the PROC

NLMIXED command in SAS, the table shows the parameters (Parm), their names

in the command (Name), their estimates (Est), and their standard errors (SE).
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An explanation for the relatively large standard error for the time constant T0

might be that an additional random effect is needed in the model. Previous

analyses have revealed large variability in the scale factor b0 for the placebo

condition (Van Dongen et al., 2003a). Therefore, we add a random effect to the

model in Eq. (36) as follows:

yjiðtÞ ¼ Iji þ bjit
s � ½ð1� dt0Þcj1zðtÞ� þ ejiðtÞ ð39Þ

where

bji ¼ b0 þ bji: ð40Þ

Table VIII
EBEs Resulting from Nonlinear Mixed-Model Regression
Analysisa

Id Cond EBE

1 1 1.6

2 1 �0.1

3 1 �0.9

4 1 �0.5

5 1 �0.5

6 1 0.3

7 1 �2.5

8 1 �1.2

9 1 �1.1

10 1 �2.6

11 1 �4.2

12 1 �3.1

13 1 �3.5

14 2 1.6

15 2 5.6

16 2 �2.5

17 2 10.6

18 2 7.5

19 2 �11.3

20 2 �7.5

21 2 �2.9

22 2 1.6

23 2 5.6

24 2 2.6

25 2 0.3

26 2 7.1

aEmpirical Bayes estimates (EBEs) for the �ji in the nonlinear mixed-

effects regression model of Eq. (36), representing subject-specific deviations

in the intercept relative to the overall intercept I0. The EBEs are given in

number of psychomotor vigilance performance lapses per 10-min test bout,

for each of the subjects (column ‘‘id’’) in the caffeine condition (column

‘‘cond’’ value 1) and placebo condition (column ‘‘cond’’ value 2).
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The bji are assumed to arise from a normal distribution with zero mean and

variance l2 over subjects (with l2 not known in advance). The model now has two

random effects (one for the intercept I and one for the scale factor b); we assume

that the covariance between these two random effects is zero.21

Even though the PROC NLMIXED command in SAS (2001a) can deal with

two (but not more than two) random effects, it is now more convenient to use the

specialized computer software NONMEM (1998) to perform the calculations for

the nonlinear mixed-model regression analysis.22 Using the same data in the same

spreadsheet (named ‘‘CAFF.DAT’’) as for PROC NLMIXED in SAS, ordered by

subject, we apply the following NONMEM macro:

$PROBLEM CAFFEINE

$DATA CAFF.DAT

$INPUT ID T CAFF DV

$PRED

I=THETA (1) +ETA (1)

B=THETA (2) +ETA (2)
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Fig. 5 Hypothesis-driven model for the performance-impairing effect of total sleep deprivation and

the transient mitigating effect of caffeine, as measured by the daily means of lapses on the psychomotor

vigilance task (PVT). The model for the placebo condition is shown by the upper curve, and the model

for the caffeine condition is shown by the lower curve. The dotted part of the lower curve connects the

period prior to caffeine administration with the period during which caffeine was administered; the

boundary between these two periods involves a discontinuity in the model. The boxes represent

condition means (with standard errors of the mean) for the actual data (Fig. 2).

21 For small subject populations, the covariance between random effects is usually not well estima-

ble; inappropriately setting it to zero is probably no more problematic than estimating it poorly.
22 We have found that in NONMEM (1998) the numerical computations for models with two

random effects are more likely to converge, over a wider range of initial values for the parameters.
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A=THETA (3)

S=THETA (4)

TNULL=THETA (5)

Z=A*CAFF*EXP (�(T�1)/TNULL)

IF (T.EQ.0) THEN

V=0

ELSE

V=T**S

ENDIF

MODEL=I+B*V-Z

Y=MODEL+ERR (1)

$THETA (0.001, 5,100) (0.001, 10, 100) (0.001, 4,100) (0.001,
1,100) (0.001, 1,100)

$OMEGA 10 10

$SIGMA 35

$ESTIMATION METH=1

$COVR

The ‘‘$PROBLEM’’ statement introduces the nonlinear mixed-model regression

analysis to NONMEM, and gives it a name (arbitrarily set to ‘‘CAFFEINE’’). The

‘‘$DATA’’ statement tells NONMEM where to find the data. In the ‘‘$INPUT’’

statement, the four columns in the data spreadsheet are assigned to the variables

ID, T, CAFF, and DV, where the latter stands for ‘‘dependent variable’’ and

corresponds to y.

The ‘‘$PRED’’ statement contains the actual regressionmodel. The five fixed effects

in themodel are automatically handled as a vector THETAwith five elements; the two

random effects are represented by a vector ETA with two elements (whose parameter

estimateso2 and l2 are in the corresponding vectorOMEGA); and the error term e is a
vector ERR with one element (whose parameter estimate s2 is in the corresponding

vector SIGMA). Themodel of Eq. (39) is constructed using these building blocks, with

I representing Iji, B representing bji, A corresponding to a, S corresponding to s, and

TNULL standing for T0. The substitute variable V is defined as in the PROC

NLMIXED command shown previously. The last line of the ‘‘$PRED’’ statement

(which must begin with ‘‘Y¼’’) contains the complete model of Eq. (39).

The ‘‘$THETA’’ statement gives the initial values as well as the boundaries for

the fixed effects parameters in the THETA vector, in the format ‘‘(lower boundary,

initial value, upper boundary)’’; the ‘‘$OMEGA’’ and ‘‘$SIGMA’’ statements give

the initial values for o2 and l2, and for s2, respectively. The ‘‘$ESTIMATION’’

statement specifies details about the numerical procedures to be used, which are

beyond the scope of this chapter. The ‘‘$COVR’’ statement, finally, requests

computation of the co-variance matrix, which is needed for estimation of the

standard errors of the parameter estimates.
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Table IX shows the parameter estimates resulting from this nonlinear mixed-

model regression analysis. The estimate for the time constant T0 in the model of

Eq. (39) is essentially the same as in the model of Eq. (36) (cf. Table VII). However,

the estimated standard error of T0 is increased rather than decreased,23 suggesting

no improvement in this aspect of the model due to the addition of the random

effect for b. Indeed, the improvement in the model is nonsignificant overall, as

assessed by comparing the model of Eq. (39) (full model) with that of Eq. (36)

(reduced model, without parameter l2) by means of the likelihood ratio test

(w2[1] ¼ 2.39, p ¼ 0.12). It follows that among the models we investigated for the

data at hand, the preferred model is given by Eq. (36). Further, our best estimate

for the half-life of the efficacy of sustained low-dose caffeine in this experiment

remains 0.86 days.

Table IX
Parameter Estimates for Nonlinear Mixed-Effects Regression
Model with Two Random Effectsa

Parm Name Est SE

I0 THETA(1) 4.9 1.1

o2 OMEGA(1) 20.3 5.6

b0 THETA(2) 9.6 3.0

l2 OMEGA(2) 6.3 5.0

A THETA(3) 6.5 3.6

s THETA(4) 0.50 0.24

T0 THETA(5) 1.3 2.6

s2 SIGMA(1) 26.3 5.6

aResults are shown from nonlinear mixed-model regression analysis of

psychomotor vigilance performance data over 4 days of sleep deprivation,

using the hypothesis-driven model in Eq. (39) with two random effects to

assess the duration of the efficacy of sustained low-dose caffeine (relative to

placebo). As computed using NONMEM, the table shows the parameters

(Parm), their names in the NONMEMmacro (Name), their estimates (Est),

and their standard errors (SE).

23 A threat to the accuracy of standard error estimates is model misspecification (i.e., when the error

variance is not distributed normally as specified). In the PROC NLMIXED command in SAS (2001a),

we have observed cases in which the estimated standard errors were 50% smaller than the true standard

errors (as assessed with bootstrap simulations). A correction is available for the covariance matrix from

which the standard errors are derived, making themmore robust against symmetric nonnormality in the

error term. It is commonly referred to as quasi-maximum likelihood (QML) estimation of the covari-

ance matrix. The QML estimate of the covariance matrix is the default output of the ‘‘$COVR’’

statement in NONMEM (1998), but it is not available in PROC NLMIXED in SAS (2001a). This

may partly explain the increase in the estimated standard error of T0. See Bollerslev and Wooldridge

(1992).
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VII. Correlation Structures in Mixed-Model Regression Analysis

The statistical power and the efficiency of repeated-measures designs like the

present study arise from the correlation of data points within individuals, and the

associated distinction of within-subjects variance from between-subjects variance

(Burton et al., 1998). In most cases, the correlation between the data points within

individuals is not a priori known. In practice, therefore, a correlation structure is

picked during data analysis, in the hopes that it resembles the true correlation

structure. There is a rich selection of possible correlation structures (or ‘‘covari-

ance structures’’) that take into account interindividual variability (i.e., random

effects) as well as systematic correlations in the residual variance over time (Littell

et al., 2000). For linear mixed-model regression analysis, methodology for a variety

of correlation structures is readily available and implemented in computer soft-

ware (e.g., in the PROC MIXED command in SAS (2001b). For nonlinear mixed-

model regression analysis, the implementation of covariance structures is less

straightforward. The default situation in nonlinear mixed-model regression is

known as the compound symmetry correlation structure (Burton et al., 1998),

which results from implementing a ‘‘variance components’’ model. A variance

components model assumes that the random effects are independent variance

components (i.e., having zero covariance).

The variance components model is used for all mixed-model regression analyses

in this chapter, including the model of Eq. (36). This model has a random effect on

the intercept via the term � of Eq. (25), which has variance o2. Although it was not

explicitly mentioned in the previous sections, the model actually has a second

random effect in the form of the error term e, which has variance s2. These two

random effects represent the between-subjects variance and the within-subjects

variance, respectively, in this regression model. In a variance components model

with a normally distributed random effect on the intercept and normally

distributed error variance, the correlation structure is fully determined by the

intraclass correlation coefficient (ICC),24 which is estimated as

ICC ¼ o2=ðo2 þ s2Þ: ð41Þ
In such variance components models, the correlation between each pair of data

points of a given subject is assumed to be equal to the ICC. For the nonlinear

mixed-effects regression model of Eq. (36), this correlation can be estimated using

the results in Table VII:

24 If the random effect is not on the intercept but on another component of the model, computation

of the ICC is ambiguous. For instance, suppose that the model in Eq. (39) would not have a random

effect on the intercept, leaving only the random effects represented by b and the error term e. The value
and the unit of the variance l2 for b would depend on the magnitude (and unit) of the factor ts in that

model (e.g., whether t is expressed in days or in hours). This would cause obvious problems for the

computation of the ICC, which do not arise if the random effects are on the intercept and the (additive)

error term only (and the distribution of both random effects is assumed to be normal).
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ICC ¼ 28:6=ð28:6þ 29:2Þ ¼ 0:49 ð42Þ
which means that the correlation between each pair of data points within each

subject is (implicitly) assumed to be 49%.25

It is noteworthy that the value of the ICC has an additional, complementary

interpretation (Van Dongen et al., 2010). By definition of Eq. (41), the ICC

expresses the between-subjects variance as a fraction of the total variance not

explained by the fixed effects in the model.26(Snijders and Bosker, 1994) In

Eq. (36), therefore, the ICC quantifies the importance of systematic interindividual

differences in the intercept with respect to overall variability in the data around the

regression model. Using this interpretation of the ICC, studies repeating sleep

deprivation in the same individuals have revealed systematic interindividual differ-

ences in performance deficits resulting from sleep deprivation, with ICC values

greater than 0.5 (Van Dongen et al., 2010). This underlines the importance of

taking such interindividual differences into account (e.g., with random effects)

when modeling data from sleep deprivation experiments.

VIII. Conclusion

In this chapter, we considered the analysis of longitudinal data in the presence of

interindividual differences. We first described repeated-measures ANOVA, a tra-

ditional technique for the analysis of longitudinal data tailored to the comparison

of the means of subsets of the data. We showed that this technique is not robust to

systematic inter-individual differences. We then discussed linear mixed-model

regression analysis. We employed this technique to mimic repeated-measures

ANOVA while adding robustness against systematic interindividual variability

(i.e., mixed-model ANOVA). This application of mixed-effects modeling is espe-

cially useful if no a priori expectations exist about the shape of the data’s temporal

profile. For hypothesis-driven analysis of time series data, however, mixed-effects

models frequently involve nonlinearity in the parameters. Therefore, we also

considered nonlinear mixed-model regression analysis. Our aim was to convey a

basic understanding of the mathematical and statistical issues involved in mixed-

model regression analysis. For this purpose, we included specific examples for how

to implement mixed-effects regression models in computer software (i.e., SAS,

2001a and NONMEM, 1998). In the process, we assessed the duration of the

efficacy of sustained low-dose caffeine during an experiment involving 88 h of

continuous wakefulness. The data from this study are publicly available

25 Investigating whether or not this correlation structure is realistic given the data at hand is beyond

the scope of this chapter. The data can be analyzed repeatedly with different correlation structures and

the results compared by means of a statistical information criterion to select a correlation structure that

best fits the data. This is often done, for instance, when an autoregressive structure is suspected but the

order of autoregression is yet to be determined.
26 For more about explained variance in mixed-model regression analysis, see Snijders and Bosker

(1994).
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(see Table I); thus, the findings reported here can be replicated as an exercise for

familiarizing oneself with mixed-effects modeling.

As the generic mechanisms of many physiological and pharmacological phe-

nomena are better understood, there will be a growing—and much needed—

interest in interindividual differences to explain the diversity in the parameters of

these mechanisms within populations. As a consequence, there will be an increas-

ing demand for data analysis techniques capable of dealing with interindividual

differences. With the major enhancements of computer power seen in recent years,

mixed-model regression analysis has become feasible on common personal com-

puter platforms. We expect, therefore, that mixed-model regression will become

a standard by which longitudinal data are analyzed in the twenty-first century.

We hope that the present chapter will facilitate this trend.
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I. Introduction

In this chapter, we show how one can use experimental data such as that

contained in titration curves and the temperature variation of the heat capacity to

obtain distribution functions for proteins and nucleic acids. For example, we show

how one can use a titration curve, which gives the average number of ligands bound

as a function of ligand concentration, to calculate how many molecules have one

ligand bound, two ligands bound, and so on, giving the distribution function for

ligand binding. This distribution function gives a detailed picture of the probability

of all possible different states of ligand binding. The process of going from the

original titration curve, which gives only the average state of ligand binding, to the

complete distribution function greatly increases one’s knowledge of the different

states of binding present in the system. In a similarmanner,we showhowknowledge

of the temperature dependence of the heat capacity of a protein or nucleic acid can

be used to obtain a distribution function for the enthalpy content of the molecule.
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The enthalpy distribution function tells what fraction of the molecules have a given

enthalpy value, and the temperature variation of this distribution gives a detailed

picture of the process of denaturation in terms of the probabilities of different

enthalpy states of the molecule.

An important aspect of the approach outlined here is that the distribution

functions we obtain, ligand binding distributions or enthalpy distributions, are

determined solely by experimental data. While models play an important role in

understanding biological macromolecules, it is also important to have results that

are independent of any assumed model and the distribution functions we obtain

are examples of such knowledge.

The starting point for our calculation of distribution functions from experimen-

tal data is the realization that information on the average number of ligands bound

as a function of ligand concentration or heat capacity as a function of temperature

can be used to calculate a set of moments for the appropriate distribution function.

The equations that relate titration and heat capacity data to moments of a

distribution function are obtained using basic relations from statistical mechanics.

In particular, the relations we use require only the basic partition functions of

statistical mechanics and are not on the basis of any specific model. In this manner,

we convert one set of experimental data (titration curves or heat capacity) into

another set (moments of a distribution function).

Given a finite set of moments (say, two to six), the problem then is to calculate

the corresponding distribution function. To accomplish the construction of an

approximate distribution function from a finite set of moments, we use an algo-

rithm based on the maximum-entropy method due to Mead and Papanicolaou

(1984). In this process, one trades experimental knowledge of moments of the

distribution function for knowledge of the parameters describing the functional

form of the distribution function. An example of the construction of a distribution

function from moments is given by the familiar bell-shaped Gaussian distribution

function. The parameters required to construct this function are the mean value of

the distribution and the standard deviation. The mean value is simply the first

moment of the distribution while the square of the standard deviation is the second

moment minus the first moment squared. Similarly, application of the maximum-

entropy method gives an approximate distribution function using moments as

input, but in this approach we are not restricted to the use of just the first two

moments; the more the moments used, the better the approximation obtained.

The applications we present in this chapter are on the basis of methodology

contained in two publications. The first publication shows how enthalpy distribu-

tion functions can be constructed from knowledge of the temperature dependence

of the heat capacity (Poland, 2000a) while the second shows how ligand-binding

distributions can be constructed using the data contained in titration curves

(Poland, 2000b). An outline of the general approach that we use is as follows.

One starts with experimental data on the system of interest (a titration curve or

heat capacity data) and makes use of basic relations from statistical mechanics to

obtain moments for the distribution function as outlined below:
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Experimental data

ðtitration curve;
heat capacityÞ

�!
Statistical

mechanics
Moments of

distribution function:
ð1Þ

One then uses the maximum-entropy method to convert the set of moments into

parameters of the respective distribution function:

Moments of

distribution

function

�!
Maximum entropy

method
Parameters of

distribution function:
ð2Þ

The first step, obtaining moments of the distribution function from experimental

data, is the more difficult of the two and we devote most of this chapter to

describing this process. In Section II, we show how the moments of ligand-binding

distribution functions can be obtained from titration curves. Then, in Section III,

we outline the maximum-entropy method for determining approximate distribu-

tion functions from experimental knowledge of moments. We return to ligand

binding in Section IV where, using the binding of protons to the protein lysozyme

as an example, we take the moments obtained in Section II and construct distribu-

tion functions from them, utilizing the maximum-entropy method outlined in

Section III. In Section V, we use this approach to obtain enthalpy distributions

for proteins from the temperature dependence of the heat capacity of these mole-

cules. We illustrate how the enthalpy distributions obtained in this manner give a

rich picture of the thermal denaturation of proteins. Finally, in Section VI, we use

this general method to obtain distribution functions for self-association, using the

clustering of ATP as an example.

II. Ligand Binding: Moments

In this section, we show how one can obtainmoments of the distribution function

for ligand binding from the binding isotherm (or titration curve) that gives the

experimental measurement of the average number of ligands bound as a function of

the ligand concentration. Our presentation here follows that given in two previous

publications (Poland, 2000a, 2001e). We begin by considering the reaction for

adding a ligand to a macromolecule. We let P represent any molecule, in particular

a biopolymer such as a protein or nucleic acid. We let L represent a general ligand

such asMg2þ, Hþ, or any small molecule.We beginwith the reaction for adding one

additional ligand to a molecule with (n � 1) ligands already bound:

PLn�1 þ L $ PLn: ð3Þ
Taking Kn [with units (mol/l)�1] as the equilibrium constant for the reaction in

Eq. (3), the standard equilibrium constant expression for this reaction is (using

square brackets to indicate concentrations)
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Kn ¼ ½PLn�
½PLn�1�½L�: ð4Þ

The development is easier if we relate all states of binding to the same species.

This can be accomplished by adding together appropriate reactions of the form

given in Eq. (3) as illustrated in the following example:

Pþ L $ PL1 ðK1Þ
PL1 þ L $ PL2 ðK2Þ
PL2 þ L $ PL3 ðK3Þ
� � � � � � � � � � � � � � � �
Pþ 3L $ PL3 Q3 ¼ K1K2K :

ð5Þ

Here, we have added together the first three successive steps of binding to give

the reaction for binding three ligands directly to the species P. The equilibrium

constant for the new reaction, Q3, is the product of the equilibrium constants for

the three reactions used (in general when one adds together two reactions, the

equilibrium constant for the new reaction is the product of the constants for the

two reactions). The generalization of the process illustrated in Eq. (5) is

Pþ nL $ PLn ð6Þ
with

Qn ¼ ½PLn�
½P�½L�n ð7Þ

where

Qn ¼
Yn
i¼1

Ki: ð8Þ

If the total concentration of the macromolecule is PT, then the mole fraction of a

given state of binding is given by

fn ¼ ½PLn�
PT

: ð9Þ

Taking

c ¼ ½L� ð10Þ
we can rewrite Eq. (7) in terms of the f values and c, giving

fn

fo
¼ cnQn: ð11Þ

Solving Eq. (11) for fn, we have our fundamental relation for the mole fraction of

P molecules having n ligands bound:

fn ¼ foc
nQn: ð12Þ

Now, by definition, the sum of the mole fractions must add up to 1 (conservation

of mole fractions),

260 Douglas Poland



XN
n¼1

fn ¼ 1: ð13Þ

Using Eq. (12) in Eq. (13) and solving for f0 gives

f0 ¼ 1

1þ cQ1 þ c2Q2 þ . . .þ cNQN

: ð14Þ

It is useful to define the quantity in the denominator of Eq. (14) as

G ¼ 1þ cQ1 þ c2Q2 þ . . .þ cNQN : ð15Þ
The quantity G in Eq. (15) is known as the binding polynomial and Schellman

(1975) has described the use of this quantity to treat ligand binding in biopolymers.

The binding polynomial is an example of what is known in statistical mechanics as

a partition function. Here, it represents a sum over all possible states of binding.

Using the relation for f0 given in Eq. (14) in Eq. (12), we have the following general

relation for the mole fraction of P with n ligands bound:

fn ¼ cnQn

G
: ð16Þ

From Eq. (16), one sees that the mole fraction of molecules with n ligands bound

(which is equal to the probability of picking a molecule at random that has n

ligands bound) is simply given by the term in G corresponding to the state

representing n ligands bound divided by G, that is, the sum over all states of

binding.

Equation (16) is a general relation for the mole fractions or probabilities of all

different states of binding as a function of the concentration, c, of ligand in

solution. As such, this equation is the distribution function for ligand binding

and it is this function that we want to construct using moments and the maximum-

entropy method. We now show how moments of this function can be obtained

from a binding isotherm (titration curve). Notice that in the derivation of Eq. (16)

we made no assumptions about the Qn or the independence of binding sites. We

have assumed that the ligand concentration in solution is dilute so that the use of

the equilibrium constant expression in Eq. (4) is valid.

Experimentally, one measures the average number of ligands bound as a func-

tion of c or ln c and this set of data gives the binding isotherm or titration curve.

From Eq. (16), we have the following relation for average n (average extent of

binding),

hni ¼
XN
n¼0

nfn: ð17Þ

To obtain hni given in Eq. (17) in terms of G, we observe that

@cnQn

@c
¼ ncn�1Qn: ð18Þ
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We notice that the operation in Eq. (18) ‘‘brings down’’ a factor of n. This type of

operation is central to our entiremethod.Multiplying both sides of Eq. (18) by c gives

c
@cnQn

@c
¼ @cnQn

@ lnc
¼ ncnQn: ð19Þ

To obtain the term nfn appearing in Eq. (17) we need only divide all terms in

Eq. (19) by G. In this manner, we obtain the basic relation

hni ¼ 1

G
@G
@ lnc

¼ M1: ð20Þ

The quantity hni is the first moment of the distribution that we designate as M1.

It is often convenient to introduce the fraction of binding, which we define as y:

y ¼ hni=N ð21Þ
or

M1 ¼ Ny ð22Þ
In an experimental study of ligand binding, what one measures is M1(c) or

equivalently y(c). We now show how higher moments of the binding distribution

can also be obtained from these data. The higher moments (in general the mth) are

defined in analogy to the definition of the first moment given in Eq. (17),

Mm ¼
XN
n¼0

nmfn: ð23Þ

Letting

x ¼ lnc ð24Þ
the analog of the operation given in Eq. (18) for bringing down a single factor of n

also works when we want m factors of n,

Mm ¼ 1

G
@mG
@xm

: ð25Þ

If we take the derivative of Mm with respect to x, we obtain the following

relation between different moments:

@Mm

@x
¼ 1

G
@mþ1G
@xmþ1

� 1

G2

@G
@x

@Gm

@xm
¼ Mmþ1 �M1Mm: ð26Þ

We define the following symbol for derivatives of M1 with respect to x as

M
ðjÞ
1 ¼ @jM1

@xj
ð27Þ

Then successively using Eq. (26), we obtain
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M
ð1Þ
1 ¼ M2 �M2

1 ;

M
ð2Þ
1 ¼ M3 � 3M1M2 þ 2M3

1 ;

M
ð3Þ
1 ¼ M4 � 4M1M3 � 3M2

2 þ 12M2
1M2 � 6M4

1 :

ð28Þ

We can then solve these equations consecutively forM2,M3, andM4 in terms of

the derivatives of M1 with respect to x,

M2 ¼ M
ð1Þ
1 þM2

1 ;

M3 ¼ M
ð2Þ
1 þ 3M1M2 � 2M3

1 ;

M4 ¼ M
ð3Þ
1 þ 4M1M3 þ 3M2

2 � 12M2
1M2 þ 6M4

1 :

ð29Þ

Thus, knowledge of M1, or equivalently of hni, as a function of x ¼ ln c (where

c¼ [L]) can be used to give higher moments of the binding distribution. In Eq. (29),

we give the relations required to obtain the higher moments through M4. Recall

that M1 ¼ hni is the experimental binding isotherm. Thus, the derivatives of this

quantity with respect to x, defined in Eq. (27), can also be obtained from experi-

ment and then used in Eq. (29) to obtain higher moments of the ligand-binding

distribution.

InFig. 1A,we show a typical binding isothermgiving hni as a function of ln c (¼ x).

As an example, we take the case of 20 independent binding sites with a binding

constant ofK¼ 2500 (mol/l)�1. The binding isotherm for this system is shown by the

solid curve in Fig. 1A, while we take the solid dots as model experimental data. The

derivatives required in Eq. (29) are evaluated at a particular value of x that we will

denote as x0.We are free to pick any value of x to serve as the reference point.We can

then expand the functionM1(x) in a Taylor series about x ¼ x0, using the variable

Dx ¼ x� x0 ð30Þ
giving (through the cubic term in Dx)

M1ðxÞ ¼ a0 þ a1Dxþ a2Dx2 þ a3Dx3 þ . . . ð31Þ
which represents an empirical local fit of the experimental data. The a values in

Eq. (31) are determined from experiment and have the following significance:

M
ð1Þ
1 ¼ a1;

M
ð2Þ
1 ¼ 2a2;

M
ð3Þ
1 ¼ 6a3:

ð32Þ

But these are just the quantities required in Eq. (29) to give the first four

moments of the binding distribution. Thus, the local expansion of the binding

isotherm, M1(x) ¼ hni, given in Eq. (31) allows us to calculate the first four

moments of the ligand-binding distribution function.

Another way to obtain the information given in Eq. (32) is to use the derivative

of hni with respect to x, as a function of x. A plot of this function is shown in

Fig. 1B, where we see that we now have a function that goes through a maximum

at the value of x corresponding to the midpoint of the ligand-binding curve.
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A dominant feature of the curve shown in Fig. 1B is the width of the peak in the

neighborhood of the maximum in the curve. The local series expansion of this

function is given by [using Dx of Eq. (30)]

@hni
@x

¼ M
ð1Þ
1 ðxÞ ¼ b0 þ b1Dxþ b2Dx2 þ . . . ð33Þ

where now

M
ð1Þ
1 ¼ b0;

M
ð2Þ
1 ¼ b1;

M
ð3Þ
1 ¼ 2b2:

ð34Þ

Thus, the coefficients in Eq. (33) contain the same information (enough to

calculate four moments of the ligand binding distribution) as does the expansion

given in Eq. (31), but the coefficients now have simple physical interpretations:

−10−14

20

15

A

B

In c

In c

10

5

6

4

2

0

0

<n>

d<n>/dln c

−6 −2

−10−14 −6 −2

Fig. 1 (A) An example of a typical binding isotherm giving the average number of ligands bound as a

function of the logarithm of the ligand concentration in solution. The curve was calculated assuming 20

independent sites with K¼ 2500 (mol/l)�1. (B) A plot of the slope of the binding curve given in (A). The

dashed curve represents the quadratic expansion given in Eq. (33) about the maximum in the curve,

indicated by the solid dot.
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b0 is the gradient of the binding isotherm at x0;
b1 is zero at x0;
b2 measures the width of the peak:

ð35Þ

The dashed curve in Fig. 1B shows the local quadratic expansion about the

maximum in the curve as given by Eq. (33). From Eq. (35), we note that the

construction of the quadratic curve shown in Fig. 1B requires only the value of

the function at the maximum and the width of the peak. As this is enough

experimental information to calculate four moments of the ligand-binding distri-

bution, we see that there is no difficulty in obtaining a set of moments from

experimental ligand-binding data. Given a finite set of moments, the next step

is to turn information about the moments into parameters of the appropriate

distribution function. To this end, we use the maximum-entropy method that we

describe in the next section.

III. Maximum-Entropy Distributions

It is an old problem in mathematics to construct an approximation to a distri-

bution function given a finite set of moments of that function. In the preceding

section, we have seen how one can easily obtain a set of four to six moments for the

distribution function for the binding of ligands to biological macromolecules from

the binding isotherm (titration curve). In Section V, we show how one can similarly

obtain a finite set of moments for the enthalpy distribution function in proteins and

other macromolecules from the temperature dependence of the heat capacity. The

problem we address in this section is the use of these moments to construct an

approximate distribution function.

The technique we use is the maximum-entropy method as applied to the moment

problem by Mead and Papanicolaou (1984) and by Tagliani (1995). To keep our

discussion explicit we use a specific example of a distribution function, f(X), which

is illustrated in Fig. 2. Note that we are using uppercase X as the independent

variable for this distribution; we are saving lowercase x for another upcoming use.

The function we have chosen as an example is bimodal with two unequal peaks.

The explicit functional form of this distribution is the sum of two unequal

Gaussian distributions, as shown:

f ðXÞ ¼ ð1:6 exp½�0:25ðX � 5Þ2� þ exp½�0:35ðX þ 1Þ2�Þ=A ð36Þ
where the value of A is chosen to give a normalized functionðL1

L2

f ðXÞ ¼ 1: ð37Þ

The bounds L1 and L2 in Eq. (37) are taken as practical limits of the extent of the

distribution function. From Fig. 2, we take these limits as the points where the

value of the distribution function have dropped essentially to zero. Thus, we take

L1 ¼ 12 and L2 ¼ �6: ð38Þ
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The choice of reasonable bounds to the range of the distribution function is an

important part of the process. For our example given in Eq. (36) with the bounds

of Eq. (38), the value of the normalizing constant is A ¼ 8.6678.

The input for the calculation of a distribution function using the maximum-

entropy method is a finite set of moments of the distribution function. For

biological macromolecules, these moments are obtained from experimental data

such as titration curves for ligand-binding distributions or heat capacity data for

enthalpy distributions. For the example at hand, we know the exact distribution

function as given in Eq. (36) and thus for this example we can calculate the

moments precisely. The moments of f(X) are given in general by the relation

Mm ¼
ðL1

L2

Xmf ðXÞdX : ð39Þ

For f(X) of Eq. (36), the first four moments are

M1 ¼ 2:92618;M2 ¼ 18:5069;M3 ¼ 99:5994;M4 ¼ 618:546: ð40Þ
These are the numbers that, in an actual application of the method, would be

determined from experiment.

The next step is technical, but important. To apply the maximum-entropy

method, it is most convenient to scale the distribution function in question onto

the unit interval so that rather than the limits L2 and L1 as given in Eq. (38) one has

the limits zero and one. It is best to do this shift in two steps. First, we simply

translate the function so that the lower limit is the origin. To do this we simply

introduce a new variable,

y ¼ X � L2 ð41Þ

−5 0
0

0.1

0.2

5

X

f(X)

10

Fig. 2 An example of a bimodal distribution function with peaks of unequal height. The function

shown is a sum of two Gaussian distributions as given by Eq. (36).
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so that now when X ¼ �6, the new variable has the value y ¼ 0. The function now

is f(y) with y varying from 0 to L1 � L2. The moments for the shifted distribution

function can easily be obtained form the former moments given in Eq. (40). Taking

L ¼ L1 � L2 ð42Þ
one has

M
0
m ¼

ðL
0

ymf ðyÞdy ¼
ðL1

L2

ðX � L2Þmf ðXÞdX : ð43Þ

Defining

a ¼ �L2 ð44Þ
the first few moments of the scaled function are given:

M
0
1 ¼ M1 þ a;M 0

2 ¼ M2 þ 2aM1 þ a2;
M

0
3 ¼ M3 þ 3aM2 þ 3a2M1 þ a3;

M
0
4 ¼ M4 þ 4aM3 þ 6a2M2 þ 4a3M1 þ a4:

ð45Þ

For our example, the above moments have the following numerical values (in

our example L ¼ 18 and a ¼ 6):

M
0
1 ¼ 8:92618; M

0
2 ¼ 89:621; M

0
3 ¼ 964:75; M

0
4 ¼ 10830:6: ð46Þ

We have now shifted the distribution so that the lower bound is at the

origin, y ¼ 0. The next step is to scale the function so that the upper bound is 1.

To accomplish this, we introduce yet another new variable,

x ¼ y=L ð47Þ
so that now when y¼ L the new variable has the value x ¼ 1. The moments for the

distribution function expressed in terms of the new variable defined on the interval

x ¼ 0–1 are now simply given by

mm ¼ M
0
m=L

m ð48Þ
where L is given by Eq. (42). The final set of moments for the scaled distribution

function in our example defined on the unit interval from 0 to 1 is now

m1 ¼ 0:495899; m2 ¼ 0:276608; m3 ¼ 0:165424; m4 ¼ 0:103172: ð49Þ
Notice that the above moments form a moderate set of monotonically decreas-

ing numbers and that in a sense the scaling process has ‘‘tamed’’ the values of the

moments.

The above scaling process is really the most difficult part of the procedure. One

problem in scaling experimentally determined moments is that one does not always

have a clear sense of what the lower and upper bounds, the L1 and L2 of Eq. (38),

are. For titration problems, one usually knows the total number of proton-binding

sites from the amino acid sequence of the protein, but for other distribution

functions, such as the enthalpy distribution, one does not have such knowledge.
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If one knows the first and second moments of the distribution, then one can make a

first estimate of the width of the distribution, using the standard Gaussian

distribution:

f ðxÞ ¼ 1

s
ffiffiffiffiffiffi
2p

p exp½�ðM1 � xÞ2=2s2� ð50Þ

where s is the standard deviation (giving the width of the distribution)

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �M2

1

q
: ð51Þ

Of course, for a distribution such as that illustrated in Fig. 2, the above function can

give only a crude estimate of the overall range of the distribution function in question.

We now assume that one has a set of moments like those shown in Eq. (49) that

have been scaled onto the unit interval from 0 to 1, starting with moments obtained

from experiment. We now outline the approach of Mead and Papanicolaou (1984)

to obtain approximate distribution functions given a finite set of moments, using

the maximum-entropy method.

The scaled distribution function on the unit interval will be referred to as p(x),

denoting a probability distribution function in the continuous variable x where x

varies from 0 to 1. The probability distribution function p(x) is normalized as follows:ð1
0

pðxÞdx ¼ 1 ð52Þ

We denote the moments of this function as

mm ¼
ð1
0

xmpðxÞdx ¼ hxmi ðfor m ¼ 1 to NÞ ð53Þ

where we indicate that a finite set of N moments is known. For the function given

in Eq. (36), the first four of these moments are given in Eq. (49).

In the maximum-entropy method, one defines an entropy-like quantity in terms

of the function p(x):

S ¼ �
ð1
0

½pðxÞ ln pðxÞ � pðxÞ�dxþ
XN
m¼0

lm

ð1
0

xmpðxÞdx� mm

� �
ð54Þ

where lm are Lagrange multipliers. Functional variation of S with respect to p(x),

plus the condition that the moments for m ¼ 0 toN are given by Eq. (53), gives the

result that p(x) has the following functional form

pðxÞ ¼ exp½�gðxÞ� ð55Þ
where

gðxÞ ¼
XN
n¼0

lnxn: ð56Þ

268 Douglas Poland



Thus, g(x) is simply a finite polynomial in x. One sees that the more the moments

that are known (the larger the numberN), the more are the terms in the polynomial

of Eq. (56) one has and the closer will be the approximate distribution function

given by Eqs. (55) and (56) to the actual distribution function. Note that the g(x)

polynomial given in Eq. (56) when used in Eq. (55) and then in Eq. (53) gives back

exactly the first N known moments of the experimental distribution function.

To illustrate the maximum-entropy distribution functions obtained in this man-

ner, we first give the form for the distribution function when one knows only the

first moment of the distribution (the average value of x). In this case, the distribu-

tion is given by a simple exponential function,

ðone momentÞ pðxÞ ¼ A expð�l1xÞ: ð57Þ
If the first two moments of the distribution function are known, one obtains a

quadratic (or Gaussian) distribution function:

ðtwo momentsÞ pðxÞ ¼ A exp½�ðl1xþ l2x2Þ�: ð58Þ
Given the first four moments of the distribution function, the function g(x) of

Eq. (56) will be a quartic polynomial in x giving the following approximate

distribution function:

ðfour momentsÞ pðxÞ ¼ A exp½�ðl1xþ l2x2 þ l3x3 þ l4x4Þ�: ð59Þ
The remaining technical problem is to determine the values of the parameters ln

introduced in Eq. (56). Knowledge of the experimentally determined values of the

first N moments as given in Eq. (53) gives one N known numbers. The task is to

convert theseN known quantities into known values of theN parameters ln for n¼
1 toN (note that the parameter l0 simply acts as a normalization parameter for the

distribution). This process is schematically shown as follows:

Experimental values

of mm for

m ¼ 1 to N

! Values of

distribution ln for n ¼ 1 to N:
ð60Þ

Mead and Papanicolaou (1984) have given a general iterative algorithm using

any number of moments to accomplish the process shown in Eq. (60) and that is

the scheme that we will outline here. One initiates the iteration procedure by

constructing three vectors having N elements each:

m ¼ ðm1;m2; . . . ; mNÞ;
l0 ¼ ð0; 0; . . . ; 0Þ;
x ¼ ðx; x2; . . . ; xNÞ:

ð61Þ

Them vector contains the known experimental values of the firstN scaledmoments

while thel0 vector contains the initial values (all zero) of the unknownln parameters.

The x vector contains the first N powers of the independent variable x. The interac-

tion process is primed by setting a general vector l equal to the initial vector l0:
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l ¼ l0: ð62Þ
One then begins the general iteration loop given.

A. General Iteration Loop

First, one forms the function f(x), where the dot indicates the dot product of the

two vectors:

f ðxÞ ¼ exp½�l�x�: ð63Þ
One then normalizes this function on the interval 0–1:

A�1 ¼
ð1
0

f ðxÞdx: ð64Þ

giving the normalized approximation for the probability distribution

pðxÞ ¼ Af ðxÞ: ð65Þ
Using this approximate distribution function, one then calculates a set of

approximate moments,

m�m ¼
ð1
0

xmpðxÞdx ðm ¼ 1; 2NÞ: ð66Þ

Note that one calculates 2N moments. Using the first N of the preceding

approximate moments, one forms the vector

m� ¼ ðm�1; m�2; . . . ; m�NÞ: ð67Þ
The next step is the formation of the following N � N matrix:

W ¼ ðwijÞ ð68Þ
where the general matrix element is given by

wij ¼ m�iþj � m�i m
�
j : ð69Þ

This matrix is then inverted, giving

WI ¼ W�1: ð70Þ
Finally, one forms a vector that gives the difference between the experimental

values of the moments and the approximate moments calculated above:

v ¼ m� m�: ð71Þ
One then forms the vector

a ¼ WI�n: ð72Þ
As a last step, the improved estimate of the vector of l values is given by
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lnew ¼ l� a: ð73Þ
One then iterates this procedure until there is no difference between lnew and l.

If there is a difference, then one sets

l ¼ lnew ð74Þ
and goes back to the beginning of the general iteration loop above Eq. (63) and

repeats the whole process.

The whole procedure is actually quite straightforward, and the computer pro-

gram to carry out this iteration scheme can be written in about a dozen lines on the

back of a postcard. The process usually converges to a limiting set of l values in

about 15 iterations. The only numerical problem that sometimes arises is that when

one uses eight or more moments, there are sometimes precision problems in the

matrix inversion step and one needs to increase the number of significant figures

used in the program.

When one has run the iteration scheme outlined above and has found a set of l
values such that the new values are identical with the values obtained in the

previous iteration round, one then wants to use the approximate distribution

function p(x) as given by Eqs. (55) and (56) to calculate the set of moments, m1
to mN, to be sure that the first Nmoments of the approximate distribution function

indeed reproduce the experimental input. Mead and Papanicolaou (1984) have

proved that if the set of moments, m1 to mN, vary monotonically [such as the

moments given in Eq. (49) do], then there is a unique set of l values, l1 to lN,
that results from the maximum-entropy method. This does not mean that the

approximate maximum-entropy method function given in Eqs. (55) and (56) is

the unique distribution function: it is the unique maximum-entropy approximation

to the distribution function. As the number of moments used in the construction of

the distribution function is increased, the distribution function, through Eq. (56), is

described by longer and longer polynomials until finally one has an infinite series

(which, of course, is not attainable from experimental data, where the maximum

number of moments that can be reasonably obtained is about eight). In the

unrealistic limit where one uses an infinite number of moments, one would obtain

a unique infinite series that would give the exact distribution function. Practically,

the more moments used, the better the approximate distribution will be.

At the conclusion of the iteration process, one has a distribution function, p(x),

defined on the interval x ¼ 0–1 that reproduces the first N experimental moments

that have been scaled using Eq. (43) and Eq. (47) to the unit interval. The only

remaining task is to scale the distribution function back to the interval of interest

for the given physical system being treated. Again, we use the function given in

Eq. (36) and illustrated in Fig. 2 as an example. The upper and lower bounds for

this function, L1 and L2, are given in Eq. (38) while the parameter L is given in

Eq. (42). To scale back to the interval shown in Fig. 2, we simply invert the scaling

process we have already used. First, we scale the function from the unit interval x¼
0–1 to the new interval y ¼ 0 to L. This is achieved by the inverse of the relation

given in Eq. (47), involving the substitution
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y ¼ xL: ð75Þ
Then, we shift the distribution by an amount L2 going back to our original

variable X (which describes the actual experimental distribution function of

interest),

X ¼ yþ L2 ð76Þ
where now the variable X varies from L2 to L1 (this is �6 to 12 for our example in

Fig. 2). This double substitution takes the function p(x) found by the maximum-

entropy iteration and scales it back to the correct range of the experimental

distribution, f(X), which for our example is the function shown in Fig. 2. The

moments calculated from the rescaled distribution give one the original set of

moments, which in our example are the moments given in Eq. (39).

We now want to illustrate how this procedure works for our sample distribution

function shown in Fig. 2 and given in Eq. (36). Notice that the function given in

Eq. (36), a sum of two Gaussian distributions, does not have the same functional

form as the maximum-entropy function given in Eqs. (55) and (56). Thus, it would

take an infinite number of moments for the maximum-entropy method to give the

exact distribution function shown in Eq. (36). Nonetheless, the power of the

maximum-entropy method is that for a finite set of moments; it can give an

excellent approximation to many distribution functions such as that shown in

Fig. 2.

In Fig. 3, we show the maximum-entropy approximations to the function shown

in Fig. 2 constructed using a variable number of moments. In the upper left-hand

panel, we show the result obtained using only two moments. In this case, the
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Fig. 3 Maximum-entropy approximations to the bimodal distribution shown in Fig. 2. The solid

curves show, respectively, the maximum-entropy approximations obtained using two, four, six, and

eight moments. The dashed curve in each box is the exact distribution function given by Eq. (36). In each

graph, the approximate distribution function is plotted as a function of X as in Fig. 2.
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approximate distribution is a single Gaussian and one obtains a rather poor

approximation to the actual function (shown by the dashed curve in all the

graphs). In the upper right-hand panel of Fig. 3, we give the result obtained

when one uses four moments. Now the maximum-entropy method clearly resolves

the bimodal character of the distribution (four is the minimum number of

moments that will resolve bi-modal behavior). In the other graphs, we see that as

the number of moments used is increased from six to eight, the goodness of fit

increases until the function obtained using eight moments gives an excellent fit to

the original distribution function.

To test the accuracy of the maximum-entropy method outlined above (Poland,

2002e), we have used exact distribution functions obtained from the two-dimensional

Ising model. In that system, we treat a model fluid when it is near the critical point,

where it splits into twophases. In that case, the density distribution for the fluid shows

marked bimodal character that the maximum-entropy method, using a finite set of

moments, reproduces with high accuracy.

IV. Ligand Binding: Distribution Functions

In the previous section, we outlined how an approximation to a molecular

distribution function can be constructed from a finite set of the appropriate

moments; the more the moments used, the better the approximation, as illustrated

in Fig. 3. In Section II, we showed howmoments of the ligand-binding distribution

function can be obtained from local expansions of the experimental binding

isotherm. In particular, we found that the local quadratic fit to the gradient of

the binding isotherm, illustrated in Fig. 1B, was sufficient to give the first four

moments of the ligand-binding distribution function. In this section, we combine

the two results and illustrate the ligand-binding distribution functions obtained in

this manner.

As an example, we use the titration curve of the protein lysozyme given by

Tanford and Wagner (1954). In this case, the ligand that binds to the macro-

molecule is a proton, Hþ, and the distribution function gives the probability that

an arbitrary number of protons are bound to the protein at a given pH. To discuss

the binding of protons, we need to briefly review a few facts about acid-base

equilibria.

For a weak acid such as acetic acid, the standard dissociation reaction in water

(dissociation of a proton, the definition of an acid) is

CH3COOH $ CH3COO� þHþ ð77Þ
with the standard equilibrium constant expression

½CH3COO��½Hþ�
½CH3COOH� ¼ Ka¼ 10� pKa : ð78Þ
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We note that Eq. (78) defines the quantity pKa and that it is defined relative to

base 10. For acetic acid at a temperature of 25�C, one has pKa ¼ 4.54, a typical

value for a weak acid. We note that pH is also defined relative to base 10:

½Hþ� ¼ 10� pH: ð79Þ
For a weak base, such as methylamine, we have the following reaction when this

molecule is placed in water:

CH3NH2 þH2O $ CH3NHþ
3 þOH� ð80Þ

which gives a slightly basic solution. The equilibrium constant for this reaction is

expressed in terms of Kb and pKb,

½CH3NHþ
3 �½OH��

½CH3NH2� ¼ Kb¼ 10� pKb ð81Þ

where we follow the convention of leaving [H2O] out of the equilibrium constant

expression in Eq. (81) as it is essentially constant. For methylamine at 25�C, one
has pKb ¼ 3.36.

To treat the binding of protons to a protein, it is more useful to express the

reaction in Eq. (80) as the binding of a proton. We can achieve this by using the

reaction for the self-ionization of water reaction,

H2O $ Hþ þOH� ð82Þ
with

½OH��½Hþ� ¼ KW¼ 10�14: ð83Þ
If we invert Eq. (80) and add the reaction given in Eq. (82), we obtain the acid

dissociation reaction,

CH3NHþ
3 $ CH3NH2 þHþ ð84Þ

where now we view CH3NHþ
3 as an acid with the acid dissociation constant,

Ka ¼ Kw=Kb¼ 10� pKa ð85Þ
where pKa ¼ 10.64.

In our treatment of ligand binding, we treated all the reactions involved as

binding reactions. Thus we need to turn the reactions given in Eq. (77) and

Eq. (84) around and write them as binding reactions. Thus, we have in general

for acids,

A� þHþ $ AH;K¼ 10þ pKa ð86Þ
where the binding constant now is 10 raised to the plus pKa. For weak bases, as

written in Eq. (84) we have in general,

AþHþ $ AHþ;K¼ 10þ pKb : ð87Þ
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If we consider each proton-binding site in isolation from the rest of the molecule,

then in general we can treat each independent group that can bind a proton as

having its own binding polynomial that is a sum over two states, proton not bound

and proton bound. We write this function as follows:

g ¼ 1þ ½Hþ�10pK ð88Þ
so that the mole fractions of the unbound and bound states are given by

fA ¼ 1

g
and fAH ¼ ½Hþ�10pK

g
: ð89Þ

Nozaki and Tanford (1967) have studied denatured ribonuclease (in 6M guani-

dine-HCl) and they find that the proton-binding sites act as if they are indepen-

dent. In that molecule, they assign the following pK values to the appropriate

groups:

1: a� Carboxylð1Þ pK ¼ 3:4
2: b� Carboxylð5Þ pK ¼ 3:8
3: g� Carboxylð5Þ pK ¼ 4:3
4: Imidazoleð4Þ p ¼ 6:5
5: a�Aminoð1Þ pK ¼ 7:6
6: Phenolicð3Þ pK ¼ 9:75
7: Phenolicð3Þ pK ¼ 10:15
8: e�Aminoð10Þ pK ¼ 10:35:

ð90Þ

There are also four guanidyl groups in the molecule with pK > 12.5 that are not

included in this list. The listing given in Eq. (90) includes N ¼ 32 protons that can

bind to the protein. The a-carboxyl and a-amino groups are, respectively, the

terminal carboxyl and amino groups of the molecule while the b- and g-carboxyl
groups are the carboxyl groups, respectively, on aspartic and glutamic acid (like

acetic acid in our example). The imidazole and phenolic pK values refer to proton-

binding sites, respectively, on histidine and tyrosine. Finally, the e-amino groups

are the amine groups on lysine (like methyl amine in our example).

For the special case where each binding site is independent (which is not the

general case), the binding polynomial for the whole molecule is given by the

following product:

G ¼ g1g
5
2g

5
3g

4
4g5g

3
6g

3
7g

10
8 : ð91Þ

If we expand this expression, we obtain the polynomial

G ¼
XN
n¼0

Qn½Hþ�n ð92Þ

where in this case N ¼ 32. The probability of a given state of binding (number of

protons bound) is simply
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Pn ¼ Qn½Hþ�n=G ð93Þ
while the titration curve (average number of protons bound as a function of pH) is

given by

hni ¼
XN
n¼0

nPn ¼ @ lnG
@ ln½Hþ� ð94Þ

where we note that

ln½Hþ� ¼ 2:303 log½Hþ� ¼ �2:303pH: ð95Þ
Note that Qn represents a sum over all ways that n protons can be bound.

In general, the binding polynomial will not be a product of independent g values.
In the compact form of a native protein, the charged groups will interact with one

another and some will be buried, making them less accessible for binding. We now

show how one can use moments of the experimental titration curve to obtain the

complete binding polynomial for the case where the binding sites are not

independent.

In Fig. 4, we show the experimental titration curve for the protein lysozyme on

the basis of the data of Tanford and Wagner (1954) This protein contains 22 sites

for proton binding. The solid points shown in Fig. 4 were obtained by tracing the

curve the authors drew through their experimental points and then taking evenly

spaced points on this curve; we will explain the origin of the solid curve shortly.

Using the set of experimental points shown in Fig. 4, one can then apply the

techniques outlined in Section II to obtain a set of moments at different pH values

(Poland, 2001e). First, we take seven different sets of contiguous points, each set

0
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<n>

2 4 6
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Fig. 4 The experimental titration curve of the protein lysozyme (solid dots) constructed using the

original data of Tanford andWagner (1954). The graph gives the average number of protons bound as a

function of the pH of the solution. The maximum number of protons that can bind to this protein is 22.

The solid curve represents the theoretical titration curve calculated from the binding polynomial as

shown in Eq. (15) using theQn given in Fig. 5b. Reprinted from Poland (2001e), with kind permission of

Kluwer Academic Press.
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containing seven points, and then we fit each set of data to a cubic polynomial

centered at the middle point. The pH values at the midpoints of the seven sets of

experimental points are as follows: pH 3.19, 4.07, 4.95, 6.28, 8.04, 9.80, and 10.68.

Once we have the set of polynomials, each representing a local expansion of the

titration curve about a particular value of the pH, we use the procedure outlined in

Section II to obtain the first four moments of the proton-binding distribution from

each of these polynomials (each polynomial representing a different pH value).

Given these sets of moments, we next use the maximum-entropy method outlined

in the previous section to obtain seven different binding distribution functions, one

for each of the seven different pH values indicated above. The seven distributions

functions so obtained are shown in Fig. 5A. It turns out that for this system the

distribution functions calculated using successively two, three, and four moments

are virtually superimposable, so the distribution functions shown in Fig. 5A are

essentially Gaussian distributions. Note that one needs to obtain four moments in
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Fig. 5 (A) Maximum-entropy proton-binding distribution functions for the protein lysozyme con-

structed using moments obtained from local expansions of the titration curve given in Fig. 4. The

distribution functions are for the pH values, from left to right: pH 3.19, 4.07, 4.95, 6.28, 8.04, 9.80,

10.68. (B) The values of ln Qn for n ¼ 0–22 (solid dots), giving the complete proton binding polynomial

for the protein lysozyme. Reprinted from Poland (2001e), with kind permission of Kluwer Academic

Press.
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order to confirm that the use of only two moments gives an excellent representation

of the proton-binding distribution function.

We now use the proton-binding distributions functions given in Fig. 5A to

calculate all of the Qn in the binding polynomial of Eq. (92). From Eq. (93) the

ratio of the probabilities for successive species is given by

Pn

Pn�1

¼ Qn

Qn�1

½Hþ�: ð96Þ

Solving this equation for Qn, we have

Qn ¼ Qn�1

Pn

Pn�1

� �
½Hþ�: ð97Þ

Using the proton-binding distribution functions obtained from the maximum-

entropy method, one can estimate the ratio Pn/Pn�1 by evaluating the distribution

function at integer values of n. The distribution function used refers to a specific

value of the pH (one of the seven pH values used and listed previously) and so the

value of [Hþ] is known. Thus, Eq. (97) represents a recursion relation, giving Qn in

terms of Qn�1 and known quantities. To start the recursion process, one must

know the first term in the sequence. But from Eq. (15), the zeroth term in the

binding polynomial is simply equal to 1 and hence we have

Q0 ¼ 1: ð98Þ
Thus, we start the recursion process with the above value and then successively

calculate all of the Qn values from ratios Pn/Pn�1 that are obtained from the

proton-binding distribution functions, which in turn are obtained from moments

of the titration curve.

In this manner, we obtain the complete binding polynomial for the binding of

protons to lysozyme. The quantities lnQn thus obtained are shown as a function of

n in Fig. 5B. Given the proton-binding polynomial, G, one can then calculate the

probability of any state of proton binding at any pH value. Thus, all the possible

proton-binding information for a given protein is contained in G through the

coefficients Qn. Given the complete binding polynomial G, one can use Eq. (94)

to calculate the titration curve (the average extent of binding as a function of pH).

Using the values of lnQn given in Fig. 5B, the calculated titration curve is shown by

the solid curve in Fig. 4, which is seen to give an excellent fit to the solid points that

are derived from the experimental data.

Thus, the moment/maximum-entropy method can give one the complete proton-

binding polynomial for a protein. This function in turn contains all the empirical

information possible concerning the binding of protons to the protein. To dissect

Qn into terms that represent different microscopic sets binding constants requires a

specific model. Knowledge of Qn is the most information one can obtain empiri-

cally without any specific model.

One can also apply the method outlined in this section to other types of binding.

In particular, we have applied this approach to the binding of Mg2þ and small
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molecules to nucleic acids (Poland, 2001a), to the binding of denaturants to

proteins (Poland, 2002d), and to the free energy of proton binding in a variety of

proteins (Poland, 2004).

V. Enthalpy Distributions

In this section, we apply the use of moments to the calculation of enthalpy

distribution functions in proteins. Just as there is a broad distribution of the state of

ligand binding in a given biological macromolecule, there also is a broad distribution

of enthalpies. In particular, the temperature dependence of the enthalpy distribution

gives considerable insight into the process of the thermal unfolding of a protein.

We have already cited the reference (Poland, 2000a) containing the basic outline

of the use of the maximum-entropy method to obtain enthalpy distribution func-

tions. In addition, this approach has been applied to the calculation of the density

of states for a general substance (Poland, 2000c), to enthalpy distributions in

proteins (Poland, 2001b), and to enthalpy distributions in the solid state of high

polymers (Poland, 2001d). Most biological systems, including proteins, are usually

studied at constant pressure (the system is simply open to the atmosphere). On the

other hand, the calculation of the appropriate moments is simpler to describe for a

system at constant volume, so we treat that case first and then indicate the minor

changes in the formalism required to treat a constant pressure system. In any case,

there is little difference between constant volume and constant pressure thermody-

namics for condensed matter.

The starting point for the statistical thermodynamics of a constant volume

system is the canonical partition function (Hill, 1986; Poland, 1978), which is a

sum over all energy levels of the system. Taking ei as a general energy level having

degeneracy oi, the general canonical partition function is given by the following

sum:

Zv ¼
X
i

oi exp½�bei� ð99Þ

where

b ¼ 1=RT: ð100Þ
In Eq. (100), T is the absolute temperature and R is the gas constant. We will

measure energies in kilojoules per mole, in which case the gas constant has the

value

R ¼ 8.31451 � 10�3 kJ mol�1 K�1. The connection between the partition

function Zv and thermodynamics is given by the relation

Zv ¼ exp½�bA� ð101Þ
where A is the Helmholtz free energy.
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Like the binding polynomial, this partition function is a sum over all states. The

probability that the system is in a particular state is simply given by the term in the

partition function for that state divided by the sum over all terms (the partition

function). Thus, our basic equation is

Pi ¼ oi exp½�bei�
Zv

: ð102Þ

Given this expression for the probability of a general state, we can use it to

obtain expressions for the moments of the energy distribution. The first moment is

simply given by

hEi ¼
X
i

eiPi ¼ E1: ð103Þ

One can ‘‘bring down’’ the factor ei in Eq. (103) by taking the derivative with

respect to (�b),

@oi exp½�bei�
@ð�bÞ ¼ ðeiÞoi exp½�bei�: ð104Þ

The above procedure is analogous to that used in Eq. (19) for the case of ligand

binding. The first energy moment, as indicated in Eq. (103), is then given by the

relation

E1 ¼ � 1

Zv

@Zv

@b
: ð105Þ

Higher moments are obtained in analogy with the procedure used in Eq. (25) for

ligand binding,

Em ¼
X
i

emi Pi ¼ ð�1Þm
Zv

@mZv

@bm
: ð106Þ

Finally, we note that the first moment is simply the internal energy of

thermodynamics,

U ¼ E1: ð107Þ
The next step is to relate the moments given in Eq. (106) to derivatives of E1

(or U) with respect to b (or, equivalently, with respect to T). One has

U ¼ �Z
ð1Þ
v

Zv

;

@U

@b
¼ Z

ð1Þ
v

Zv

0
@

1
A

2

� Z
ð2Þ
v

Zv

0
@

1
A;

@2U

@b2
¼ �2

Z
ð1Þ
v

Zv

0
@

1
Aþ 3

Z
ð1Þ
v

Zv

0
@

1
A Z

ð2Þ
v

Zv

0
@

1
A� Z

ð3Þ
v

Zv

0
@

1
A

ð108Þ

and so on, where
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ZðjÞ
v ¼ @jZv

@bj
: ð109Þ

The first three moments of the energy distribution are then given by

E1 ¼ �Z
ð1Þ
v

Zv

;E2 ¼ Z
ð2Þ
v

Zv

;E3 ¼ �Z
ð3Þ
v

Zv

: ð110Þ

But as E1 is the internal energy, U, one also has

E1 ¼ U ;E2 ¼ �U
ð1Þ
b þ E1;E3 ¼ U

ð2Þ
b � 2E3

1 þ 3E1E2 ð111Þ
where

U
ðjÞ
b ¼ @jU

@bj
: ð112Þ

We recall that b ¼ 1/RT and thus we see in Eqs. (111) and (112) that knowledge

of the temperature dependence ofU allows one to calculate moments of the energy

distribution.

One can know the temperature dependence of the internal energy, U, without

knowing the value of U itself. That is, one can know the derivatives of U with

respect to temperature (such as the heat capacity) without knowingU¼ E1. In that

case, one can construct central moments that are relative to the (unknown) value of

E1. In general, one has

Mm ¼ hðE � E1Þmi: ð113Þ
We then have the simple results

M1 ¼ 0;M2 ¼ �U
ð1Þ
b ;M3 ¼ U

ð2Þ
b : ð114Þ

Given the value of E1 one can then convert back to regular moments,

E2 ¼ M2 þ E2
1 ;E3 ¼ M3 þ 3E2E1 � 2E3

1 : ð115Þ
The temperature dependence of U is given by the heat capacity (here at constant

volume):

CV ¼ @U

@T

� �
V

: ð116Þ

The experimental data concerning the energy moments are thus contained in the

temperature dependence of the heat capacity, CV(T). One can express the temper-

ature dependence of the heat capacity in the neighborhood of a reference tempera-

ture T0 as an empirical Taylor series in DT where

DT ¼ T � T0: ð117Þ
The general form for this expansion is given below

CVðTÞ ¼ c0 þ c1DT þ c2DT2 þ . . . : ð118Þ
We can also formally write the internal energy as an expansion in DT,
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UðTÞ ¼
X1
m¼0

1

m!

@mU

@Tm

� �
T0

DTm: ð119Þ

The coefficients in the CV(T) series given in Eq. (118) are then related to the

derivatives used in Eq. (119) as follows:

U
ð0Þ
T ¼ U ;U

ð1Þ
T ¼ c0;U

ð2Þ
T ¼ c1;U

ð3Þ
T ¼ 2c2 ð120Þ

where

U
ðmÞ
T ¼ @mU

@Tm
: ð121Þ

Theequations for the energymoments requirederivativeswith respect tob (¼ 1/RT).

To convert from temperature derivatives to derivativeswith respect tob, we require the
following relations:

T
ðmÞ
b ¼ @mT

@bm
ð122Þ

the first few of which are

T
ð1Þ
b ¼ � 1

R

� �
ðRTÞ2;T ð2Þ

b ¼ 2

R

� �
ðRTÞ3;T ð3Þ

b ¼ � 6

R

� �
ðRTÞ4: ð123Þ

Then finally we have

U
ð1Þ
b ¼ T

ð1Þ
b U

ð1Þ
T ;

U
ð2Þ
b ¼ T

ð2Þ
b U

ð1Þ
T þ ðT ð1Þ

b Þ2U ð2Þ
T ;

U
ð3Þ
b ¼ T

ð3Þ
b U

ð1Þ
T þ 3T

ð1Þ
b T

ð2Þ
b U

ð2Þ
T þ ðT ð1Þ

b Þ3U ð3Þ
T :

ð124Þ

One sees that if one has the expansion of CV(T) in Eq. (118) through the

c2 term, [quadratic fit of CV(T)] this then gives U
ð3Þ
T from Eq. (120) and, finally,

U
ð3Þ
b from Eq. (124). Thus, knowledge of a quadratic fit of CV(T) contains enough

information to calculate the first four energy moments. If one has the expansion of

CV(T) through c4 (quartic expansion), this is enough information to give the energy

moments through E6.

An example of a physical system where one knows the energy distribution

function exactly (and hence all of the energy moments) is a fluid of hard particles.

The only interaction between particles in such a fluid is that of repulsion between

the hard cores of the particles. As this fluid includes the effect of excluded volume,

it is not an ideal system, but it does not include any attractive interactions. Thus, all

of the internal energy U is kinetic energy. The distribution function for this system

is most familiar as the Maxwell-Boltzmann velocity distribution. Here, we express

it as a distribution of the kinetic energy E,

PðEÞ ¼ 2b3=2ffiffiffi
p

p ffiffiffiffi
E

p
exp½�bE� ð125Þ

with moments
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E1 ¼ 3

2
RT ;E2 ¼ 15

4
ðRTÞ2;E3 ¼ 105

8
ðRTÞ3;E4 ¼ 945

16
ðRTÞ4 ð126Þ

where the first moment, E1 ¼ 3RT/2, is the familiar equipartition of energy result

for a hard-core fluid. We (Poland, 2000a) have used the moments/maximum-

entropy method to approximate the exact distribution function given in

Eq. (125). In this case, the use of six moments gives a good fit to the exact

distribution function. Note that the functional form of the distribution function

given in Eq. (125) is not the same as the maximum-entropy distribution given in

Eqs. (55) and (56), because of the preexponential square root of the E term. Thus, it

would take an infinite number of moments to reproduce the function given in

Eq. (125) exactly. However, the use of a finite number of moments with the

maximum-entropy method gives a good approximation to the exact distribution

function.

We now indicate how moments and distribution functions are obtained for a

system at fixed pressure. For such a system, the appropriate partition function is

the isobaric grand partition function (Hill, 1986; Poland, 1978)

Zp ¼
ð
V

X
i

oi exp½�bðei þ pVÞ�dV ð127Þ

which is related to the Gibbs free energy, G, as follows:

Zp ¼ exp½�G=RT �: ð128Þ
We can express Eq. (127) as a sum over enthalpy states, using the general

definition of enthalpy,

H ¼ U þ pV : ð129Þ
For a gas, the pV term equals RT per mole, which at room temperature gives a

value of approximately 2.5 kJ/mol. As the molar volume of condensed matter is

approximately 10�3 that of a gas (e.g., 18 cm3/mol for liquid water versus 22.4 l/

mol for an ideal gas at STP), there is little difference between H and U for

condensed matter.

We can define the enthalpy of a particular state as follows:

hi ¼ ei þ pV ð130Þ
giving

Zp ¼
ð
v

X
i

oi exp½�bhi�dV : ð131Þ

The enthalpy moments are then obtained from Zp in the same manner as the

energy moments were obtained from Zv of Eq. (99). Thus, in analogy with the

result given in Eq. (106), one has

Hm ¼ ð�1Þm
Zp

@mZp

@bm
: ð132Þ
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We note that for the case m ¼ 1, Eq. (132) reduces to the familiar equation from

thermodynamics giving the average enthalpy (the first moment of the enthalpy

distribution) as a temperature derivative of the Gibbs free energy,

H ¼ ð�1Þ
Zp

@Zp

@b
¼ @ðG=TÞ

@ð1=TÞ : ð133Þ

Equation (132) is simply a generalization of this result to higher moments of the

enthalpy distribution.

For the constant pressure system, the quantity determined experimentally is the

heat capacity at constant pressure, Cp(T). In analogy with Eq. (118), we can

express this quantity as a series in DT,

CpðTÞ ¼ c0 þ c1DT þ c2DT2 þ . . . ð134Þ
where the c values are empirical parameters determined by the fit of the heat

capacity data with respect to temperature. The process of using the c values to

calculate enthalpy moments is then exactly the same as the process for calculating

energy moments from the expansion of Cv(T) as given in Eq. (118).

We now turn to some actual heat capacity data for proteins. Fig. 6 shows the

heat capacity of the protein barnase in units of kJ mol�1 K�1 on the basis of data of

Makhatadze and Privalov (1995). Barnase is a small protein containing 110 amino

acids with a molecular mass of 12,365 Da. The dashed curve gives the local

quadratic expansion as shown in Eq. (134), where the expansion is taken about

the maximum in the heat capacity curve (the point indicated by the solid dot in the

graph; Fig. 6). We note that the heat capacity graph shown in Fig. 6 and the graph

shown in Fig. 1B for the case of ligand binding are similar: in both cases a local

quadratic expansion of the experimental curve gives four moments of the appro-

priate distribution function. Given the quality of the data shown in Fig. 6, one can

0
325

Cp (T)

330 335

T

340 345 350

40

80

120

Fig. 6 The heat capacity of the protein barnase (kJ/mol) as constructed from the data of Makhatadze

and Privalov (1995) The dashed curve shows a local quadratic expansion of the data about the

maximum in the curve (solid dot).

284 Douglas Poland



easily obtain six enthalpy moments accurately. In this case, the enthalpy distribu-

tion functions calculated using four or more moments are qualitatively different

from those calculated using only two moments. This is in marked contrast with the

result we found for ligand binding, where the distribution functions based on two

to four moments were virtually superimposable.

The enthalpy distribution functions constructed using six enthalpy moments

obtained from the experimental heat capacity data for barnase shown in Fig. 6 are

given in Fig. 7A for three different values of the temperature [corresponding to

expansions as given by Eq. (134) centered around three different temperatures].

The temperatures used were the temperature of the maximum, Tm, and then Tm � 1

and Tm þ 1, where Tm ¼ 337.1 K. A natural interpretation of the presence of two

peaks in the enthalpy distribution functions is that one peak (the one at lower

enthalpy values) represents the native state of the molecule while the other peak (at

higher enthalpy) represents the unfolded state of the molecule. It is clear that both

species are in fact represented by broad distributions of enthalpy values. At Tm � 1,

the low-enthalpy species is most probable [higher P(H) peak]. As the temperature is
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Fig. 7 (A) The enthalpy distribution function, P(H), for the protein barnase near the melting

temperature Tm. To simplify the scale, the P(H) functions shown have been multiplied by a factor of

1000. (B) The free energy distribution, G/RT, obtained from P(H) using Eq. (135). A constant value, ln

(1000), has been added to these curves reflecting the scaling used for P(H). Reprinted from Poland

(2001f), with kind permission of Wiley-Interscience.
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increased toTm, the two peaks become equal in height, indicating that both the native

and unfolded species have approximately the same probability at this temperature.

Finally, at Tmþ 1, the high-enthalpy species is more probable, indicating that at this

temperature most of the molecules are unfolded. Thus, the temperature dependence

of the enthalpy distribution gives a detailed view of the shift in populations between

native and unfolded species. Note that in all cases the enthalpy distribution function

of both the native and unfolded species is not given by a single enthalpy value (delta

function in the distribution), but rather the enthalpy distribution function for each

species is represented by a broad peak. The enthalpy distribution function gives one

the probability that a molecule picked at random will have a given value of the

enthalpy. From our construction of this function, one sees that there is a great

variability (even for the native form) in the enthalpy of a protein molecule, this

variation being due to, among other causes, vibrations and breathing motions of

the protein and variability in solvent structure around the protein.

Given the enthalpy distribution P(H), one can define (Poland, 2001f) a Gibbs

free energy that is the potential for this distribution as follows:

PðHÞ ¼ exp½�GðHÞ=RT �= exp½�G=RT � ð135Þ
where

exp½�G=RT � ¼
ð
H

exp½�GðHÞ=RT �dH ð136Þ

gives the total Gibbs free energy. From Eq. (135), the quantityG(H)/RT is given by

the relation

GðHÞ=RT ¼ � ln½PðHÞ� þ C ð137Þ
where C ¼ G/RT is a constant that is independent of H but depends on T.

The functions G(H)/RT obtained from the three different enthalpy distribution

functions shown in Fig. 7A, using Eq. (137), are illustrated in Fig. 7B. For this

function, the most probable species is represented by the lowest valley in the G(H)/

RT curve. Thus, at (Tm � 1), the deepest minimum in the free energy curve

corresponds to the native (low-enthalpy) species while at Tm there are two minima

of equal depth, indicating that at this temperature the native and unfolded species

are equal in probability. Then at (Tm þ 1), the deepest minimum in the free energy

curve shifts to correspond to the unfolded (high-enthalpy) species. Recall that all

the functions shown in Fig. 7 were determined from the single set of data shown in

Fig. 6, namely, the temperature dependence of Cp. These results clearly illustrate

the power of the moments/maximum-entropy method to construct, from standard

experimental data, distribution functions that give detailed insight into the behav-

ior of biological macromolecules.

The approach outlined in this section has been applied to the contribution of

secondary structure in proteins to the enthalpy distribution (Poland, 2002b), free

energy distributions for two different forms of myoglobin (Poland, 2002c), free

286 Douglas Poland



energy distributions in tRNAs (Poland, 2003), and the enthalpy distribution for

the helix-coil transition in a model peptide (Poland, 2001c).

VI. Self-Association Distributions

In this final section, we consider distribution functions for the general clustering,

or self-aggregation, of n monomers to give an n-mer or cluster containing n

monomers. This process is similar to that of ligand binding treated in Section II

except that in this case there is no parent molecule with a fixed set of binding sites.

Rather, the monomers simply react with one another to form a cluster. We follow

the treatment of self-association using the moments/maximum-entropy method

that has been published (Poland, 2002a).

The general reaction for the addition of onemonomer to a cluster containing (n� 1)

monomers with equilibrium constant Km is

A1 þ An�1 $ An ðKnÞ: ð138Þ
As was the case with ligand binding, it is useful to consider the formation of the

cluster An directly from n monomer molecules,

nA1 $ An ðQnÞ: ð139Þ
The reaction in Eq. (139) is obtained by adding together the stepwise reactions of

Eq. (138), thus giving the equilibrium constant Qn for Eq. (139) as

Qn ¼
Yn
m¼ 2

Km: ð140Þ

For completeness, we have the null reaction

A1 $ A1 ð141Þ
where

K1 ¼ Q1 ¼ 1: ð142Þ
From the general conservation of monomer units, one has the relation

X1
n¼1

n½An� ¼ c ð143Þ

where c is the total original concentration of monomer units.

Using the equilibrium constant expression for the reaction in Eq. (139), one has

½An�
½A1�n ¼ Qn ð144Þ

or, solving for [An],

½An� ¼ ½A1�nQn: ð145Þ
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We can now define the analog of the binding polynomial that was introduced for

the case of ligand binding [see Eq. (15)]. We will call this function the association

polynomial,

G ¼
X1
n¼1

½An� ¼
X1
n¼1

½A1�nQn: ð146Þ

Physically, this is the sum over all cluster concentrations and gives the net

concentration of clusters regardless of size. From this polynomial, we obtain a

general relation for the probability of a cluster containing n monomers,

Pn ¼ ½A1�nQn=G: ð147Þ
This relation follows from the general rule for obtaining probabilities from

partition functions: the probability of state n is the term in the partition function

representing state n divided by the sum over all states (the partition function or, in

this case, the association polynomial). Note that Eq. (147) gives the probability

that a cluster picked at random contains n monomer units.

Using the probability of a given cluster size given in Eq. (147), the average

cluster size is then given by

hni ¼
X1
n¼1

nPn ¼
X1
n¼1

n½A1�nQn=
X1
n¼1

½A1�nQn ð148Þ

or

hni ¼ ½A1�
G

@G
@½A1� : ð149Þ

Higher moments are obtained in an analogous fashion,

hnmi ¼
X1
n¼1

nmPn

1

G
@mG
@ym

ð150Þ

where

y ¼ ln½A1�: ð151Þ
One can then take derivatives of hni as given in Eq. (149) with respect to y, giving

@hni
@y

¼ hn2i � hni2;

@2hni
@y2

¼ hn3i � 3hnihn2i þ 2hni3:
ð152Þ

From these relations, one obtains the higher moments, hn2i and hn3i, in terms of

the variation of hniwith respect to [A1] (or y¼ ln[A1]). But [A1] is the concentration

of free monomer, not the total original concentration of monomer denoted by c

and given in Eq. (143). The total original concentration of monomer, c, is the

288 Douglas Poland



variable under experimental control and experiment gives hni as a function of c. To

obtain expressions for the moments of the distribution in terms of c, one can

expand hni about a given value c0,

hnðcÞi ¼ n0 þ n
0 ðc� c0Þ þ 1

2
n

00 ðc� c0Þ2 þ . . . ð153Þ

where

n0 ¼ hnðc0Þi; n0 ¼ ð@hni=@cÞc0 ; n
00 ¼ ð@2hni=@c2Þc0 : ð154Þ

The preceding equations give a local quadratic fit to the experimental data: hni
as a function of c. As a result of this empirical fit, one obtains the parameters n0, n0,
and n00 evaluated at the point c ¼ c0.

To obtain derivatives with respect to [A1], as required in Eq. (152), we use the

variable y defined in Eq. (151) and introduce the new variable w:

y ¼ ln½A1� and w ¼ ln c: ð155Þ
Note that [A1] is the concentration of free monomer and c is the total original

concentration of monomer. We have the following relations between these

variables:

@hni
@y

¼ nð1Þ
@w

@y
;
@2hni
@y2

¼ nð2Þ
@w

@y

� �2

þ nð1Þ
@2w

@y2
; ð156Þ

where the n(m) are defined as follows:

nð1Þ ¼ @hni
@w

¼ cn
0
; nð2Þ ¼ @2hni

@w2
¼ cn

0 þ c2n
00 ð157Þ

and are now given in terms of the experimentally determined quantities n0 and n00
given in Eq. (154).

We can make the transformation from variable c to variable [A1], using the

conservation relation:

c ¼
X1
n¼ 1

n½An� ¼
X1
n¼ 1

n½A1�nQn: ð158Þ

One then has

@w

@y
¼ hn2i

hni ;
@2w

@y2
¼ hn3i

hni � hn2i
hni

� �2

: ð159Þ

Defining the first three moments of the self-association distribution function as

M1 ¼ hni;M2 ¼ hn2i;M3 ¼ hn3i ð160Þ
we finally have expressions for these moments in terms of experimentally measured

quantities:
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M1 ¼ n0;
M2 ¼ M2

1=ð1� nð1Þ=M1Þ;
M3 ¼ fðM2=M1Þ2ðnð2Þ � nð1ÞÞ þ 3M1M2 � 2M3

1g=ð1� nð1Þ=M1Þ:
ð161Þ

We will use as an example of this method the association of ATP to form linear

clusters. This system has been studied using NMR techniques in the laboratory of

H. Sigel (Scheller et al., 1981). The ends of the clusters have a characteristic signal

in the NMR and hence one can measure the net concentration of clusters, hni, as a
function of the total ATP concentration (our variable c). Obtaining the average

cluster size as a function of total monomer concentration is the most difficult part

of this approach. The curve giving this data for the self-association of ATP on the

basis of the work of Scheller et al. (1981) is shown in Fig. 8.

Using the data on the average extent of clustering given in Fig. 8, one can then

construct the first three moments of the cluster distribution function using

Eq. (161). The maximum-entropy distribution function obtained from these

moments is shown in Fig. 9A. As was the case for ligand binding, given the cluster

probability distribution function, one can calculate the Qn coefficients in the

association polynomial of Eq. (146) and, in turn, the equilibrium constants for

the successive binding of monomers as indicated in Eq. (138). The equilibrium

constants obtained in this manner are plotted for n ¼ 2–5 in Fig. 9B. One sees that

for this system there is a subtle decrease in the magnitude of successive binding

constants as n increases.

In summary, we have seen that the moments/maximum-entropy method out-

lined in this chapter is a straightforward way to obtain distribution functions for

various molecular variables that characterize biological macromolecules. In this

method, one abstracts the appropriate set of moments from experimental data

such as the titration curve for lysozyme shown in Fig. 4, the heat capacity curve for

1

1.5

2

<n>

(M)

0 0.1 0.2 0.3 0.4

Fig. 8 The self-association of ATP giving the average number of ATP molecules in a cluster as a

function of the total amount of ATP. The curve is based on the data of Scheller et al. (1981) as

constructed by Poland (2002a). Reprinted from Poland (2001g), with kind permission of Elsevier

Science.
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barnase shown in Fig. 6, and the self-association curve for ATP shown in Fig. 8.

One then uses the maximum-entropy method to convert knowledge of moments

into parameters of the appropriate distribution function, giving, for the examples

just cited, the distribution functions for the number of protons bound to lysozyme,

the enthalpy of barnase, and the extent of association of ATP. In each case, one

gains detailed knowledge about the distribution of the appropriate states in

biological macromolecules.
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I. Introduction

Rhythmic phenomena are ubiquitous in biological processes, ranging from the

lunar estrus cycles of certain mammals to the millisecond periodic firing of nerve

cells (Rapp, 1987). This repetitive behavior is one of the signatures of living

systems and occurs across all levels from local biochemical reactions within a cell

to the large-scale periodicity in populations of animals. Rhythmicity is exceedingly

important and serves a diversity of functions including communication such as the

synchronization of fireflies; locomotor patterns for running, swimming, and chew-

ing; reproduction and menstrual cycles; growth such as the mitotic cycle; secretory

processes; and peristaltis and pumping as in the heart, lungs, and bowel.

Rapp (1987) argues that oscillatory behavior in biology is not an artifact or a

consequence of a breakdown in regulation. Rather, oscillations can lead to a number

of functional advantages. He cites five general categories: temporal organization,

entrainment, and synchronization; spatial organization; prediction of repetitive

events; efficiency; and frequency encoding of information and precision of control.

In spite of the vast number of examples of periodicity, the wide range of frequencies,

ESSENTIAL NUMERICAL COMPUTER METHODS
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and the astonishing range of purpose, there is a certain commonality in underlying

mechanisms, in how oscillators react to the external world, and how oscillators

behave in ensembles. Mathematics provides a tool for understanding this similarity.

The objective of this chapter is to describe some of the concepts underlying the

formation of biological oscillators and how they interact to create patterns. Obvi-

ously, a complete description of oscillatory processes and their analysis is impossible,

so a simple model of the glycolytic oscillator will serve as a guide for the techniques

described here. In the first section, oscillators and ‘‘near oscillators’’ are described,

and some typical mechanisms that lead to their behavior are proposed. In so doing,

some simple mathematical techniques for analyzing models are presented. In the

next section, the effects of external signals on oscillators are considered. The notions

of phase and phase resetting curves are defined and applied to the model biochemical

oscillator. In the final section, oscillators are coupled together into networks. Some

ways of studying these networks are briefly described.

II. Oscillators and Excitability

Many physical systems exhibit rhythmic activity, that is, some aspect of the

systems varies regularly in time. Many of the best known physical examples (e.g.,

the undamped spring, the pendulum) are poor metaphors for biological oscillators.

The pendulum, for example, can oscillate at arbitrary amplitudes, but as soon as the

slightest amount of friction is added the oscillations decay to rest. Biological oscilla-

tions have a particular robustness; when perturbed, they return to their original

magnitude and frequency. Small changes in the environment result in small changes

in the rhythm; however, the periodicity remains. For these reasons, this chapter is

restricted to a description of the behavior of limit cycle oscillators, that is, oscillators

that are locally unique (there exist no other ‘‘nearby’’ oscillations) and stable in the

sense that small disturbances quickly die away revealing the original rhythm. Almost

all models of biological rhythms have these properties (see Kopell, 1987 for details

on this point). This stability has important consequences when external stimuli

briefly alter the oscillator. The mechanisms that lead to biological oscillations are

intrinsically nonlinear; no linear system has robust limit cycle behavior. Further-

more, all biological oscillators require a constant influx of energy from the environ-

ment. In this sense, they are not like the conservative oscillations of classical physics.

Many systems are close to being oscillators but (1) damp slowly; (2) never quite

repeat their cycles but maintain a large amplitude; or (3) produce a large response

to a stimulus but then return to equilibrium. The first of these, damped oscillations,

often precedes the appearance of full rhythmicity as some intrinsic parameter is

varied. The second behavior is often erratic and arises in noisy systems and systems

that are deterministic but ‘‘chaotic’’ (Glass and Mackey, 1988). The final type of

‘‘near oscillation’’ is called excitable and plays a very important role in many

cellular and physiological processes. The existence of excitability often implies

that rhythmicity is possible in the presence of a steady applied stimulus.
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There are many ways in which biological materials can interact to cause rhyth-

micity. Many neuronal systems oscillate owing to two separate interactions: (1)

positive feedback and (2) delayed negative feedback. The basic idea is that the

positive feedback will cause some quantity to self-amplify. This amplification

induces a negative feedback which then shuts the original amplification down,

and the process is repeated. If the negative feedback is too fast, then it will shut the

first process down before it can get started so that no oscillations are possible.

Thus, it is necessary for the negative term to be delayed or slow relative to the

positive feedback. A biochemical analog is to posit an autocatalytic reaction (e.g.,

mediated by an enzyme whose efficiency is product dependent) and then a (possibly

long) cascade of reactions that eventually inhibit the production of the initial

substrate. Systems of this form are called activator-inhibitors and have been sug-

gested as mechanisms for pattern formation in development (Gierer andMeinhardt,

1972) and neurobiology (Edelstein-Keshet, 1988).

A secondmechanism for oscillation also involves autocatalysis. Here, however, the

autocatalysis of the first substance depends on the presence of the second substance

which is itself inhibited by the first. Systems of this type are called positive feedback

models. Positive feedback is commonly invoked for biochemical oscillations.

The glycolytic oscillator is an excellent example of a positive feedback oscillator.

Segel (1991) provides a set of detailed reactions and complicated equations for

modeling this important oscillator. Letting a denote the concentration of ATP and

g denote that of ADP, Segel derives

dg=dt ¼ ks½lFða; gÞ � g� � Fðg; aÞ; ð1Þ

da=dt ¼ s� smFða; gÞ � Gðg; aÞ; ð2Þ
where

Fða; gÞ ¼ aeð1þ aeÞð1þ gÞ2 þ Lace0ð1þ ace0Þ
Lð1þ ace0Þ2 þ ð1þ aeÞ2ð1þ g2Þ : ð3Þ

For each a, g fixed, F is a monotone increasing sigmoid nonlinearity. The main

controllable parameter is s, which is the normalized rate of substrate infusion. For

certain ranges of this parameter, there is a unique equilibrium point, and for s
sufficiently small it is stable. In other words, small perturbations of the system

result in a decay to rest. BecauseF increases in both variables, it is clear that both a
and g serve as negative feedback to a. Clearly, a acts positively on g, and if the slope

of F with respect to g is larger than 1 then g acts positively on itself. Thus, in some

parameter ranges, Eqs. (1) and (2) form a positive feedback system.

Enzymatic and biochemical models usually involve many more than two species,

but the essential mechanisms that lead to rhythmicity and excitability are easily

understood within the restrictions of a two-component model. In fact, many more

complicated models can be effectively reduced to two dimensions (Edelstein-

Keshet, 1988; Murray, 1989; Segel, 1991).
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Once one has devised a model that has the properties of positive feedback, it is

easy to analyze its behavior by taking advantage of the special properties of the

two-dimensional plane. This approach has been applied to numerous biological

systems including nerve membranes (Rinzel and Ermentrout, 1989), population

models (Edelstein-Keshet, 1988), and biochemical models (Segel, 1984). To discern

the behavior of a positive feedback system, it is helpful to determine several

important quantities. First, one seeks the equilibria which satisfy _a ¼ _g ¼ 0. This

usually involves solving systems of nonlinear algebraic equations, which is best

done by interactive computer analysis. There are several software packages avail-

able for this type of analysis. One of these is described at the end of this section.

Equilibria are physically meaningful only if they are also stable, that is, small

perturbations from rest damp out and return to the equilibrium state. This is a

seemingly difficult calculation; however, it is greatly simplified by taking advantage

of a mathematical fact. Having found an equilibrium, one need only compute the

matrix of partial derivatives, which for the glycolytic oscillator is

M ¼ @F=@g @F=@a
@G=@g @G=@a

� �
: ð4Þ

If the eigenvalues of the matrix have negative real parts, then the equilibrium is

stable; if any of them have positive real parts, it is unstable. Thus, the question of

stability is a purely local one. Again, this is an easy numerical calculation and is

often done automatically.

With these technical points inmind, it is possible to present a qualitative analysis of

the model. The curves defined by setting F(g, a) and G(g, a) to zero are called the

nullclines, and their intersections reveal the equilibria of themodel. They partition the

plane into regions where the variables are increasing or decreasing in time. Thus, by

following the trajectories of the differential equations in these regions, it is possible to

gain a global picture of the behavior. Suppose that the phase space picture is as shown

in Fig. 1. The key feature is that the positive-feedback component (in this model, g)
has a ‘‘kinked’’ nullcline. This is the essential feature for most dynamic phenomena in

biological systems. From the direction of the arrows, it is clear that small perturba-

tions from the unique equilibrium point decay back to rest. However, if the perturba-

tion is slightly larger, then there is a large amplification of ADP before everything

returns to rest. This iswhat ismeant by an excitable system; small perturbations decay

to rest but larger ones result in a big amplification of at least one of the components

before ultimately returning to the rest state. The existence of excitability virtually

guarantees that one can induce oscillations in the system by applying a constant

stimulus. All that is required is to push the equilibrium over into themiddle branch of

the nullcline of the autocatalytic variable. For the present model, this is implemented

by simply increasing the input, s. In Fig. 2A the oscillation is depicted in the phase

plane, and in Fig. 2B the normalized concentrations of ADP and ATP are graphed.

The appearance of this periodic solution is readily understood using techniques

from dynamic systems. Consider s small enough so that there is a unique equilib-

rium and it is stable. One can numerically follow the equilibrium as the s is
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increased and examine its stability at each point. Stability can be lost in either of

two ways: (1) a negative real eigenvalue crosses 0 and becomes a positive real

eigenvalue; or (2) a pair of complex conjugate eigenvalues with negative real parts

pass the imaginary axis and attain positive real parts. For this model, it is found

that the eigenvalues are complex, and at s ¼ s* they are both imaginary. For

s< s* the equilibrium is stable, and for s> s* the equilibrium is unstable. The loss

of stability by a pair of complex eigenvalues crossing the imaginary axis is the

signature for the well-known Hopf bifurcation. When this occurs, a periodic

solution to a set of differential equations branches or bifurcates from the branch

of equilibrium solutions. It is the main mechanism by which periodic solutions are

formed in biological models. Thus, in this simple model, increasing the rate of

substrate infusion leads to a destabilization of the equilibrium state and the

appearance of regular sustained oscillations. The Hopf bifurcation is not restricted

to planar models and has been applied to many higher dimensional systems in

order to prove that oscillatory behavior exists. Because the main requirement is

obtained by linearizing about a rest state, the Hopf bifurcation is a powerful means

by which parameters can be found that lead to oscillation.

It is important to realize that there are other paths to periodicity in models of

biology (see, e.g., Rinzel and Ermentrout, 1989) but that the Hopf bifurcation is

the most common route. In an experimental system, a hallmark is the existence of

very slowly damping oscillations. In the present example, the oscillation appears

only for s > s*, that is, only for parameters in which the steady state is not stable.

However, there are other models for which there are oscillations on both sides of

the critical value of the parameter. Then, as one passes from a stable equilibrium to

a
a= 0

g= 0
.

.

g

Fig. 1 Phase space diagram of an excitable system.
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an unstable equilibrium, there is a jump immediately to large oscillations. Decreas-

ing the parameter at this point maintains the oscillatory behavior well below the

critical parameter. This phenomenon is well known in biology and is called

hysteresis. In Fig. 3, a diagram for this form of hysteresis is shown. The model

for glycolysis does not have this kind of behavior, but there are many examples

which do (Rinzel and Ermentrout, 1989).
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A. Numerical Methods

Numerical and computer methods are an excellent aid to the analysis and

understanding of differential equation systems. There are a number of packages

that allow the user to input equations and then study their behavior. These

packages remove the burden of programming accurate numerical algorithms for

the computation of the trajectories, assessment of stability, drawing of nullclines,

and other useful techniques. One such program is PhasePlane (Ermentrout, 1989)

which runs under MSDOS. A Unix version is available through anonymous ftp at

math.pitt.edu in the /pub hardware subdirectory. Both versions compute trajec-

tories, draw nullclines, follow equilibria, and ascertain their stability. All simula-

tions in the rest of this chapter were performed using this tool.

III. Perturbations of Oscillators

A common experiment that can be done with an oscillatory preparation is called

phase resetting. This has been exploited clinically as a tool for resetting the circadian

pacemaker (Czeisler et al., 1989; Strogatz, 1990). Winfree (1980) describes phase

resetting experiments for many biological oscillators, and Glass and Mackey (1988)

have used these techniques to explore the behavior of embryonic heart cells. Buck

et al. (1981) apply this method to characterize the firefly oscillator. The technique

exploits a very important property of limit cycle oscillators. When a system is stably

oscillating, it is possible to define the phase of the oscillation as a number between

0 and 1 that uniquely defines the current state. Thus, one might set phase 0 to be

when ADP peaks. Phase 1/2 then corresponds to a point that is halfway through the

oscillatory cycle. Phase 1 is identified with phase 0 as the process is periodic.

se

s

|g
|

up

sp

ue

Fig. 3 Diagram illustrating hysteresis with an oscillator, sp, Stable periodic solutions; up, unstable

periodic; se, stable equilibrium; ue, unstable equilibrium.
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Suppose that one applies a brief stimulus to an oscillator (such as a pulse of

ADP) and that this stimulus is not so strong as to stop the oscillation. Then, after

some transients, the oscillation will return to its original state but will be phase

shifted relative to the unstimulated oscillation (see Fig. 4). The amount of the

phase shift depends on two things: (1) the quantitative form of the stimulus

(magnitude, duration, chemicals involved) and (2) the timing of the stimulus. In

other words, if the stimulus properties are kept constant, then the amount that the

phase is shifted depends on the part of the cycle at which the stimulus is presented.

For a given stimulus protocol, a function called the phase transition curve (PTC)

can be defined which maps the phase at which the stimulus occurs to the new phase

after the stimulus. This is easily measured and provides a means by which the

response of an oscillator to periodic stimulation and other oscillators can be

studied and modeled. If the phase is denoted by y then the map is given by

y 7!Fðy;MÞ;
where M is the magnitude of the stimulus. Clearly, F(y, 0) ¼ y as no stimulus

results in no phase shift.

There are two qualitatively different PTCs possible: type 0 and type 1. In the

latter, the function F obtains all values between 0 and 1 and is thus qualitatively

like having no stimulus. More precisely, one requires that @F/@ y > 0. For type 1

PTCs, one often computes the phase difference, D(y, M) ¼ F(y, M) � y which

measures the degree of phase advancement or delay caused by the stimulus.

T

τ

t

Stimulus

Fig. 4 Effect of a pulse on an oscillator showing the phase shift. Here, T is the unperturbed period of

the oscillation, and t is the phase delay, so that D ¼ � t/T.
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Alternatively, one can view D as the change in the period of the oscillator as a

function of the timing of the stimulus; phase advances shorten the period, and

phase delays lengthen it. Figure 5 shows the phase difference curve for the glyco-

lytic model under a stimulus that consists of a small pulse of ADP. If the stimulus

occurs ahead of the ADP maximum, then the oscillator advances in phase, and if it

occurs before the ADP maximum, then the oscillator is delayed. The phase

difference curve, D(y,M) shows that one can advance the phase by a much greater

amount than it is possible to delay it. This is typical of biological oscillators.

Type 0 phase resetting requires a much stronger stimulus and is characterized by

the fact that the new phase is always in some subset of the full range of phases. In

Fig. 6, D for the glycolytic oscillator is shown for a large pulse of ADP as the

stimulus. Here, D is discontinuous, showing that the PTC is type 0. This strong

type of phase resetting has been shown to occur in the human circadian pacemaker.

For very strong stimuli at critical phases, it is possible to stop an oscillator

completely. This is particularly true of the hysteretic oscillators described in

Section II. Gutmann et al. (1980) use this effect to show how well-timed stimuli

could be used to turn on and off the repetitive firing of the squid axon. When such

stimuli are presented, the notion of the PTC no longer exists as the oscillation has

been stopped. Thus, the computation of the PTC is most useful when it is type 1.

Once the PTC has been computed, it can be used to explore the effects of

periodically forcing the oscillator. This leads to a wide range of experiments that
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Fig. 5 Phase difference curve for the glycolytic model; D for a short pulse showing a weak resetting.
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can be used to study the oscillator. Suppose the PTC is given by F(y). The

dependence on magnitude has been dropped as the periodic stimulus will always

have the same magnitude. Suppose that the stimulus is presented every T seconds

and suppose that the period of the unperturbed oscillator is t. Let r denote the ratio
T/t so that if r¼ 1, the stimulus has the same period as the oscillator. Let yn denote
the phase of the oscillator right before the nth application of the stimulus. After the

stimulus, the phase is F(yn). Then, between stimuli, the oscillator will advance by

an amount, r, so that right before the next stimulus,

ynþ1 ¼ FðynÞ þ r � GðynÞ: ð5Þ
One can ask what possible forms of behavior are possible for Eq. (5). The most

common and often the most desirable behavior is called p:q phase locking. In p:q

locking, the oscillator advances p cycles for every q cycles of the stimulus. This

implies that yn þ q ¼ yn þ p or, using Eq. (5),

yþ p ¼ GqðyÞ; ð6Þ
where Gq means q iterates of G. For example, 1:1 locking occurs when there is a

solution to

FðyÞ � y � DðyÞ ¼ 1� r:

From Fig. 5, it is clear that it is possible to achieve 1:1 locking for stimuli that are

much faster than the oscillator (r< 1 and thus 1� r is positive). In contrast, only a

very limited range of forcing periods higher than the natural frequency are allowed.
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Fig. 6 Phase difference curve; same as Fig. 5, but with a strong pulse showing type 0 resetting.
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More exotic types of phase locking are possible as well as non-phase-locked

behavior. One can define something called the rotation number, r, which is

r ¼ lim
n!1

yn
n
: ð7Þ

For p:q locking, this ratio is exactly p/q. The rotation number as a function of the

stimulus period yields a very interesting plot known as the ‘‘devil’s staircase’’

(shown in Fig. 7). Each oscillator has a different signature. The flat plateau regions

are areas of p:q locking; the largest regimes are 2:1 and 1:1. If one expands one of

the sloped regimes, smaller plateaus are found.

The technique of PTCs is not foolproof; there are several ways in which one can

be misled. The principal assumption in the use of PTCs is that the perturbation is

such that the oscillator very quickly returns to its stable cycle. Otherwise, one must

wait for the transients to decay before measuring the phase lag. If the transients are

long, however, then the PTC cannot be used to model periodic stimulation unless

the period between stimuli is very long.

The method of PTCs is a powerful tool for exploring nonlinear oscillations. It

allows the experimenter to quantify the effects of different stimuli and to use these

to predict the effects of more complex stimuli from those obtained from a simple

protocol. As shown in the next section, the PTC can also be used as a basis for

studying many coupled biochemical oscillators.

0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.4 0.6

‘devil . dat’

0.8 1

Fig. 7 ‘‘Devil’s staircase’’ for the glycolytic oscillator showing rotation number as a function of the

stimulus period, r.

13. The Mathematics of Biological Oscillators 303



IV. Coupled Oscillators

Very few biologically important oscillators occur in isolation. More generally,

many are coupled together by a variety of means. The chemical oscillators such as

the glycolytic oscillator are coupled via diffusion of the relevant chemical species. In

humoral systems such as the b cells of the pancreas, coupling is via gap junctions. The
nervous system achieves coupling through synapses. Southeast Asian fireflies, which

congregate in trees and flash in synchrony, are coupled via the visual responses to

neighboring flashes. Thus, one can justifiably ask whether any general principles can

emerge from these diverse phenomena. In many physiologically interesting cases, the

answer is a surprising yes. As should be expected, it is very difficult to say anything

about a general systemof coupled oscillators.However, in somephysically interesting

circumstances, emergent properties of the network can be understood and classified.

If the only ‘‘model’’ available is an experimental one, then one can use the PTC as a

tool for simulating a network, but a mathematical analysis is difficult. Such a

technique is described below. On the other hand, if a specific mathematical model is

known to be a good approximation of a single oscillatory component, then there are

severalmathematical techniques that can be applied to reduce the coupled system to a

new set of equations that is mathematically tractable.

A. Coupling Using PTCs

If one has computed the PTC of an oscillator for a particular stimulus protocol,

then it is sometimes possible to use this as a model for the behavior of a coupled

system. For oscillators that are mainly quiescent and produce only small pulses of

activity, the PTC can be a useful tool for modeling coupling. Consider a pair of

oscillators and let y1, y2 denote their respective phases. Suppose that the only

interaction between them is short lasting and pulsatile, and let P(y) denote the

magnitude of the pulse as a function of the timing of the oscillator (i.e., its phase.)

Let D(y) denote the phase-difference function as computed from the PTC, that is,

the degree of advance or delay of the cycle owing to the pulse. Leto1,o2 denote the

intrinsic frequencies of the two oscillators and assume they are symmetrically

coupled. Then a simple model is

dy1=dt ¼ o1 þ Pðy2ÞDðy1Þ; ð8Þ

dy2=dt ¼ o2 þ Pðy1ÞDðy2Þ: ð9Þ
In the absence of coupling, each oscillator traverses its cycle with a period of

1/oj. A pulse from oscillator 1 causes a phase shift in oscillator 2 and vice versa.

This type of model has been explored by Winfree (1967), Ermentrout and Kopell

(1991), and Strogatz and Mirollo (1990). Typically, one is interested in the exis-

tence of p:q phase-locked solutions. For a solution to be p:q phase-locked, there

must exist a T > 0 such that
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y1ðtþ TÞ ¼ y1ðtÞ þ p

y2ðtþ TÞ ¼ y2ðtÞ þ q

for all t. A 1:1 phase locking in which each oscillator fires once per cycle is the most

common type of locking observed in biological networks. As in the case of forced

oscillators, it is possible to define the rotation number and to create plots like the

devil’s staircase for a pair of coupled oscillators.

More generally, one is concerned with a population of oscillators. The generali-

zation of Eqs. (8) and (9) leads to

dyj=dt ¼ oj þ
XN
j¼1

PjkðykÞ
 !

DjðyjÞ; ð10Þ

wherePjk is the pulse felt by oscillator j from oscillator k,oj is the intrinsic frequency,

andDj is the phase difference function owing to a pulse. Themathematical analysis of

equations such as Eq. (10) is incomplete.Most results have dealt onlywith specialized

connectivities such as ‘‘all-to-all’’ geometry where each oscillator sees all of the other

oscillators in the network. Because of the difficulty of analyzing this type of model, it

has not been applied to awide variety of systems. The results ofMirollo (1993) can be

applied to Eq. (10) if all of the oscillators are identical and are coupled symmetrically

in a ring. For systems of this type, it is possible to show the existence of traveling

waves, and so the model may be applicable to systems with circular geometry such as

the stems of plants (Lubkin, 1992) or the small bowel (Linkens et al., 1976).

B. Averageable Coupling

The technique of using the PTC to study coupled oscillators applies for pulsatile

coupling and is useful as a simulation tool for an experimental system. Naturally, if

one has equations such as Eqs. (1) and (2), then the PTC can again be used to

model networks of these oscillators. However, as noted above, these systems are

difficult to analyze mathematically. Furthermore, if the coupling is through diffu-

sion, then a pulsatile type of interaction is a poor approximation. A better tech-

nique would use the fact that interactions are occurring throughout the cycle and

are not restricted to a small portion of it. If coupling between the components of a

network of oscillators (or only a pair for that matter) is small enough so that the

rhythms are not pulled far from their uncoupled behavior, then a powerful tech-

nique called the method of averaging is applicable. Averaging is a technique

whereby the interactions between two or more oscillators are averaged over a

cycle. The result of this averaging is the calculation of an interaction function

(one for each input from another oscillator). Unlike PTC coupling, in averaged

coupling, the effect of one oscillator on the other depends only on the phase

differences between the two oscillators, that is, the relative phase. This is intuitively

reasonable as the interaction is averaged over a complete cycle. Because the phase

difference between two oscillatory processes is often the only measurable quantity,

this approach is very useful in biology (Cohen et al., 1992).

As in the previous section, let y1 and y2 denote the respective phases of two

oscillators. Then, after averaging, the coupled system satisfies an equation of the form
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dy1=dt ¼ o1 þH21ðy2 � y1Þ; ð11Þ

dy2=dt ¼ o2 þH12ðy1 � y2Þ: ð12Þ
As before, oj is the uncoupled frequency, and Hjk is an interaction function that

depends only on the difference of the two phases. Equations (11) and (12) result

when one seeks 1:1 phase-locked behavior. Other types of p:q locking lead to slightly

different equations (Ermentrout, 1981). The computation of Hjk is easily done for a

given model (Ermentrout and Kopell, 1991), and some software packages (XPP

available from the author and described in Section II) will automatically compute

the interaction functions given the form of the coupling. As an example, suppose

that a pair of glycolytic oscillators is coupled via diffusion of the two principal

components. Then, one obtains a four-dimensional system of equations:

dg1=dt ¼ ks½lFða1; g1Þ � g1� þDgðg2 � g1Þ; ð13Þ

da1=dt ¼ s� smFða1; g1Þ þDaða2 � a1Þ; ð14Þ

dg2=dt ¼ ks½lFða2; g2Þ � g2� þDgðg1 � g2Þ; ð15Þ

da2=dt ¼ s� smFða2; g2Þ þDaða1 � a2Þ: ð16Þ

In Fig. 8, the interaction functionsH12 ¼H21 are drawn for Dg ¼ 0, Da ¼ 0, and

Dg ¼ Da. If the only knowledge of the intrinsic oscillator comes from the compu-

tation of the PTC, then it is still possible to approximate the interaction function as
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Fig. 8 Averaged interaction functions for diffusively coupled glycolytic oscillators. The solid line

shows the interaction if only ADP diffuses, the long dashed line shows only ATP diffusion, and the short

dashed line shows the interaction if both species diffuse equally.
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HðfÞ ¼ 1

T

ðT
0

Pðxþ fÞDðxÞdx; ð17Þ

where D is the function computed from the PTC and P is an approximation of the

pulse interaction.

Equations (11) and (12) have a major advantage over the PTC analogs as the

question of phase locking and the ensemble (or coupled) frequency are readily

accessible. Let f ¼ y2 � y1. Then, the phase difference between the two oscillators,

f satisfies

df=dt ¼ o2 � o1 þH12ð�fÞ �H21ðfÞ � gðo2 � o1;fÞ: ð18Þ
A rest state for Eq. (18) implies that the oscillators are phase-locked as their

phase relationship remains fixed for all time. Thus, 1:1 locking occurs if and only if

the scalar equation g(d, f) ¼ 0 has a root where d is the frequency difference

between the two oscillators. Having found such a root, the ensemble frequency is

given by

O ¼ o1 þH21ðfÞ ¼ o2 þH12ðfÞ:
This calculation shows that the ensemble frequency is not necessarily the highest

one; rather, it is a consensus of the two frequencies. For example, if one takes

H12(f) ¼ H21(f) ¼ sin(f), then O ¼ (o1 þ o2)/2, the average of the frequencies.

Equation (18) also shows that if the two oscillators have widely different

frequencies, then locking is impossible. In other words, because the interaction

functions are bounded and periodic, if the frequency difference gets too large, then

no roots to g(d, f) can be found and the oscillators ‘‘drift’’ apart.

This form of modeling oscillators is powerful and can be extended to many

oscillators having the form

dyj=dt ¼ oj þ
XN
k¼1

Hkjðyk � yjÞ: ð19Þ

Phase locking reduces to finding roots to a set of nonlinear functions. For many

geometries, this can be done explicitly. For example, Kuramoto (1984), Strogatz

and Mirollo (1990), and Ermentrout (1985) have explored Eq. (19) when Hjk(f) ¼
sin(f); Cohen et al. (1982) and Kopell et al. (Kopell and Ermentrout, 1986; Kopell

et al., 1990) have looked at chains with nearest neighbor coupling; Ermentrout

(1986) considers rings of oscillators; Paullet and Ermentrout (1994) analyze a sheet

of oscillators; and Ermentrout (1992) gives conditions for the existence of phase

locking of Eq. (19) under very general conditions.

The techniques of this section have been successfully used to suggest and predict

properties of the lamprey spinal cord (see Cohen et al., 1982 for a review of this

work.) Glass and Mackey (1988) have applied similar models to discern the firing

times of heart pacemakers.

The mathematical techniques described in this and the preceding sections are

applicable to many physical and biological preparations. The dynamic systems
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theory of oscillators, including phase plane techniques, bifurcation theory, and

averaging, provides a framework for further experimentation and simulation. The

methods described here are by no means exhaustive; in particular, no statistical

methods such as spectral analysis are considered. Nevertheless, the methods of this

chapter are well suited for building a comprehensive mathematical theory of

biological rhythms.
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I. Introduction

Important features of different endocrine systems emerge from the interplay

between their components. The networks discussed in this chapter (e.g., Figs. 2, 9,

10, 12) are typical in endocrine research and are used to exemplify regulatory

hypotheses. Traditionally, the individual components of these networks are stud-

ied in isolation from the rest of the system, and therefore, their temporal relation-

ships cannot be assessed. As a result, the mechanism of some key specifics of the

system behavior, such as for example its ability to oscillate, which are the result of
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the time-varying interactions of several components cannot be recovered. Differ-

ential equations-based modeling of endocrine networks outlined in this chapter

allows for the reconstruction of the dynamic interplay between different hormones

and is therefore suitable for the analysis of the structure and behavior of complex

endocrine feedback networks.

Since its original publication, the methodology has been utilized in the analysis

of different endocrine axes and physiological problems. For example, the growth

hormone control network, which is similar to the abstract networks discussed in

this chapter (See ‘‘Networks with Multiple Feedback Loops’’), has been studied in

Farhy and Veldhuis (2003, 2004) to determine the mechanisms driving its oscilla-

tory behavior. Subsequently, the effects of growth hormone secretagogues in

general and the hormone ghrelin in particular have been added to the system and

analyzed in detail (Farhy and Veldhuis, 2005; Farhy et al., 2007). More recently

(Farhy and McCall, 2009a,b; Farhy et al., 2008; see also Chapter 24 in this

volume), the methodology was applied to the glucagon control network in an

effort to understand the system-level network control mechanisms that mediate

the glucagon counterregulation and their abnormalities in diabetes. These reports

exemplify the key role played by the methods presented here within an interdisci-

plinary approach in which model-based predictions motivate experimental work,

the results of which feed back on the modeling effort. In addition, the results in

Farhy and McCall (2009b) exemplify the reduction of the number of nodes of a

network in an attempt to diminish the model complexity without affecting its

performance, and permitting its clinical application as described in ‘‘Networks

with Multiple Feedback Loops’’. We have added a new paragraph to this chapter

to warn that after any network reduction, the performance of the new simplified

model need to be verified (‘‘Summary and Discussion’’).

The methods described in this Chapter are more appropriate to reconstruct the

general ‘‘averaged’’ macroscopic behavior of a given endocrine system rather than

to establish its microscopic behavior or the molecular mechanisms that govern this

behavior. It is also important to note that these methods are intended to provide

means for in silico analysis (simulations). Any effort to use the underlying models

to fit data and reconstruct/measure individual parameters should be carried out

with care because of the nonlinearity of the model equations and the interdepen-

dence of the model parameters.

Finally, we have recently published a more comprehensive presentation of the

methodology outlined in the current chapter with additional mathematical and

biological background and a laboratory manual (Robeva et al., 2008). The text (and

in particular , Chapter 10 fromRobeva et al., 2008) is intended as a detailed introduc-

tion to the methods for modeling of complex endocrine networks with feedback.

II. General Principles in Endocrine Network Modeling

Numerous studies document that the hormone delivery pattern to target organs is

crucial to the effectiveness of their action. Hormone release could be altered by

pathophysiology, and differences in endocrine outputmediate important intraspecies
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distinctions, for example, some of the sexual dimorphism in body growth and gene

expression in humans and rodents. Accordingly, the mechanisms controlling the

dynamics of various hormones have lately become the object of extensive biomedical

research. Intuitive reconstruction of endocrine axes is challenged by their high

complexity, because of multiple intervening time-delayed nonlinear feedback and

feedforward inputs from various hormones and/or neuroregulators. Consequently,

quantitative methods have been developed to complement qualitative analysis and

laboratory experiments and reveal the specifics of hormone release control. The

emerging mathematical models interpret endocrine networks as dynamic systems

and attempt to simulate and explain their temporal behavior (Chen et al., 1995;

Farhy et al., 2001, 2002; Keenan and Veldhuis, 2001a,b; Wagner et al., 1998).

This chapter focuses on the mathematical approximation of endocrine oscilla-

tions in the framework of a modeling process structured in three formal phases:

1. Data analysis (examining the available data).We start by studying the available

observations and experimental results, by examining the hormone time series, and

determining the specifics of the observed profiles. This might include pulse detection,

analysis of the variability and orderliness, verifying the baseline secretion and half-

life, and detecting the frequency of the oscillations.We identify those phenomena that

should be explained by themodeling effort, for example, some specific property of the

hormone profiles, combined with selected feedback experiments.

2. Qualitative analysis (designing the formal network). This stage uses the

information collected in phase 1 and outlines an intuitive functional scheme of

the systems underlying physiology. Qualitative analysis of the available data

(Friesen and Block, 1984) identifies the key elements and their interaction, and

organizes them as a set of nodes and conduits in a formal endocrine network. The

main hypothesis states that this formal network explains the selected in phase 1

specifics in the experimental data.

3. Quantitative analysis (dynamic modeling). At this phase, the endocrine net-

work is interpreted as a dynamic system and described with a set of coupled

ordinary differential equations (ODE). They give the time derivative of each

network node and approximate all system positive and negative dose-responsive

control loops. The parameters in the ODEs must have a clear physiological

meaning and are determined by comparing the model output with the available

data (phase 1) as we attempt to address the main hypothesis (phase 2).

The outcome of the modeling effort is a conditional answer to the main hypoth-

esis. It formulates necessary physiological assumptions (additional to the main

hypothesis) that would allow the formal network to explain the observed data

specifics. This further refines the hypothesis and generates new questions to be

addressed experimentally.

The general modeling scheme anticipates that the qualitative analysis of the

hormone secretion dynamics outlines the formal endocrine network by determining

its nodes and conduits. As previously discussed (Friesen and Block, 1984), the main

source of oscillations in biology is feedback loops with delay. However, not every

network with feedback generates periodic behavior (Thomas et al., 1990). Themain

goal of this work is to illustrate via a series of abstract examples different conditions

14. Modeling of Endocrine Networks 311



under which oscillations can emerge. To this end, we perform quantitative analysis

on various abstract endocrine networks, interpreted as dynamic systems. Thus, we

will be mainly concerned with phase 3 (previous) and its relations to phases 1 and 2.

We start by describing the approximation of the basic element of an endocrine

network: the dynamics of the concentration of a single hormone controlled by one or

more other regulators (system nodes). Further, this is used in the simulation and

analysis of different feedback networks. Themain concepts are illustrated on abstract

2-node/1-feedback reference models. System parameters are introduced on the basis

of their physiological meaning and the effect of their modification is examined.

Oscillations due to perturbations of systems with damped periodicity are distin-

guished from oscillations of systems with a true periodic solution (limit cycle).

Additionally, we simulate basic laboratory experimental techniques, discuss some

of their limitations, and suggest alternatives to reveal more network details.

It should be noted that the theory behindmost of the examples in this chapter is not

trivial. This is especially valid for those models that include one or more direct delays

in the core system.We avoid the abstract mathematical details to make the presenta-

tion accessible to a variety of bio-scientists. The simulated networks are abstract and

do not correspond to a particular endocrine system. However, the constructs and the

modeling techniques can be easily adapted to fit a particular physiology.

III. Simulating the Concentration Dynamics of a Single Hormone

In this section, we describe the quantitative approximation of the concentration

dynamics of a single hormone in an abstract pool, where it is secreted (not synthe-

sized). As described elsewhere (Veldhuis and Johnson, 1992), we assume that the

hormone concentration rate of change depends on two processes—secretion and

ongoing elimination. The quantitative description is given by the ODE

dC

dt
¼ �aCðtÞ þ SðtÞ: ð1Þ

Here, C(t) is the hormone concentration in the corresponding pool, t is the time,

S(t) is the rate of secretion, and the elimination is supposed to be proportional to

the concentration.

Deconvolution technique, employed to describe hormone pulsatility (Veldhuis and

Johnson, 1992), can be used as an alternative approach to introducing Eq. (1). In this

context, the observed hormone concentration is described by a convolution integral

CðtÞ ¼
ðt
0

SðtÞEðt� tÞdt; ð2Þ

where S is a secretion function and E describes the removal of the hormone from

the pool. For the purposes of this presentation, E is required to correspond to a

model with one half-life. In particular, we assume that the elimination function

E(t) satisfies the initial value problem
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dEðtÞ
dt

¼ �aEðtÞ;

Eð0Þ ¼ 1

ð3Þ

with some rate of elimination a> 0. Consequently, it is easy to see that Eqs. (2) and

(3) imply that the right-hand side of Eq. (1) describes the rate of change of C(t).

And as the solution of Eq. (3) is the function E(t) ¼ e-at, the hormone concentra-

tion [the solution of Eq. (1)] is described as the convolution integral

CðtÞ ¼
ðt
0

SðtÞe�aðt�tÞdt:

Now, suppose that the secretion rate S ¼ SA (of a hormone A) does not depend

explicitly on t and is controlled by some other hormone B. We write SA ¼
SA[CB(t)], where CB(t) is the concentration of B. In the sequel, SA is called a

control function and its choice, albeit arbitrary to some extent, should conform

to a set of general rules.

1. Minimal and maximal endogenous levels: Denote by CA,min and by CA,max

the minimal and maximal values (experimentally established or hypothetical) for

the concentration of hormone A. Typically (but not always), CA,min is associated

with the baseline secretion and CA,max corresponds to the maximal attainable

concentration of endogenous A (in a variety of conditions, including responses

to external submaximal stimulation). Accordingly, the control function SA must

satisfy the inequalities

CA;min=a � minðSAÞ � maxðSAÞ � CA;max=a:

2. Monotonous and nonnegative: The control function must be nonnegative, as

the secretion rate is always nonnegative and monotone (with some rare exceptions

briefly mentioned in the sequel). It will be monotone increasing if it represents a

positive control. If the control is negative, it will be decreasing.

There are many ways to introduce a control function in an acceptable mathe-

matical form. As many authors do, we use nonlinear, sigmoid functions, known as

up- and down-regulatory Hill functions (Thomas et al., 1990):

FupðdownÞðGÞ ¼

½G=T �n
½G=T �n þ 1

ðupÞ
or

1

½G=T �n þ 1
ðdownÞ

8>>>><
>>>>:

ð4Þ

where T > 0 is called a threshold and n � 1 is called a Hill coefficient. It should be

noted that Fup¼ 1� Fdown and Fup(down) (T)¼ 1/2. These functions are exemplified

in the plots in Fig. 1 (for n ¼ 5 and T ¼ 50). They are monotone and map

F: [0, 1) ! [0, 1]; the Hill coefficient n controls the slope (which also depends

on T), and the inflection point IF is given by
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IF ¼ T
n� 1

nþ 1

� �1
n

for n � 2:

When n ¼ 1 (Michaelis-Menten type equation), the function has no inflection

point and its profile is a branch of a hyperbola. If n is large [values, as large as 100,

exist in biology (Mikawa et al., 1998; Vrzheshch et al., 1994)] the control function

acts almost as an on/off switch.

Using Hill functions, we write the term controlling the secretion of A in the form

SAðCBÞ ¼ aFupðdownÞðCBÞ þ SA;basal; ð5Þ
where SA,basal � 0 is independent of B and controls the basal secretion of A. The

quantities (a þ SA,basal)/a and SA,basal/a represent the previously mentioned CA,max

and CA,min, respectively.

As mentioned earlier, on certain occasions, the monotonousness of the control

function may be violated. For example, it might happen that at low to medium

concentrations a substance is a stimulator, while at high concentrations it is an

inhibitor. Thus, the control function is nonmonotonous and can be written as a

combination of Hill functions (Thomas et al., 1990):

SAðGÞ ¼ a
½G=T1�n1

½G=T1�n1 þ 1

1

½G=T2�n2 þ 1
; T1 < T2:

Next, assume that instead of one, two hormones control the secretion of A. We

denote them by B and C with corresponding concentrations CB(t) and CC(t). The

control function SA ¼ SA(CB, CC) depends on the specific interaction between A

from one side, and B and C from another (Thomas et al., 1990). For example, if

both B and C stimulate the secretion of A

SAðCB;CCÞ ¼ aBFupðCBÞ þ aC FupðCCÞ þ SA;basal; ð6Þ
if B and C act independently,

20
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Fig. 1 Exemplary profiles of up-regulatory (A) and down-regulatory (B) Hill functions. In both

examples n ¼ 5 and T ¼ 50.
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SAðCB;CCÞ ¼ aFupðCBÞFupðCCÞ þ SA;basal ð7Þ
or, if B and C act simultaneously (the secretion of A requires the presence of both).

On the other hand, if, for example, the secretion of A is stimulated by B, but

suppressed by C, the control function can be introduced as

SAðCB;CCÞ ¼ aFupðCBÞFdownðCCÞ þ SA;basal ð8Þ
or

SAðCB;CCÞ ¼ aBFupðCBÞ þ aCFdownðCCÞ þ SA;basal ð9Þ
Note, that Eq. (8) simulates a noncompetitive and simultaneous action of B and

C. If B and C compete as they control the secretion of A, the secretion term can be

described with a modified Hill function:

SAðCB;CCÞ ¼ a
ðCB=TBÞnB

ðCB=TBÞnB þ ðCC=TCÞnC þ 1
þ SA;basal: ð10Þ

IV. Oscillations Driven by a Single System Feedback Loop

In this section, we discuss in detail networks with a single (delayed) feedback

loop that can generate oscillatory behavior. We focus on 2-node/1-feedback net-

works, in which the concentration of one hormone A regulates the secretion of

another hormone B, which in turn controls the release of A. This construct can

generate oscillations, even if there is no explicit (direct) delay in the feedback.1

However, in this case, the oscillations will fade to the steady state of the system.

A nonzero delay and a large nonlinearity in the control functions (sufficiently high

Hill coefficients) guarantee steady periodic behavior, because of the existence of a

nontrivial limit cycle. On the other hand, a network may incorporate a single

feedback loop by means of only one or more than two nodes. We comment on

some peculiarities of such models in the last section.

A. Formal 2-node/1-Feedback Network

We study the abstract endocrine networks shown in Fig. 2. These particular

examples anticipate that two hormones, A and B, are continuously secreted in

certain pool(s) (systemic circulation, portal blood, etc.), where they are subject to

elimination. The release of hormone B is up-(down-)regulated by hormone A.

Hormone B itself modulates negatively (positively) the secretion of A. The A/B

interactions are assumed to be dose responsive. The resulting delayed control loop

is capable of driving hormone oscillations, if certain conditions (discussed later)

are provided.

1 The thresholds in the control functions provide implicit delays in the corresponding conduits.
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To formalize the networks depicted in Fig. 2, we denote the concentrations of

hormones A and B by CA(t) and CB(t), respectively. We assume that the elimina-

tion of each hormone is proportional to its concentration with positive constants a
and b. The secretion rate SA of A is supposed to depend on the history of the

concentration of B and vice versa. In particular, we assume that SA(t) ¼
SA{h1[CB(t)]} and SB(t) ¼ SB{h2[CA(t)]}. The functional h1 (h2) incorporates the

lag in the action of B on A (A on B). To formally introduce the delays, one can

account for the time-averaged effect of the hormone action in a past time interval

related to the current moment (Keenan and Veldhuis, 2001a). However, this

method requires two parameters for each delayed action—the onset and the

termination of the delayed action (Keenan and Veldhuis, 2001a). Here, to keep

the model as minimal as possible, we use a ‘‘direct’’ delay (with only one parameter

for each delayed control action) and assume that the secretion control functions

can be written as

SAðtÞ ¼ SA½CBðt�DBÞ� and SBðtÞ ¼ SB½CAðt�DAÞ�

with some nonnegative delay times DA and DB. Then, the system of ordinary

(nonlinear) delayed differential equations, which describes a formal two-node/

one-feedback endocrine network (Fig. 2), has the form

dCA

dt
¼ �aCAðtÞ þ SA½CBðt�DBÞ�;

dCB

dt
¼ �bCBðtÞ þ SB½CAðt�DAÞ�

ð11Þ

with some elimination constants a, b > 0, lag times DA, DB � 0, and secretion rate

control functions SA, SB � 0.

Elimination

Elimination

A B

(−)

(−)

(+)

(+)

A A

B B

D D

Elimination

Elimination

Fig. 2 Formal network of a two-node/one-feedback oscillator. (A) A network in which the main

hormone B is stimulated; (B) a model in which B is inhibited. D denotes a delay in the interconnection.

In both networks, A and B are subject to elimination.
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B. Reference Systems

To describe the dose-responsive relationships between A and B, corresponding

to the network from Fig. 2A, we use the recommendations outlined in ‘‘Hormone

release approximation’’ [Eq. (5)]. We write the control functions that appear in (11)

as follows:

SA½CBðt�DBÞ� ¼ aFdown½CBðt�DBÞ� þ SA;basal;
SB½CAðt�DAÞ� ¼ bFup½CAðt�DAÞ� þ SB;basal:

With this special choice, the core system first-order nonlinear differential equa-

tions, describing the network from Fig. 2A, have the form

dCA

dt
¼ �aCAðtÞ þ SA;basal þ a

1

½CBðt�DBÞ=TB�nB þ 1
;

dCB

dt
¼ �bCBðtÞ þ SB;basal þ b

½CAðt�DAÞ=TA�nA
½CAðt�DAÞ=TA�nA þ 1

:
ð12Þ

The units in this model are as follows:

CA;CB;TA;TB mass=volume;
a; b;SA;basal;SB;basal mass=volume=time;

a; b time�1;
DA;DB time:

However, in the sequel, we avoid specifying the specific unit and the simulated

profiles have arbitrary magnitude, which could be rescaled with ease to fit a desired

physiology.

In most of the simulations, we assume no basal secretions and a direct action of

A on B (no delay). This transforms the core equations [Eq. (12)] into

dCA

dt
¼ �aCAðtÞ þ a

1

½CBðt�DBÞ=TB�nB þ 1
;

dCB

dt
¼ �bCBðtÞ þ b

½CAðtÞ=TA�nA
½CAðtÞ=TA�nA þ 1

:
ð13Þ

Note, that solving these equations for t � t0 requires the initial condition for CB

to be given on the entire interval [t0 � DB, t0].

From the special form of Eq. (13), we could easily derive that after some time

(depending on the initial conditions), the solutions will be bounded away from zero

and from above. More formally, for any e> 0 (and we may choose e as small as we

like), there exists t0 > 0 (depending on e, the initial conditions, and the system

parameters), such that for t > t0 the following inequalities hold and provide upper

and lower bounds on the solution of Eq. (13):
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0 <
a

a
1

ðb=½bTB�ÞnB þ 1
� e � CAðtÞ � a

a
þ e;

0 <
b

b
1

ðTA=min CAÞnA þ 1
� e � CBðtÞ � b=bþ e:

ð14Þ

The upper bounds above are absolute system limits. For example, the model

response to exogenous A-bolus cannot exceed the value b/b. However, as CA < a/a,
we get from Eq. (14) that the actual endogenous peak concentration of B will never

reach b/b. In fact, if there is no external input of energy in the system, it will be less than

CBðtÞ � b

b
1

ðaTA=aÞnA þ 1
<

b

b
: ð15Þ

Hence, changes in four parameters (a, a, nA, TA) can model a difference between

the maximal amplitude of the internally generated peaks and the eventual response

to external stimulation. All estimates may be refined through a recurrent procedure

inherent in the core system [Eq. (13)]. For example, one can combine the two

inequalities Eq. (14) to get an explicit lower bound for CB:

b

b
1

aTA½ðb=½bTB�ÞnBþ1�
a

n onA þ 1
� CBðtÞ: ð16Þ

Accordingly, we can use this to write an explicit upper bound for CA:

CA � a

a
1

CB;min

TB

� �nB þ 1
� a

a
1

M
TB

� �nB þ 1
;

where

M ¼ b

b
1

aTA

b

bTB

� �nB

þ1

� �

a

8>><
>>:

9>>=
>>;

nA

þ 1

:

These inequalities can help determine reasonable values for the model

parameters.

It is easy to see that (as the control functions are monotonously decreasing and

increasing) the system Eq. (13) has a unique fixed point (steady state). It can be

shown that if there is no delay (DA ¼ DB ¼ 0), the fixed point is asymptotically

stable (a node or a focus) and attracts all trajectories in the phase space (Fig. 3A).

However, even a single nonzero delay [as in Eq. (13)] might change the properties

of the steady state. The particular stability analysis is nontrivial, and consists of

investigating the real part of eigenvalues, which are roots of equation containing a

transcendental term, involving the delay. In the examples that follow, we will

encounter one of the two situations depicted in Fig. 3: the steady state will be
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either an attracting focus (Fig. 3A) or a repellor (Fig. 3B), and in the latter case

there will exist a unique asymptotically stable periodic solution (which encircles the

fixed point in the phase space) acting as a global limit cycle by attracting all

trajectories (except the one originating from the fixed point).

C. Oscillations Generated by a Periodic Solution

In this section, we present two specific examples describing the networks in

Fig. 2. The core system of delayed ODE for the reference models will have unique

periodic solution and unique repelling fixed point (Fig. 3B).

Consider a construct, described by the following core equations:

dCA

dt
¼ �1CAðtÞ þ 5

1

½CBðt� 3Þ=20�2 þ 1
;

dCB

dt
¼ �2CBðtÞ þ 500

½CAðtÞ=5�2
½CAðtÞ=5�2 þ 1

:

ð17Þ

These equations simulate the network shown in Fig. 2A (A is a stimulator). The

parameters were chosen to guarantee stable oscillations (Fig. 4). Later, we show

how the parameter choice affects the periodicity.

Even in this simple example, we have a variety of possibilities to model the

specific interactions between A and B. In the previous example, we have surmised

the following:

1. The maximal attainable amplitude of CB is 250.

2. The maximal attainable amplitude of CA is 5.

3. The threshold TA is higher than the endogenous levels of CA.

4. The threshold TB is approximately 6-fold lower than the highest endogenous

levels of CB.

It follows from 2 and 3 that the response of B to endogenous stimulation is not

full. However, a high exogenous bolus of B elicits dose-dependent release of B

Attractor

Repellor
Limit cycle

BA

Fig. 3 Illustrative trajectories in the space (CA, CB) if the steady state is an attractor (A) or a repellor

(B). In the latter case, a unique asymptotically stable periodic solution acts as a limit cycle and attracts

all other trajectories (except the fixed point).
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secretion at levels higher than the typical endogenous B concentration. It is easy to

see that because of 2, the maximal endogenous B concentration is less than 125.

Because of the choice of TB (see 4), B almost fully suppresses the release of A

between pulses, which in turn results in low intervolley B secretion.

To simulate the network from Fig. 2B (A is an inhibitor), we use the following

reference system of delayed ODEs:

dCA

dt
¼ �1CAðtÞ þ 50

½CBðt� 3Þ=20�2
½CBðt� 3Þ=20�2 þ 1

;

dCB

dt
¼ �2CBðtÞ þ 500

1

½CAðtÞ=5�2 þ 1
:

ð18Þ

The system parameter a in Eq. (17) was increased 10-fold [compared to Eq. (18)]

to guarantee the existence of a periodic solution.

D. Simulation of Feedback Experiments

The success of a modeling effort is frequently measured by the capability of the

construct to reproduce pivotal experiments. Accordingly, we discuss the correct

way of modeling and the system reaction to three common experimental techni-

ques, aimed to disclose the specific linkages within an endocrine system.

1. Antibody Infusion

The introduction of an antibody (Ab) to a certain substance, referred here as S,

is generally accompanied by a transformation of S, which results in effectively

removing S from the system. The corresponding rate depends on the specific

chemical reaction between Ab and S, and increasing the elimination constant of
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Fig. 4 Dynamics of the concentration of A (the lower profile) and B for the reference model described

by Eq. (17).
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S (corresponding to the pool where Ab is administered) would model the removal.

It remains possible that the reaction specifics change the single half-life pattern into

a multiple half-life model. However, the single half-life approximation still might

be sufficient in a variety of simulations.

To exemplify the idea, we simulated variable removal of the inhibitor A in

the reference model described by Eq. (18). Three simulations were performed, in

which the coefficient b was increased 2-fold (left), 6-fold (middle), or 15-fold (right)

at time t¼ 75.

The plots in Fig. 5A capture a very interesting phenomenon predicted by the

model: a decrease in the peak amplitudes of B, even though an inhibitor is removed

from the system. In the current model, this is explained by the actual increase of the

rate at which A initiates its rise and reaches its action threshold, which, in turn,

promotes an earlier suppression of B secretion.

2. Sensitivity Modification

Modifying the profiles of the control function models alterations in system

sensitivity. For example, if the sensitivity of a certain cell group depends on the

number of opened receptors, we could simulate receptor blockage/stimulation via
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Fig. 5 Simulated variable infusion (starting at t ¼ 75) of antibody to the inhibitor A in the reference

model outlined in Eq. (18). The plots depict low (A), medium (B), or almost complete (C) removal of A.
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changing the parameters of the corresponding control function. In the model

described in Eq. (17), this would correspond to changes in the threshold, or in

the Hill coefficient. Reducing (increasing) a threshold results in sensitivity increase

(decrease). Changes in the Hill coefficient affect the slope of the control function.

In general, increasing the Hill coefficient slightly changes the frequency and the

amplitude, without affecting the pulsatility character of the profiles. In contrast, a

decrease could effectively disturb the oscillations by preventing the system from

overshooting the steady state.

We illustrate the effect of changing all thresholds and Hill coefficients in Eq. (17)

(Fig. 6). An increase in nB or nA (Fig. 6A and C, left panels) produced a slight

change in the frequency and amplitude. A decrease in nB or nA resulted in

pulse shrinking (Fig. 6C, right panel) or in loss of pulsatility (Fig. 6A, right

panel) if the control functions can no longer provide the necessary inertia for

overshooting the steady-state value. Increasing TB from 20 to 80 (Fig. 6B,

right panel) results in a condition in which B cannot exert the necessary suppres-

sion on A. The concentration of B is limited from above and increasing its action

threshold gradually obliterates the effect of the delay containing term.

Decreasing TB to 0.2 has no visual effect on the simulated profiles (Fig. 6B, left

panel). The pulsatility is not affected because the suppressive action of B on A is

not modified. It starts only somewhat earlier, but there is still a 3-h delay in

this action, which, in this particular model, is sufficient to maintain

oscillations. The analysis of the effect produced by changes in TA is somewhat

different. Both increasing and decreasing might affect the oscillations. When TA is

decreased, even a small amount of A is sufficient to produce a full response, which

obliterates the pulsatility (Fig. 6D, left panel). The fact that the concentration of A

is bounded from below independently of TA is crucial [Eq. (14)]. Increasing TA

results in a left shift of the control function SB, thus, preventingA from stimulating

B, which in turn reduces the oscillations (Fig. 6D, right panel).

A more formal approach to explaining the reduction in the range of the

oscillations (the ‘‘shrinking’’ of the profile) would consist of (recursive)

application of the inequalities [Eq. (14)]. For example, from the right-hand

side of Eq. (14), it is evident that if TA ! 0, then CB ! b/b and if TB ! 1, then

CA ! a/a.

3. Exogenous Infusion

The correct way to simulate exogenous infusion of a hormone, which is also a

system node, would be to add an infusion term to the right-hand side of the

corresponding ODE. This term should correspond to the infusion rate profile in

the real experiment. Mathematically, it might be interpreted as a change in

the basal secretion. In terms of the specific model described by Eq. (11), if we

are simulating infusion of hormone B, the corresponding equation changes as

follows:
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Fig. 6 Model response to alterations in system sensitivity. All profiles depict the dynamics of CB (t).

(A) Changing nB from 2 to 10 (left) and to 1 (right); (B) changing TB from 20 to 0.2 (left) and to 80

(right); (C) changing nA from 2 to 20 (left) and to 2/3 (right); (D) changing TA from 5 to 1/40 (left) and to
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dCB

dt
¼ �bCBðtÞ þ SB½CAðt�DAÞ� þ infðtÞ; ð19Þ

where inf(t) is the infusion rate term. The solution of the previous equation is the

sum of both endogenous and exogenous concentrations of B. To follow the

distinction explicitly, a new equation should be added to the system:

dC inf

dt
¼ �bC infðtÞ þ infðtÞ

and CB(t) has to be replaced by CB(t) þ Cinf(t) in all model equations, except the

one that describes the rate of change of the concentration of B. To sum up, the core

equations are

dCA

dt
¼ �aCAðtÞ þ SAf½CB þ C inf �ðt�DBÞg;

dCB

dt
¼ �bCBðtÞ þ SB½CAðt�DAÞ�;

dC inf

dt
¼ �bC infðtÞ þ infðtÞ:

ð20Þ

The model above [Eq. (20)] is in essence a 3-node/1-feedback construct, where

exogenous B is the new node. A particular example, illustrating infusion simula-

tion is shown later in this section (see ‘‘Identifying Nodes Controlling the

Oscillations’’).

E. Oscillations Generated by a Perturbation

In the reference models from the previous section, the pulsatility was generated

by a system that has a unique periodic solution and a unique fixed repelling point.

The purpose of this section is to demonstrate that oscillations may occur as a result

of disrupting a system that does not have a periodic solution, and its fixed point is

an asymptotically stable focus (Fig. 3A).

We illustrate this concept on an earlier example. Figure 6B (right panel) depicts

the profile of the solution to the following delayed ODE:

dCA

dt
¼ �1CAðtÞ þ 5

1

½CBðt� 3Þ=80�2 þ 1
;

dCB

dt
¼ �2CBðtÞ þ 500

½CAðtÞ=5�2
½CAðtÞ=5�2 þ 1

:

ð21Þ

The difference between this model and the reference construct [Eq. (17)] is in the

4-fold increase of the threshold TB. In this case, there is no periodic solution and

the unique fixed point attracts all trajectories in the phase space. Therefore, this

system by itself cannot generate stable oscillations. However, if it is externally

stimulated, it can be removed from its steady state and oscillations will be detected.
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For example, assume that at t¼ 350, the secretion of B was briefly stimulated. This

removes the trajectory in the phase space away from the fixed point and the system

would have enough energy to initiate another waning pulse sequence (Fig. 7A).

Moreover, if we allow for some periodic external control on the secretion, the

hormone profile displays sustained pulsatility with bursts of variable amplitude

(Fig. 7B). The frequency of the pulses is controlled by the coefficients of the core

system [Eq. (21)], while the peak amplitudes follow the external stimulus.

If the perturbation is random, it generates pulses of approximately the same

frequency as in the previous cases, but with highly variable amplitudes. In the

simulation presented in Fig. 7C, we superimposed 40% Gaussian noise on the

parameter b. Even though some peaks cannot be detected, an overall pulse period-

icity (the same as in Fig. 7A and B) is apparent.

In the previous examples, the perturbation was assumed to be external and

independent of the core system. Later on, we show that a delayed system feedback

could also provide enough energy and trigger oscillations in submodels with

damped periodicity. In the three-node example from ‘‘Networks with Multiple

Feedback Loops,’’ a 2-node subsystem (with no direct delay in its feedback, and,
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Fig. 7 Oscillations generated by perturbations of the system in Eq. (21). (A) A brief stimulation of the

secretion of B at t ¼ 350. The rest of the profiles depict external periodic (B) or random (C) control on

the coefficient b, which determines the release of B.
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therefore, without a periodic solution) is perturbed by a delayed system loop via

the third node. This removes the whole system from its steady state and drives

consecutive pulses during recurrent volleys.

F. Identifying Nodes Controlling the Oscillations

When hormone A cannot be measured directly and is an inhibitor (the network

in Fig. 2B), we can test whether it is involved in generating the oscillations of B by

neutralizing the action (A-receptor blocker) or by removing (antibody infusion) A

from its action pool. On the other hand, if A is a stimulator (Fig. 2A), a large

constant infusion of A should remove the oscillations (by exceeding the action

threshold, resulting in continuous full response from the target organ). This

concept is exemplified in Fig. 8, which depicts two computer-generated predictions

for the system response to exogenous infusion of hormone A [assuming that A

stimulates B, Eq. (18)]. We simulated constant low (Fig. 8A) and high (Fig. 8B)

infusion of A by increasing the basal A-secretion from zero to two different levels,

starting at t ¼ 75.

The model predicts gradual pulse ‘‘shrinking’’ toward the current steady-state

level. If the exogenous administration of A is sufficiently high (Fig. 8B), the pulses

wane and the secretion becomes constant. The profiles in Fig. 8 depict the numeri-

cal solution (concentration of hormone B) of the system.

dCA

dt
¼ �CAðtÞ þ InfðtÞ þ 5

1

½CBðt� 3Þ=20�2 þ 1
;

dCB

dt
¼ �2CBðtÞ þ 500

½CAðtÞ=5�2
½CAðtÞ=5�2 þ 1

ð22Þ

with two different continuous infusion terms satisfying

25
0

40

80

C
on

ce
nt

ra
tio

n 
of

 B

120

160

A B

65 105
Time

145 25 65 105
Time

145

Fig. 8 System response [Eq. (22)] to exogenous infusion of A. The plots show simulation of constant

low (A) and high (B) infusion of A starting at t ¼ 75.
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InfðtÞ ¼ 0 if t � 75

1 or 2 if t � 76
:

�

The parameters and control functions were chosen arbitrarily to simulate a

network like the one in Fig. 2A, which generates stable oscillations.

Almost identical results (Fig. 5) can be achieved by simulating partial or com-

plete removal of A in the case when A is an inhibitor (the network from Fig. 2B).

This should be done by increasing the rate of elimination of A to simulate

additional removal due to infusion of antibody (see ‘‘Simulation of Feedback

Experiments’’ for details).

However, these experiments cannot disclose whether A is actually involved in a

feedback with B, or acts merely as a trigger to remove a certain subsystem from its

steady state. For example, consider the two networks shown in Fig. 9 and suppose

that only the concentrations of hormone B can be measured.

Assume that E stimulates B, and its removal obliterates the secretion of B. As E

cannot be measured, we have no direct means to establish whether E is involved in

a delayed feedback loop with B. Moreover, in both networks, constant high

infusion of E (as proposed previously) removes the pulsatility and elicits constant

secretion of B. Therefore, a more sophisticated experiment is required to reveal

whether E is indeed involved in a feedback loop with B (Fig. 9A) or acts by

perturbing the A-B subsystem (Fig. 9B). A possible approach would include

blocking the endogenous E secretion with subsequent introduction of a single

exogenous E bolus. The system response would be a single spike of B secretion,

if the network were that depicted in Fig. 9A, or a waning train of several B pulses if

the network is the one shown in Fig. 9B. Most importantly, the required suppres-

sion of endogenous E release must be achieved without affecting the putative A-B

relationship.

Elimination

D D

E A

B EB

A B
(−) (−)

(+) (+)

(+)
Elimination Elimination

Elimination

Fig. 9 Two hypothetical networks, in which a hormone E stimulates the secretion of B. E is either

involved in a delayed feedback (A) or removes the subsystem A-B (B) from its steady state.
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G. Separating Synthesis from Secretion

In certain cases, it would be appropriate to separate on a network level the

hormone synthesis from its release. This would be important if a certain compound

differently affects these processes. For example, let us consider again the network

from Fig. 2A in an attempt to explain a rebound release of B following a with-

drawal of continuous infusion of a certain substance C. Assume that during the

infusion of C the release of B was suppressed and that we have evidence that C is

not affecting the release of A. A possible explanation of the rebound phenomenon

would be that C affects the release of B, but not its synthesis. However, as all

conduits in the network are affected in this experiment, the intuitive reconstruction

of all processes involved is not trivial. The simulation requires introduction of a

‘‘storage’’ pool in which B is synthesized and packed for release and another pool

(e.g., circulation) in which B is secreted. This adds a new equation to the model,

describing the dynamics of the concentration of B in the storage pool. The

following assumptions would be appropriate:

1. The concentration of B in the storage pool (PB) is positively affected by the

synthesis and negatively affected by the release.

2. The concentration PB exerts a negative feedback on the synthesis of B and

cannot exceed a certain limit Pmax.

3. The rate of release ofB from the storage pool is stimulated by the storage pool

concentration but might be inhibited by the concentration ofB in the exterior.

4. B is subjected to elimination only after it is secreted.

To provide an abstract example, assume that in the network from Fig. 2A we

have in addition to A and B a new substance C that inhibits the secretion (compet-

ing with A), but does not affect the synthesis of B (Fig. 10).

Using Eq. (10) as a suitable form for the ‘‘competitive’’ control function, we can

describe the network by the following system of delayed ODEs:

dCA

dt
¼ �aCAðtÞ þ a

1

½CBðt�DBÞ=TB�nB þ 1
;

dCB

dt
¼ �bCBðtÞ þ b

½CAðtÞ=TA;1�nA;1
½CAðtÞ=TA;1�nA;1 þ ½CCðtÞ=TC �nC þ 1

½PBðtÞ=Tp�nP
½PBðtÞ=TP�nP þ 1

;

dPB

dt
¼ cðPmax � PBÞ ½CAðtÞ=TA;2�nA;2

½CAðtÞ=TA;2�nA;2 þ 1

�by
½CAðtÞ=TA;1�nA;1

½CAðtÞ=TA;1�nA;1 þ ½CCðtÞ=TC �nC þ 1

½PBðtÞ=TP�nP
½PBðtÞ=TP�nP þ 1

:

ð23Þ

Here, for simplicity, we assumed that circulating B levels do not feed back on the

secretion. This would correspond to a model with a much higher concentration in

the storage pool than in the circulation. In the previous presentation, c controls the

rate of A-stimulated synthesis of B. The parameter y represents the ratio between
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the volumes of the storage pool and the pool in which B is secreted. Typically, the

second pool is larger and y > 1. We have supposed that the control functions,

which correspond to the A-driven synthesis and release, are different with

distinct thresholds TA,1 and TA,2, and corresponding Hill coefficients nA,1 and

nA,2. The control, exerted on the secretion by the current concentration of B in

the storage pool, is presented by the up-regulatory function [PB(t)/TP]
nP/{[PB(t)/

TP]
nP þ 1]}. The following values were assigned to the parameters that appear in

Eq. (23):

a ¼ 1; b ¼ 2; y ¼ 6; a ¼ 4; b ¼ 4000; c ¼ 2;Pmax ¼ 1000;
TA;1 ¼ 4;TA;2 ¼ 3;TB ¼ 40;TC ¼ 10;TP ¼ 500;
nA;1 ¼ 2; nA;2 ¼ 2; nB ¼ 2; nC ¼ 2; nP ¼ 2:

The infusion term CC(t) is assumed to be a nonzero constant only during the

time of infusion:

CCðtÞ ¼
0 if t < 55

500 if 56 < t < 95

0 if t > 96:

8<
:

The model output is shown in Fig. 11 and the plots clearly demonstrate a B

rebound following the withdrawal of C (Fig. 11A).

During the infusion, the secretion of B is blocked, but not the synthesis and the

concentration in the storage pool is elevated (Fig. 11B). The concentration of A

increases (Fig. 11C), as low B levels cannot effectively block its release. Thus, the

model explains the rebound jointly by the augmented concentration in the storage

pool and the increased secretion of A.

Elimination

Elimination

Secreted

Storage

C

D

A

B

B

(−)

(−)

(+)(+)

(+)

Fig. 10 Formal network depicting the system distinction between synthesis and release. C suppresses

the release of B, but not its synthesis.

14. Modeling of Endocrine Networks 329



V. Networks with Multiple Feedback Loops

The available experimental data might suggest that the release of a particular

hormone B is controlled by multiple mechanisms, with different periodicity in the

timing of their action. This implies that probably more than one (delayed) feed-

back loops regulate the secretion of B and the formal endocrine network may

include more than two nodes. In determining the elements to be included in the

core construct, it is important to keep track on the length of the delays in the

feedback action of all nodes of interest. For example, if the goal were to explain

events recurring every 1–3 h, the natural candidates to be included in the formal

network would be nodes, involved in feedback or feedforward relations with B

with delays shorter than 3 h. Long feedback delays cannot account for high

frequency events. In particular, if we hypothesize that a certain delayed feedback

is responsible for a train of pulses in the hormone concentration profile, the direct

delay must be shorter than the interpulse interval.

In this section, we briefly discuss some features of abstract endocrine networks,

incorporating more than one delayed feedback loop. Each loop accounts for its
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Fig. 11 Simulated rebound response following a withdrawal of continuous C infusion (timeline

55–95). (A) Concentration of secreted B (in the circulation). (B) Concentration of B in the storage

pool. (C) A-concentration dynamics.
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own oscillator mechanism and in what follows, we consider networks with two

(delayed) feedback loops. Examples of 2-feedback constructs are shown in Fig. 12.

It should be noted that each of the two 3-node networks, shown in the middle

panels of Fig. 12, could be reduced to its corresponding 2-node network from the

top panels of Fig. 12. For example, let us consider the 3-node/2-feedback network

shown in Fig. 12 (middle left panel). Assuming that both B and C can fully

suppress the release of A, we can describe the formal network by the system of

delayed ODE:

dCA

dt
¼ �3CAðtÞ þ 10000

1

½CBðtÞ=100�3 þ 1

1

½CCðtÞ=70�20 þ 1
;

dCB

dt
¼ �2CBðtÞ þ 6000

½CAðtÞ=500�40
½CAðtÞ=500�40 þ 1

;

dCC

dt
¼ �3CCðtÞ þ 180þ 1320

½CBðt� 1:5Þ=200�
½CBðt� 1:5Þ=200� þ 1

:

ð24Þ
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Fig. 12 Examples of hypothetical endocrine networks with more than one delayed feedback loops.
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Here, for simplicity, we have assumed that there is no delay in the feedback B!
A. This system is capable of generating recurring multiphase volleys, by the

mechanism described in ‘‘Oscillations Generated by a Perturbation’’ (Fig. 13).

However, analogous results can be achieved by reducing the 3-node network to a

2-node model with two feedbacks. In fact, the sequence of nodes and conduits B!
C ! A ! B is, in essence, a negative 2-node delayed feedback loop: B ! A ! B.

Therefore, it can be modeled in the usual way (by simply removing C from the

system). The reduced network is the one shown in the upper left panel of Fig. 12.

A corresponding simplified system of delayed ODEs could be

dCA

dt
¼ �3CAðtÞ þ 10000

1

½CBðtÞ=100�3 þ 1

1

½CBðt� 1:5Þ=50�3 þ 1
;

dCB

dt
¼ �2CBðtÞ þ 6000

½CAðtÞ=500�40
½CAðtÞ=500�400 þ 1

and the model output (not shown), even without any special efforts to adjust the

system parameters, is almost identical to the profile shown in Fig. 13.

Decreasing the number of equations from three to two reduces the number of

parameters to be determined and the time needed for solving the equations

numerically. Adding the third node in the formal network can be justified only if

the goal is to simulate experiments involving C explicitly. And even then, the initial

adjustment of the model would be significantly facilitated if C enters the system

after the 2-node construct is validated.

Note that if the network is more complex, a reduction of the number of nodes

might be impossible. For example, the network shown in Fig. 12 (lower panel)

cannot be transformed into a 2-node model, because of the high system intercon-

nectivity. We comment more on this in the next section.
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Fig. 13 Computer-generated output (concentration of B) of the core system Eq. (24).
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VI. Summary and Discussion

The mathematical methods presented in this chapter are tailored to quantita-

tively interpret formal endocrine networks with (delayed) feedbacks. The main

goal is to illustrate different conditions, under which oscillations can emerge.

The formal network itself consists of nodes and conduits, and is on the basis of a

qualitative analysis of available experimental data (Friesen and Block, 1984). In

our presentation, the nodes are hormone concentrations in abstract pools, in which

hormones are released or synthesized, under the control of other hormones. The

conduits specify how the nodes interact within the network. The quantitative

analysis of the formal network is on the basis of approximation of the rate of

change of a single system node. This essentially means that the dynamics of the

hormone concentration is described with a single (delayed) ODE. To this end, we

assume that the rate of change of hormone concentration depends on two process-

es—secretion and ongoing elimination. We work with a single half-life elimination

model and express the control of the secretion as a combination of sigmoid Hill

functions, depending on the other system nodes. The derivation of the ODE is

demonstrated, along with a brief analysis of the properties of its solution to

facilitate the actual determination of all system parameters.

The formal network is then interpreted as a dynamic system by combining all

ODEs that describe system nodes dynamics. We exemplify the ideas on a 2-node/1-

feedback model—one of the simplest meaningful examples of a network capable of

generating and sustaining periodic behavior. In fact, a variety of systems display

oscillatory behavior, driven by a single feedback loop. The simplest case is a 1-node/

1-feedback network, in which a hormone after being secreted suppresses its own

release, immediately or after some lag time. This system can generate periodic

behavior only if the delay in the feedback is greater than zero. We do not discuss

this case here.

A network may incorporate a single feedback loop in a more complex way, for

example, via a combination of two or more nodes. For example, simple stability

analysis of the steady state shows that a 3-node/1-feedback network is capable of

sustaining periodicity even without a delay in the feedback loop and with relatively

lowHill coefficients (Richelle, 1977; Thomas et al., 1990). However, for a variety of

practical cases, it is feasible to reduce the 3-node/1-feedback network to a 2-node/

1-feedback construct as shown in the previous section.

Some specifics in endocrine network modeling are exemplified on two 2-node/

1-feedback networks, in which the concentration of one hormone regulates the

secretion of another, which in turn controls the release of the first hormone. This

construct could generate oscillations even if there is no explicit delay in the feedback.

However, it will be a damped periodicity, as the oscillations will fade and approach

the steady state of the system. In contrast, a nonzero delay combined with a suffi-

ciently large non-linearity in the control functions (high Hill coefficients) guarantees

steady periodic behavior, as all trajectories approach a nontrivial limit cycle.
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We relate all parameters to their physiological meaning and analyze the solu-

tions to our reference systems, which always have only one fixed point (steady

state), which is either a repellor or an attractor (Fig. 3). In the first case, the system

has a unique limit cycle—a periodic solution, which attracts all trajectories in the

phase space and, thereby, generates stable periodic behavior (Fig. 4). In the second

case, the steady state is a focus and attracts all trajectories in the phase space.

Therefore, the construct displays damped periodic behavior. In particular, if it is in

a state close to the fixed point, an external perturbation initiates a waning train of

pulses (Fig. 7A). Therefore, oscillations might be generated even by a system that

does not have a periodic solution, and its fixed point is an asymptotically stable

focus. However, an external source of perturbations must be provided. Note that

the frequency of the oscillations is largely independent of the external perturbation

(Fig. 7).

We use the two reference systems to illustrate the modeling of three common

experimental techniques: infusion of antibody to one of the nodes, sensitivity altera-

tions, and exogenous infusion of one of the system hormones. We comment on the

correct way to perform these approximations and examine the corresponding model

response. In particular, the simulations illustrate conditions that might disrupt the

periodicity.

Increasing the elimination rate of a hormone simulates infusion of antibody

and almost a complete removal of one of the nodes, and results in loss of periodic-

ity (Fig. 5). Changes in the profiles of the control functions model alterations in

system sensitivity. The analysis shows that if a model has a stable periodic behav-

ior, the increase in one of the Hill coefficients would not change the system

performance (Fig. 6A and C, left panels; Glass and Kauffman, 1973). On the

other side, a decrease in the same parameter may transform the steady state

from a repellor into an attractor and affect the periodic behavior. Changes in the

action thresholds may also affect the periodicity (Fig. 6B and D). Exogenous

infusion can be simulated by a simple increase in the basal secretion or by

introducing a third node, in case we would like to distinguish between exogenous

infusion and endogenous secretion of one and the same substance [Eqs. (19)

and (20)].

We illustrate how these experiments may be used to disclose whether a certain

hormone A is involved in generating the oscillations of another hormone B. The

idea is to alter A in such way that the periodic B-profile is transformed into a

constant nonzero secretion. When A inhibits B, we can neutralize its action

(receptor blocker) or remove (antibody) it from the system. In the later case, the

model predicts that the periodicity disappears and is replaced by a stable B

secretion (Fig. 8). Alternatively, if A stimulates B, a large continuous A infusion

obliterates the oscillations by exceeding the action threshold and eliciting an

unvarying full B response from the target organ (Fig. 5). Additionally, the model

provides means to disclose whetherA is actually involved in a feedback loop with B

or generates oscillations by perturbing another subsystem (see ‘‘Identifying Nodes

Controlling the Oscillations’’).
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To be able to capture a variety of feedback systems, we separate on a network

level the hormone synthesis from its release. The proper simulation requires a new

‘‘storage’’ pool in which the hormone is synthesized and stored, in addition to the

pool, in which the hormone is secreted. We used this distinction to provide a

plausible explanation of a rebound release, following withdrawal of an agent

that suppresses the secretion, but not the synthesis.

We would like to emphasize the importance of keeping the model as minimal as

possible while performing the initial qualitative analysis of the available experi-

mental data. In general, formal endocrine networks might incorporate multiple

feedbacks loops and nodes. However, long feedback delays cannot account for

high-frequency events. Therefore, if the model attempts to explain pulses of a

hormone that recur every H hours, it might be sufficient to include in the formal

network only feedback loops with delay shorter than H. Moreover, if a feedback

loop enters the network via a multiple-node subsystem, it might be possible to

reduce the number of nodes and simplify the model without affecting its perfor-

mance. The example provided in the previous section demonstrates a case in which

we could safely remove a ‘‘passive’’ node from a feedback loop and still retain the

overall periodic behavior. It should be noted, however, that decreasing the com-

plexity of a model typically leads to a reduction in the number of model parameters

(degrees of freedom). As a result, the new simplified model may not always have

the same behavior as the more complex construct. Therefore, after a node has been

removed, the performance of the system has to be reestablished in order to verify

that the parameters of the reduced model can be readjusted in such a way that the

new construct can explain the same experimental observations already shown to be

reconstructed by the older network.

Unfortunately, we cannot always reduce complex networks. The model shown

in Fig. 12 (lower panel) is an example in which the system interconnectivity would

not allow any simplification. Complex networks with intertwined feedback loops

are considered elsewhere (Farhy et al., 2002; Keenan and Veldhuis, 2001b) and

their analysis strongly depends on the specific physiology. It should be noted that

in this chapter we do not consider more complicated cases, such as networks that

have multiple steady states of a different type, which is a significant complication.

Such systems can be approached in the early stage of their analysis by Boolean

formalization (Thomas, 1973, 1983), which serves as an intermediate between

modeling phases 2 and 3 described in the first section. This method describes

complex systems in simple terms and allows for preliminary finding of all stable

and unstable steady states.
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I. Update

Time derivative sedimentation velocity analysis methods have been used by many

investigators since their introduction in 1992. A complete treatment of the theoretical

background of the methods was published in 2000 (Stafford, 2000) and represents an

extension of this chapter to reversibly interacting systems aswell as kinetically limited

reversibly interacting systems. A detailed description of laboratory procedures using

these methods has been published (Stafford, 2003). The basic concepts of time

derivative analysis have been extended to curve fitting methods embodied in a

software called SEDANAL that is used to analyze sedimentation velocity data

from interacting and noninteracting systems and published by Stafford and

Sherwood (2004) as well as in an analysis software called SVEDBERG by Philo

(2000). Philo has also published improvedmethods of time derivative analysis (Philo,

2006). An extensive analysis of the effects of low concentrations of intermediates in

multiple step reactions has recently been published byCorreia et al. (2009) (Meth Enz

467). A general review of sedimentation analysis of interacting ideal and nonideal

systems using these methods has been published recently (Stafford, 2009).

II. Introduction

Measurement of the sedimentation velocity of macromolecular particles was the

first type of analysis to which the analytical centrifuge was applied (Svedberg and

Nichols, 1923; Svedberg and Rinde, 1923, 1924). This chapter describes briefly the

earlier methods of analysis of sedimentation velocity data that were used before the

advent of digital computers. Then, using this discussion as a point of reference, it

proceeds to describe approaches that have become practical because of the avail-

ability of computers. It then goes on to describe newer techniques that have become

possible through the introduction of modern on-line digital data acquisition sys-

tems. Special emphasis is placed on techniques employing the time derivative of the

concentration distribution (Stafford,1992, 1992a,b).

Traditionally, sedimentation transport experiments have been observed in two

main ways, as either the concentration or concentration gradient as a function of

radius depending on the type of optical system employed. The schlieren optical

system displays the boundary in terms of refractive index gradient as a function of

radius; the Rayleigh optical system, in terms of refractive index as a function of

radius; and the absorption optical system, in terms of optical density as a function

of radius. This chapter concerns itself mainly with treatment of data obtained with

the latter two types of systems as the acquisition and analysis of data from these

systems can be nearly completely automated.
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Subjects to be discussed are techniques for smoothing and differentiation as well

as a new analysis technique that uses the time derivative of the concentration

profile. Use of the time derivative results in an automatic baseline elimination

with a consequent increase in accuracy. Combination of the time derivative with an

averaging procedure has resulted in an increase of 2–3 orders of magnitude in

precision. The time derivative technique produces what is referred to as an appar-

ent sedimentation coefficient distribution function, g(s*), where the symbols are

defined below. The function g(s*) versus s* is very nearly geometrically similar to

the corresponding schlieren pattern that represents dn/dr versus r (where n is the

refractive index and r is the radius) and, therefore, can be used in any situation that

one would have used a schlieren pattern. The advantage of using the averaged g(s*)

is that it has about 2 orders of magnitude higher signal-to-noise ratio than dn/dr

and therefore, can be used to study interacting systems that previously were

inaccessible to either the absorbance or Rayleigh optical systems. Extrapolation

procedures for minimizing the effects of diffusion on the resolution of boundaries

are also discussed briefly.

For convenience, we refer to the data from either system in terms of concentra-

tion rather than optical density or refractive index. However, various averages

computed from these data will be weighted according to either the extinction

coefficients or the refractive index increments of the various components in a

mixture depending on the optical system employed.

The concentration data acquired by either optical system can be thought of as

composed of two main parts: a time-dependent part that is due to the transport of

macromolecule and a time-independent background part due to inhomogeneities

in the optical system, detector, and cell windows. If the concentration is sufficiently

high, the background part often can be ignored. However, in those cases for which

the background contribution is a significant fraction of the signal, a correction for

the background must be carried out by some means. The usual ways have been to

perform a separate run without protein in the cell or to allow the material to be

pelletized completely before taking a background scan. After the sedimentation

run has been completed, the background contribution is subtracted from each

scan. The first method is usually satisfactory as long as there have been no changes

in the background between the main scans and the background scan. The second

method requires that there be no slowly sedimenting material. Accumulation of

dirt from drive oil, fingerprints, or the effects of moisture condensation, for

example, could be sources of variation in the background between the main run

and the background run. Ideally, a background run should be performed both

before and after the main run to determine whether there have been any changes

during the run. The importance of a background correction becomes evident if the

concentration data are to be treated by numerical differentiation to produce

concentration gradient curves. Variations in the background can often be of the

same magnitude as those of the concentration and can obscure the true gradient

curves.
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III. Methods of Data Acquisition

Traditionally, acquisition of data from the schlieren and Rayleigh optical sys-

tems has been done by photography on glass plates or Estar thick based film.

Subsequent analysis of the photographs was carried out visually using an optical

microcomparator with manual logging of the data. Various schemes for automat-

ing this process have been devised. A particularly useful procedure was devised by

DeRosier et al. (1972) for analysis of Rayleigh interferograms. Essentially, this

procedure, along with its various derivatives, uses a Fourier transform analysis to

extract the phase changes, and hence the concentration changes, associated with

deflection of fringes in interferograms. A second advance was the introduction of

on-line video photography to eliminate the wet photography steps. With the

introduction of charge-coupled device (CCD) video cameras, Laue (1981) has

devised an on-line video acquisition system that has become the basis for many

current video systems. A video acquisition system for the Beckman Instruments

(Palo Alto, CA) Model E analytical ultracentrifuge that allows very rapid capture

and analysis of the whole cell image of Rayleigh interferograms every 4 s has been

devised by Liu and Stafford (1992) and allows the rapid data acquisition necessary

for time derivative analysis with multicell rotors. For example, images from five

cells in a Model-E AN-G rotor can be acquired, converted to fringe displacement

as a function of position, and the results stored on disk every 20 s.

The Spinco Division of Beckman Instruments has introduced the Optima XL-A

analytical ultracentrifuge equipped with modern UV scanning optics. Profiles of

absorbance as a function of radius are automatically acquired and stored as data

files readable by other software.

IV. Measurement of Transport in Analytical Ultracentrifuge

The basis for the analysis of transport in the ultracentrifuge is the continuity

equation presented by Lamm (1929)

@cðr; tÞ
@t

� �
r

¼ 1

r

@

@r
Dr

@cðr; tÞ
@r

� �
t

� o2r2scðr; tÞ
� �

t

;

where c is the concentration as a function of radius and time, r is the radius, t is

time, s is the sedimentation coefficient, D is the diffusion coefficient, and o is the

angular velocity of the rotor. Flux, J, because of sedimentation alone is given by

the product of the velocity of the particles and their concentration:

Jsed ¼ dr

dt
c ¼ o2src:

Flux because of diffusion alone is given by Stokes’ first law and is proportional

to the concentration gradient:

Jdiff ¼ �D
dc

dr

� �
t

:
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V. Traditional Methods of Analysis

A detailed account of the traditional manual methods of data analysis is not

given as they are adequately represented in the literature (Chervenka, 1973;

Schachman, 1959; Svedberg and Pederson, 1940) and have been supplanted mainly

by methods made practical by the introduction of computers. For sedimentation

velocity experiments using the schlieren optical system, the main piece of informa-

tion obtained was the radial position of the peak in the refractive index gradient

curve as a function of time. The sedimentation coefficient is obtained from the

slope of a plot of the logarithm of the radial position of the peak versus time.

Similarly, for the UV photoelectric scanner and the Rayleigh optical systems, the

logarithm of the radial position of the midpoint of the sedimenting boundary is

plotted versus time. However, neither of these methods will give highly accurate

results unless the boundary is symmetrical; therefore, they can be applied rigor-

ously only to a hydrodynamically ideal, homogeneous, monodisperse solution.

The correct method for obtaining accurate estimates of the sedimentation

coefficient for cases that exhibit asymmetric or polymodal boundaries is the so-

called second moment method in which an equivalent boundary position is com-

puted. It gives the position of a hypothetical boundary that would have been

observed in the absence of diffusion and polydispersity (Fig. 1). The rate of

movement of the equivalent boundary position gives the weight average sedimen-

tation coefficient for the system and corresponds to the weight average velocity of

particles in the plateau region at the plateau concentration. The equivalent bound-

ary position can be computed in several different ways depending on the form of
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Fig. 1 Hypothetical sedimentation boundary showing the meniscus, equivalent boundary position,

plateau, and base of the cell.
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the data (Chervenka, 1973; Fujita, 1976; Schachman, 1959). The term second

moment is generally applied to data obtained with the schlieren optical system

from which the equivalent boundary position is obtained as the second moment of

the refractive index gradient curve:

hr2i ¼
Ð rp
rm

dc
dr
r2drÐ rp

rm

dc
dr
dr

:

However, when the data are obtained as concentration versus radius instead of

concentration gradient versus radius, it is convenient to compute the equivalent

position from the following relation:

hr2i ¼
Ð rp
rm
r2dcÐ rp

rm
dc

:

After obtaining the equivalent boundary position at various times, the weight

average sedimentation coefficient is computed from the slope of a plot of the

logarithm of the equivalent boundary position versus time. The slope of a plot

ln(hr2i) versus t is 2o2 sw, where sw is the weight average sedimentation coefficient.

It should be noted that this method is valid only if the concentration gradient is

zero at rp. An appropriate baseline correction is required for high accuracy.

VI. Transport Method

The transport method is used in cases for which diffusion does not allow the

boundary to move away completely from the meniscus. It is similar in computa-

tional complexity to the equivalent boundary method. Essentially, one measures

the amount of material between the meniscus and some point in the plateau region

that is removed by sedimentation during a given time interval. This amount can be

converted to Jsed, and, with knowledge of the plateau concentration, one can

compute the sedimentation coefficient. The validity of this method also depends

on a negligible gradient in the plateau region. The relation may be derived in the

following way (for other derivations, see Schachman 1959; Fujita, 1976).

By integrating the Lamm equation,

@cðr; tÞ
@t

� �
r

¼ 1

r

@

@r
Dr

@cðr; tÞ
@r

� �
t

� o2r2scðr; tÞ
� �

t

we have ðrp
rm

@cðr; tÞ
@t

� �
r

rdr ¼ Dr
@cðr; tÞ
@r

� �
t

� o2r2scðr; tÞ
� �rp

rm

and now, after bringing the differential operator outside of the integral, we have
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@t

ðrp
rm

cðr; tÞrdr
� �

r

¼ Dr
@cðr; tÞ
@r

� �
t

� o2r2scðr; tÞ
� �rp

rm

and as there is no net transport across the meniscus, we have the condition that

Drmð@cðrm; tÞ=@rÞt � o2r2mscðrm; tÞ
� 	 ¼ 0 at rm. We also have @c/@r ¼ 0 at rp,

giving us an expression for mass transport from the region between rm and rp
across the cylindrical surface at rp:

d

dt

ðrp
rm

cðr; tÞrdr
� �

¼ �o2r2pscðrp; tÞ:

If we designate the integral as

QðtÞ ¼
ðrp
rm

cðr; tÞrdr

and note that c(rp, t) ¼ c0 exp(�2 o2 swt) where c0 is the initial concentration, then

we have

dQ

dt
¼ �o2r2psc0 expð�2o2stÞ:

By rearranging and integrating and as

Qðt ¼ 0Þ ¼ c0

ðrp
rm

rdr ¼ c0

2
ðr2p � r2mÞ

we have

QðtÞ ¼ c0r2p

2
expð�2o2stÞ � c0r2m

2
:

By rearranging and taking the logarithm of both sides, we arrive at

ln
2QðtÞ
c0r

2
p

þ rm

rp

� �2
" #

¼ �2o2st:

A plot of the left-hand side versus t will have a slope of �2o2s.

For a polydisperse system, the value of s obtained is the weight average sedi-

mentation coefficient, sw, for the mixture, and c0 is the total initial concentration.

Note again that this method requires that there be no gradient in the plateau region

at rp. It also requires a knowledge of c0.

A. Transport Method Using Time Derivative

A simple variant of the transport method can be used if the time derivative of the

concentration is available (Stafford, 1994). Starting again with the Lamm equa-

tion, by rearranging and integrating, but now keeping the differential operator

inside the integral, we have
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ðrp
rm

@c

@t

� �
r

rdr ¼ Dr
@c

@r

� �
t

� o2r2sc

� �rp
rm

:

Noting again that transport across the meniscus is zero and that @c/@r¼ 0 in the

plateau region at rp, we have after rearranging

s ¼ 1

�o2r2pcp

ðrp
rm

@c

@t

� �
r

rdr:

Again this approach requires that there be no gradient in the plateau region at

rp. The values of @c/@t as a function of r can be estimated with sufficient accuracy by

subtracting concentration profiles closely spaced in time so that (c2 � c1)/(t2 � t1)

at each radial position can be used in place of @c/@t, and (cp,1þ cp,2)/2 in place of cp,

where the numerical subscripts refer to the two scans. For numerical computation,

this equation can be recast as

s ¼ 2

�o2r2pðcp;1 þ cp;2Þðt2 � t1Þ
Xrp
rm

ðc2 � c1ÞiriDr:

Again, for a polydisperse system, the procedure gives the weight average sedi-

mentation coefficient, sw. This method is insensitive to noise because the integra-

tion averages out the random noise and is unaffected by the baseline contributions

except for the determination of cp.

VII. Smoothing and Differentiating

To obtain a usable derivative curve, dc/dr, from the concentration profile by

numerical differentiation, some degree of smoothing usually will be required. This

section discusses some techniques used successfully in our laboratory. There are

many variations of these techniques that will also work well if applied properly.

The particular methods discussed below are presented because they are simple to

use and produce reasonably good results.

Although smoothing will always introduce some degree of systematic dispersion

and therefore should be carried out with caution, it can be justified in many cases as

long as one is aware of the magnitude and type of errors introduced. Several

methods of smoothing that produce minimal distortion of the data are discussed

along with a Fourier analysis of their frequency response.

As an aside, if one is using least squares fitting for parameter estimation, one

should not smooth before fitting as the least squares procedure is itself a

smoothing process, and the analysis of the residual noise is necessary for

evaluation of the ‘‘goodness of fit’’ and for computation of the confidence limits

of the fitting parameters. In the procedure described hereafter, the noise of the

original, unsmoothed data is used to compute the error bars for the smoothed

g(s*) plots.
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A. Smoothing and Differentiating as Filtering

Smoothing and differentiation can be considered as filtering processes and have

an associated frequency response (see Diagram 1) (Williams, 1986).

B. Analysis of Frequency Response of Smoothing Filters

The perfect smoothing filter is one that will remove the unwanted noise and

reveal the pure signal without distorting it. In a real situation, this will not be

possible if the noise and the signal have overlapping power spectra. If any of the

spatial frequency components of the noise are in the same range as those of the true

concentration distribution, then those components cannot be removed without also

removing them from the data. Therefore, a compromise will have to be reached.

C. Procedure for Determining Frequency Response Given Filter Coefficients

Briefly, the procedure is as follows (see Williams, 1986). First, determine the

impulse response of the filtering operation to get the coefficients of the filter.

Determining the coefficients in this manner is useful as it would allow one to create

a filter that could be applied in one pass instead of several passes if desired. Second,

compute the Fourier transform of the filter coefficients to obtain the power

spectrum. The power spectrum is the frequency response of the filtering operation.

This series of operations is represented in Diagram 2.

For example, if one wanted to know the frequency response for three passes of a

simple moving average over the data, one could pass the moving average over the

unit impulse three times to obtain the coefficients of the equivalent single-pass filter

and then subject those coefficients to a Fourier transform. The power spectrum of

that Fourier transform is the frequency response for the combined filtering opera-

tion. Figure 2A shows the results of passing a 5-point moving average over the unit

impulse four times. Figure 2A shows a plot of the filter coefficients after each pass,

Raw
data

Smooth Differentiate
Filtered
data

Diagram 1

Unit impulse Impulse response

Filter coefficients
=

Filter

Frequency response

FFT

Diagram 2
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Fig. 2 (A) Plot of the filter coefficients obtained by passing a 5-point moving average over the unit

impulse four times. For a 5-point centered moving average filter the coefficients are defined by the

following relationship: c�2xi�2 þ c�1xi�1 þ c0xi þ c þ 1xi þ 1 þ c þ 2xi þ 2, where ck are the filter

coefficients and xi are a subset of the data to be filtered. For this moving average, the ck values are all

equal to 0.2. On the first pass, one of the xi¼ 1 (i.e., the unit impulse) and the other x values are set equal

to zero. After the first pass, the xi are replaced by the filter coefficients which now become the data for

the second pass of the moving average. Each new set of filter coefficients is generated by repeating this

process. (B) Plot of the frequency response of each of the filters represented by the sets of filter

coefficients obtained from the impulse response shown in (A). y is defined by the following equations

that were used to compute the Fourier transform of the filter coefficients. The sine transform is given by

S(y) ¼ S S ck sin(ky); the cosine transform by C(y) ¼ S S ck cos (ky); and the power spectrum (i.e.,

frequency repsonse) by P(y)¼ [S(y)2 þ C(y)2]1/2, where y¼ ip/N and�N< i<N, and the sums are over

k and i, respectively. N was 300 in this case.



and Fig. 2B shows the frequency response of each of the filters represented in

Fig. 2A. A single pass of a moving average results in large side lobes in the frequency

response curve allowing some of the high frequency components to pass through.

The second and third passes reduce the side lobes to much smaller values, and

subsequent passes do not improve the overall frequency response very much.

Although each pass lowers the cutoff frequency somewhat, the cutoff frequency is

best controlled by varying the number of points in the moving average. Therefore,

smoothing and differentiation can be combined into one process, if the appropriate

set of coefficients is chosen by the impulse response method.

The rest of this discussion is confined to the repeated application of moving

averages (i.e., first-order polynomials) as they can be computed rapidly by recursion,

and almost any desired low-pass frequency response can be obtained. For example,

it is quicker to pass the 5-point moving average three times than it is to pass the

equivalent 13-point filter once as the coefficients of the moving average are all equal

and the first point can be removed and the next added without recomputing all the

intermediate terms. However, the 13-term equation has unequal coefficients requir-

ing that all 13 terms be recomputed before adding them to compute the value for the

smoothed point. The recursion formula for the n-point moving average is

hyiþ1i ¼ hyii �
yi�ðn�1Þ=2

n
þ yiþ1þðn�1Þ=2

n
;

where the first smoothed value is given by hyðnþ1Þ=2i ¼ 1=n
Pj¼n

j¼1yj.

The speed can be increased somewhat more, eliminating all the multiplications

on each pass, by casting the process as

nhyiþ1i ¼ nhyii � yi�ðn�1Þ=2 þ yiþ1þðn�1Þ=2

and then after the pth pass dividing each term by np (where p is the number of

passes) for a total of N multiplications (where N is the number of data points) and

2pN additions. Incidentally, smoothing with formulas for higher order polyno-

mials also requires at least three passes to reduce the side lobes to acceptable levels,

and they also have unequal coefficients.

The justification for using repeated applications of a simple moving average,

instead of either higher order polynomials or more complicated filtering operations

that necessitate convolution, is the speed of application. For example, the three

passes of the recursive moving average (this is not a recursive filter, by the way) to a

data set of N points require approximately 6N additions with N multiplications to

rescale the data at the end. Application of a higher order polynomial, for which all

the terms would have to be recomputed after shifting to each new point, would

require approximately N2 multiplications and additions.

The filtering process is essentially the convolution of the smoothing polynomial

with the data; therefore, application of a sliding polynomial to the data can be treated

in terms of convolution. Convolution can be carried out rapidly using the fast Fourier

transform (FFT) (Williams, 1986). The convolution theorem states that

FFTðf � gÞ ¼ FFTðf ÞFFTðgÞ;
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where g is the data and f is the filter and the asterisk denotes convolution. FFT(f) is

just the frequency response of the filter and may be considered to be known as it

need be computed only once ahead of time. Convolution by this method would

require one FFT, followed by N complex multiplications and followed by an

inverse FFT to arrive at the filtered data, f * g. Each FFT requires N log2 N

complex multiplications (4 multiplications and 2 additions) and complex additions

(2 additions) for a total of 8N log2 Nmultiplications and additions. Because of the

savings in computer time afforded by the repeated application of the recursive

moving average, in our laboratory it is used almost exclusively. It is interesting to

note that the frequency response of the 3-pass moving average filter is nearly

identical to that of the popular von Hann window function often used in smooth-

ing by convolution. Figure 3 shows a plot of the window coefficients for a 13-point

von Hann window compared to those for the 13-point equivalent 3-pass moving

average filter. It is gratifying that the faster recursive moving average procedure

can give essentially the same results as the more time-consuming and complex

convolution procedure.

In the computer algorithm used in our laboratory, the end points are handled

by starting with a 3-point moving average for the first three points and then by

expanding the window 2 points at a time until the full window is reached. The full

window is used until the end of the data is reached, where the process is reversed by

decreasing the window size 2 points at a time. The moving average is passed over

the data three times. Variation in the degree of smoothing is controlled by chang-

ing the window size. The typical default for smoothing our time derivative data is

to use a window spanning about 2% of the distance from the meniscus to the base.

If more detail is desired, the smoothing can be turned off. It is sometimes necessary

to turn the smoothing off to track down outliers.
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Fig. 3 Comparison of the filter coefficients of the 3-pass moving average (D) to those of the

corresponding 13-point von Hann window function (k).
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D. Differentiation

The derivative of the concentration profile can be estimated by various polyno-

mial fitting techniques. Differentiation and smoothing often have to be combined

to get satisfactorily smooth curves. As mentioned above, a single polynomial

fitting equation can be derived that will accomplish both smoothing and differen-

tiation by using the coefficients obtained after application of the smoothing and

the differentiating functions to the unit impulse function. The frequency response

of the combined process can be computed by taking the Fourier transform of the

coefficients. Application of the resulting polynomial can be accomplished by FFT

convolution as mentioned above.

A simple and successful procedure used in our laboratory for differentiation has

been to use a sliding 4-point cubic polynomial fit to equally spaced data spanning

13 points typically spaced at about 40 mm intervals in the centrifuge cell:

dc

dr

� �
i

¼ 1

12Dr
ðci�6 � 8ci�3 þ 8ciþ3 � ciþ6Þ;

where Dr is the radial spacing. This differentiating procedure combined with

smoothing was used in a study of filament formation of Acanthamoeba myosin-II

(Sinard et al., 1989).

VIII. Computation of Apparent Sedimentation Coefficient
Distribution Functions

The methods to be described for computation of apparent sedimentation coeffi-

cient distribution functions are all derived from theoretical relationships predi-

cated on the assumption that the diffusion coefficient of each species is zero.

A rigorously correct distribution function will be obtained only for that case.

The assumption of zero diffusion coefficient can be made with good approxima-

tion for many solutions of very high molecular weight polymers; however, when

these relations are used in cases of nonnegligible diffusion, one obtains an apparent

distribution function that has been broadened by the effects of diffusion. There are

several extrapolation methods that can be used to correct for the effects of

diffusion (Stafford, 1992; Van Holde and Weischet, 1978).

The techniques described below concentrate mainly on the uses of the uncor-

rected apparent distribution function as a tool for sedimentation boundary analy-

sis, especially as a technique for revealing details of boundary shape for the

analysis of both heterogeneous and reversibly associating systems. As mentioned

above, the apparent differential distribution function [g(s*) vs. s*] and the refrac-

tive index gradient (schlieren) curve (dn/dr vs. r) are very nearly geometrically

similar to each other, and, therefore, both show the same details of boundary

shape. A derivative pattern is useful because it can reveal features that often are not

otherwise obvious by direct inspection of a concentration boundary profile.

In addition, the increase in signal-to-noise ratio achieved by using the time
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derivative combined with averaging to compute g(s*) has extended the ability to

investigate interacting systems to much lower concentrations than previously

possible with any given optical system (Stafford, 1992, 1992a,b).

A. Differential Distribution Functions

Before the methods themselves are discussed, it is worth making a point

concerning nomenclature. In the past, the apparent distribution function has

been designated g*(s) versus s. However, when these patterns are used for bound-

ary analysis it seems more appropriate to designate them as g(s*) versus s* as s* is a

radial coordinate whose value can be interpreted as a sedimentation coefficient

only under special circumstances. One special circumstance already mentioned is in

the case of negligible diffusion. Another is that the value of s* at the peak of a

symmetrical boundary for a monodisperse solute corresponds to within a very

good approximation to the sedimentation coefficient, s, for that species.

B. Method Using Spatial Derivative

In 1942, Bridgman (1942) presented an equation for computing the differential

distribution function for systems exhibiting no diffusion:

gðsÞ ¼ dc

dr

o2rt

c0

� �
r

rm

� �2

;

where c0 is the initial loading concentration and the other symbols have their usual

meaning. The radial derivative can be obtained either directly from the schlieren

optical system or by numerical differentiation of the concentration profile from

either the absorbance or the Rayleigh optical system. Various useful differentiation

and smoothing methods have been discussed earlier, and a recent example of the

use of the radial derivative, computed by numerical differentiation of absorbance

traces from the UV photoelectric scanner of the Beckman Instruments Model-E

ultracentrifuge, to compute averaged g*(s) curves in a study of filament formation

of Acanthamoeba myosin-II, has appeared Sinard et al. (1989) as already

mentioned.

C. Method Using Temporal Derivative

Sedimentation patterns in the form of concentration as a function of radius are

acquired and stored in digital form. Pairs of curves appropriately spaced in time

are subtracted from one another at corresponding radii to produce difference

curves. If the time difference between the curves is made sufficiently small, the

difference curve will be a good approximation to the time derivative of the original

sedimenting boundary at each radial position (Stafford, 1992a). The use of the time

derivative results in an automatic baseline elimination. When used in conjunction
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with rapid data acquisition systems that allow signal averaging, the use of the time

derivative can result in several (from 2 to 3) orders of magnitude increase in the

signal-to-noise ratio.

After the pairs of concentration curves are subtracted to give a set curves of dc/dt

versus r, the x axis of each derivative curve is then converted to s* by the following

relationship, which transforms the dc/dt curves from the stationary reference frame

of r to the moving reference frame of s*:

s� ¼ 1

o2t
ln

r

rm

� �
: ð1Þ

In this moving reference frame, the dc/dt curves obtained over a small time

interval will superimpose and can be averaged to reduce the random noise con-

tributions. The value of t to be used in Eq. (1), and in others used for the numerical

computation of g(*s), is the harmonic mean of the sedimentation times of the

concentration profiles. For data obtained from the XL-A ultracentrifuge, one must

get the sedimentation time from the value of o2t included in each output file.

D. Detailed Procedure

The specific example described here applies to data obtained with the Beckman

Instruments Optima XL-A analytical ultracentrifuge. The data are collected in

digitized form and stored as text files from which two arrays of data can be

extracted; one is the absorbance, and the other is the value of the radius at which

the absorbance was measured at a particular sedimentation time, say, t1:

cð1; t1Þ; cð2; t1Þ; cð3; t1Þ; . . . ; cðn; t1Þ;
rð1; t1Þ; rð2; t1Þ; rð3; t1Þ; . . . ; rðn; t1Þ:

The value of (@c/@t)r at each radial position is estimated by subtracting pairs of

sedimentation patterns point by point at corresponding values of r. However,

because the data from any two successive scans usually are not acquired at the

same radial positions on the XL-A ultracentrifuge, the curves have to be inter-

polated onto the same radial grid before the subtraction can be performed.

Typically, a grid spacing of 0.002 cm is chosen for a grid between 5.8 and 7.2 cm.

After a pair of scans has been interpolated onto this grid, they can be subtracted to

obtain Dc/Dt at each value of r. The result is an estimate of (@c/@t)r with the

automatic elimination of the time-independent optical background. After sub-

tracting and dividing by Dt, we have

cðr; t2Þobs ¼ cðr; t2Þtrue þ cðrÞbackground þ noise;

�½cðr; t1Þobs ¼ cðr; t1Þtrue þ cðrÞbackground þ noise�
DcðrÞobs

Dt
¼ DcðrÞtrue

Dt
þ 0þ

ffiffiffi
2

p
�noise

:
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If the time interval is sufficiently small that Dc/Dt � @c/@t, then Dc/Dt can be

converted to an apparent sedimentation coefficient distribution function according

to the procedure previously presented (Stafford, 1992a):

gðs�Þ ¼ @c

@t

� �
corr

1

c0

� �
o2t2

lnðrm=rÞ
� �

r

rm

� �2

; ð2Þ

where (@c/@t)corr is the value of (@c/@t)r corrected for the plateau contribution as

described (Stafford, 1992a) and repeated in detail in the subsequent text. The

product of c0 and (rm/r)
2 is the plateau concentration at each point, and if these

two factors are eliminated from Eq. (2) we have the unnormalized distribution

function referred to as ĝðsÞ. This function can be used in much the same way as a

schlieren pattern is used.

1. Calculation of (@c/@t)r
For the purposes of this discussion, we assume that 10 scans have been acquired

and will be converted to a single apparent sedimentation coefficient distribution, g

(s*). If we designate the scans by C1, C2, C3, etc., then the difference curves are

computed as follows:

DC
Dt

0
@

1
A

1

¼ C1 � C6

t6 � t1
;

DC
Dt

0
@

1
A

2

¼ C2 � C7

t7 � t2
;

DC
Dt

0
@

1
A

3

¼ C3 � C8

t8 � t3
;

DC
Dt

0
@

1
A

4

¼ C4 � C9

t9 � t4
;

DC
Dt

0
@

1
A

5

¼ C5 � C10

t10 � t5
:

The x axis of each curve is converted to s* using Eq. (1). The later curves are

subtracted from the earlier ones to change the sign of Dc/Dt so that the curves are

positive for graphical purposes. Except near the base of the cell, beyond the so-

called hinge point, (@c/@t)r is negative throughout the cell.

2. Averaging @c/@t

The five curves for Dc/Dt as a function of s* are then averaged at constant values

of s* to produce the averaged value, designated as hDc/Dti. The averaged value is

inserted into Eq. (2) for computation of the apparent distribution function.
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3. Computation of Error Estimates

The standard deviation, sg, for each point on the averaged g(s*) curves is

computed from the standard deviation of the average of Dc/Dt using the following

standard relation for propagation of errors:

s2g ¼
@gðs�Þ

@ð@c=@tÞ
� �2

s2ð@c=@tÞ
h i

;

where s(@c/@t) is the standard deviation of Dc/Dt and @g/@c is obtained by differ-

entiating Eq. (2) and is just

@gðs�Þ
@ð@c=@tÞ ¼

1

c0

� �
o2t2

lnðrm=rÞ
� �

r

rm

� �2

¼ t

c0s�
expð2o2s�tÞ:

The standard error of estimate for each averaged point on the curve is calculated by

dividing the standard deviation by n1/2, where n is the number of curves used in the

average. It isworthpointing out that although the errors indc/@t are usually uniformly

distributed across the cell, those in g*(s) are not because of their dependence on 1/s*,

so that both the noise and the error bars tend to become larger at smaller values of s*.

E. Correcting for Contribution to @c/@t in the Plateau Region

Equation (2) gives the normalized differential sedimentation coefficient distri-

bution corrected for radial dilution. This equation was predicated on the assump-

tion that the diffusion coefficient of each species was zero and that each boundary

contributing to the curve could therefore be represented by a step function. Under

this condition, the contribution from radial dilution to the total value of @c/@t at
the boundary position of any given species is affected only by the more centripetal

components (i.e., those having smaller values of s). The value of (@c/@t)p at any

given value of s is proportional to the product of sw and cp at s. Both sw and cp can

be computed from ĝðsÞ, where ĝðsÞ is the unnormalized distribution function as

already defined. So, now, the plateau value of @c/@t is given by

@c

@t

� �
p

¼ �2o2swcp ¼ �2o2

ð
sĝðsÞds

and the unnormalized distribution function is

ĝðsÞ ¼ @c

@t

� �
corr

o2t2

lnðrm=rÞ
� �

where

@c

@t

� �
corr

¼ @c

@t

� �
obs

� @c

@t

� �
p

and ‘‘corr’’ indicates the corrected value and ‘‘obs’’ the observed value of @c/@t.
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These three equations imply the following iterative procedure to correct @c/@t.
First, compute an approximate value of ĝðsÞ using the observed value of @c/@t:

ĝðsÞapprox ¼
@c

@t

� �
obs

o2t2

lnðrm=rÞ
� �

:

Then, use this value to compute an approximation to the plateau value of @c/@
t at each point:

ð@c=@tÞp;approx ¼ �2o2swcp ¼ �2o2

ð
sĝðsÞapproxds:

Subtract this from (@c/@t)obs to get an approximate value of (@c/@t)corr,approx.
Substitute (@c/@t)corr,approx into the above equation to compute a new value for

ĝðsÞapprox. Repeat the cycle until the desired degree of convergence is attained. In

practice, three iterations will give satisfactory convergence. The integration is

carried out by simply using the trapezoidal rule as follows:

Area ¼ y1 þ yn

2
þ
Xi¼n�1

i¼2

yi

 !
Ds�;

where n is the number of points, Ds* is the spacing in s*, and, in this case,

yi ¼ siĝðsiÞ. In the algorithm used in this laboratory, the g(s*) curves are inter-

polated onto an equally spaced grid of s*, mainly for subsequent extrapolation to

correct for diffusion, so that Ds* is a constant and therefore, can be taken outside

of the summation.

IX. Weight Average Sedimentation Coefficient from g(s*)

The weight average sedimentation coefficient can be estimated from g(s*), even

in the case of significant diffusion, according to the following relationship with

quite good accuracy:

sw ¼
Ð s�¼s�p
s�¼0 ĝðs�Þs�ds�Ð s�¼s�p
s�¼0 ĝðs�Þds�

:

This method will give sw to a very good approximation because the ĝðs�Þ curves
for each component are symmetrical and very nearly Gaussian on the s* scale.

A detailed description of the use of ĝðs�Þ for the analysis of self-associating and

heteroassociating systems will be presented elsewhere.

A. Experimental Example

As an experimental example of the method, a mixture of bovine serum albumin

and aldolase (Sigma, St. Louis, MO) was run at 60,000 rpm in 0.1MNaCl, 10 mM

phosphate, and 1 mM dithiothreitol at pH 7.0 and 20� in the Beckman Instruments
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Optimal XL-A analytical ultracentrifuge. Figure 4A shows 10 profiles of optical

density (A280 nm) as a function of radius acquired at approximately 1-min intervals.

The raw data were interpolated onto an equally spaced radial grid of 0.002 cm, and

pairs of profiles were subtracted at equal radial positions as described above to

compute Dc/Dt. Figure 4B shows the resulting Dc/Dt versus s* plots. The heavy line
shows the average Dc/Dt plot. Figure 4C shows smoothed and unsmoothed g(s*)

versus s* plots. Smoothing was performed on the averaged Dc/Dt data with three

passes of a simple moving average using a window spanning 2% of the whole data

array from meniscus to base as outlined above. This degree of smoothing has
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Fig. 4 (A) Data obtained from a sedimentation velocity experiment on the Beckman Instruments

Optima XL-A analytical ultracentrifuge. Bovine serum albumin and aldolase (from Sigma, used

without further purification) were dialyzed against 0.1MNaCl, 10 mM phosphate, 1 mM dithiothreitol,

pH 7.0, at 2�C overnight. Ten plots of absorbance at 280 nm as a function of radius obtained at

approximately 1-min intervals are given. The raw data were interpolated onto an equally spaced radial

grid of 0.002 cm. Temperature of the run was 20�C. (B) Plots of Dc/Dt versus s* obtained after

subtracting pairs of concentration profiles as described in the text. The heavy line shows the average

Dc/Dt plot using a 2% window as outlined in the text. (C) Smoothed and unsmoothed g(s*) versus plots.

Smoothing was performed on the averaged Dc/Dt data with three passes of a simple moving average

using a window spanning 2% of the distance from meniscus to base. (D) Averaged g(s*) plot for the

system. The error bars are the standard error of the mean at each value of g(s*) propagated from the

averaging of Dc/Dt.
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produced a visually more pleasing result without introducing significant disper-

sion. Figure 4D shows the final plot of g(s*). The error bars are the standard error

of the mean propagated from the averaged values of Dc/Dt. It is important to note

that the error bars were computed from the original unsmoothed data and reflect

the noise in the original curves.

X. Methods of Correcting Distribution Functions for
Effects of Diffusion

The rate of boundary spreading because of heterogeneity is roughly proportion-

al to the first power of time, whereas that because of diffusion is roughly propor-

tional to the square root of time. Therefore, if the distribution functions are

extrapolated to infinite time, the spreading from diffusion will become negligible

compared to that from heterogeneity, and the true distribution function will

be recovered. Various forms for extrapolation have been proposed in the literature

and are discussed briefly.

A. Differential Distribution Functions

Extrapolation of differential distribution functions to infinite time to remove the

effects of diffusion was first described by (Baldwin and Williams, 1950; Williams

et al., 1952), who extrapolated the functions at constant values of s*. The functions

of g*(s) were extrapolated versus 1/t to 1/t ¼ 0. Recently, several new forms that

improve the extrapolation have been presented (Stafford, 1992). It was sometimes

observed that extrapolations versus 1/t resulted in negative values of the distribu-

tion function in regions where one expected them to go to zero. If the curves were

extrapolated as ln[g*(s)] versus a quadratic in 1/t1/2, better results could be

obtained as the extrapolation is constrained to the positive domain of g(s) by

taking the logarithm (Stafford, 1992).

B. Integral Distribution Functions

A method for computation of integral sedimentation coefficient distribution

functions was first introduced by Gralén and Lagermalm (1952; Fujita, 1976). In

that procedure, an apparent sedimentation coefficient was computed at each of

several levels of the boundary. The apparent sedimentation coefficient is given by

s* ¼ ln(r/rm)/o
2t. The values of s* computed at corresponding levels of successive

boundary profiles are then extrapolated to infinite time to remove the contribution

from diffusion. In the original method, the values of s* were extrapolated versus

1/t to 1/t ¼ 0. The method has been improved by Van Holde and Weischet (1978)

who noted that a better approximation to the theoretically correct extrapolation

could be attained if the values of s* were extrapolated versus 1/t1/2.
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XI. Discussion

With the introduction of the Beckman Instruments Optima XL-A analytical

ultracentrifuge, the processes of data acquisition in sedimentation experiments

have now become largely automated. Analysis of these data, from both sedimen-

tation equilibrium and velocity experiments, can be done entirely by digital com-

puter. The speed and efficiency of analysis possible with a computer have allowed

not only easier analysis by the older, more common methods but also the imple-

mentation of methods, both new and old, that would have been previously

impractical.

In this chapter, I have briefly reviewed the older methods and introduced two

new methods on the basis of the time derivative of the concentration distribution.

The ability to compute the time derivative, especially from data obtained with real-

time Rayleigh optical systems (Laue, 1981; Liu and Stafford, 1992), has allowed a

significant increase in the sensitivity of sedimentation velocity experiments. The

process of computing the time derivative results in an automatic baseline correc-

tion. This baseline correction combined with averaging of the data can result in an

increase in precision of 1–2 orders of magnitude with the UV photoelectric scan-

ning system and 2–3 orders of magnitude with Rayleigh optics. The new methods

are well suited to realtime sedimentation analysis.
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I. Update

Isothermal titration calorimetry (ITC) is unique among methods of studying

binding, in that a single experiment can yield all the key thermodynamic quantities

at the temperature of the experiment:DH�, the binding constantK� and from it DG�,

ESSENTIAL NUMERICAL COMPUTER METHODS
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and hence DS� ¼ (DH�� DG�)/T. In all other methods, DH� must be estimated from

the T dependence of K�, through the van’t Hoff relation (Eq. (1) below). Of course,

ITC experiments can be run over a range of temperatures, too, making possible the

estimation of DH� from the resulting K� values alone. Beginning in the mid-1990s, a

number of groups reported that the latter van’t Hoff estimates were not in agreement

with the directly estimated DH� values, and these observations provided much of the

impetus for my work on the role of statistical error in the estimation of thermody-

namic quantities from ITC and from van’t Hoff analysis of K�(T).
About the time of this work, Mizoue and I conducted ITC experiments on the

Ba2þ þ crown ether complexation reaction (Mizoue and Tellinghuisen, 2004b),

and we analyzed the data with the three limiting data error models developed in

this ME paper: unweighted, weighted, and correlated-weighted. The second of

these was deemed to provide the best results, from which the calorimetric-van’t

Hoff discrepancy was smaller than in previous studies but still statistically signifi-

cant. From differences observed for BaCl2 vs. Ba(NO3)2 as sources of Ba2þ, we
suggested that some of the discrepancy was due to approximations inherent in the

standard procedure of subtracting blanks to correct for heat of dilution. Similar

effects were invoked to account for differences observed in later experiments done

at very low concentration in a study of variable-volume ITC schemes (Tellinghui-

sen, 2007b). A full analysis of such effects has not yet been completed, but

preliminary results indicate that it cannot account for much of the remaining

calorimetric-van’t Hoff discrepancy.

The findings in this ME work have led to a number of followup studies:

� An ITC data variance function (VF) was derived from a generalized-least-

squares (GLS) global analysis of all data obtained in the work of Mizoue

and Tellinghuisen (2004b; Tellinghuisen, 2005a). This study confirmed the pres-

ence of both constant and proportional data error, but the titrant volume error

was only a minor contributor to the proportional error, contrary to predictions.

The derived VF is strictly applicable to only the instrument and working ranges

used in the experiments of Mizoue and Tellinghuisen (2004b), but its general

properties—constant error dominant at small signal, proportional error at

large—are common to many experimental techniques and should hold for all

ITC methods.

� Because the titrant volume error was small, it was not possible to tell whether

the correlated or uncorrelated model was correct, so I simply adopted the latter.

Experiments would need to be conducted with much smaller injection volumes

(<5 mL) in order to make this error source large enough to draw such a distinction.

� Having a reliable VF, I then conducted a more detailed methods optimization

study, leading to two recommendations at odds with procedures then (and unfor-

tunately still now) commonly used to study 1:1 binding processes: (Tellinghuisen,

2005b) (1) Only 10 injections of titrant should be used for optimal precision (and

incidentally shortening experiment times). (2) Where possible the range of titration
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Rm (ratio of total titrant to total titrate after last injection) should be set according

to the empirically derived equation,

Rm ¼ 6:4

c0:2
þ 13

c
;

where c ¼ K[M]0 (as used in Fig. 3 below). This study also identified a second

reduced parameter of importance in ITC—h � DH�[M]0—which determines the

amount of heat available. Ordinarily, this quantity should be maximized, by

making [M]0 as large as possible. However, for many biophysical processes of

interest, adequate precision (better than�5%) can be achieved for modest h values,

avoiding possible systematic errors from working at too-high concentrations.

� A followup optimization study showed how variable injection volumes can

significantly enhance precision; it gave simple expressions for setting the volumes

for 4- and 5-injection schemes (again just for 1:1 binding) (Tellinghuisen, 2007b).

Such methods should be especially useful for systems with both c and h very low.

� For very low c (<0.1) there is another problem: The parameters n and DH� are
very highly correlated in the analysis of the data, making it impossible to determine

the two independently. However, I have noted that K is remarkably insensitive to

uncertainties in n, making it possible to extract reliable values for both n and DH�
down to c values as low as 1� 10�4, by using temperature dependence to break the

correlation between n and DH� (Tellinghuisen, 2008).
� In an attempt to sort out ambiguities in the standard models for treating the

perfusion method of ITC (in which each injection of titrant expels an equal volume of

reaction mixture from the active region of the cell), I devised a calibration procedure

utilizing heat of dilution of NaCl (Tellinghuisen, 2007a). In this work, I checked the

absoluteT calibration of the instrument used in the earlier experiments onBa2þ/crown
ether complexationanddiscoveredanerror that amounted to 5%over the typical range

5–45 �Cused forT-dependent ITC studies. This error accounted formore than half the

apparent calorimetric/van’tHoff discrepancy in the studyofMizoue andTellinghuisen

(2004b), reducing it to�5%,which is almostwithin the statistically reasonable range. It

seems likely now that most of the discrepancy is due to this and other calibration

limitations for the specific instrumentation used in these works.

� Many methods estimate K� values with roughly constant relative standard

error. This makes it possible to obtain reliable van’t Hoff uncertainties in DH� and
DCP

� from knowledge of just the % error in K� and the number of values and T

range—an extension and elaboration on results like those shown in Fig. 11 below

(Tellinghuisen, 2006).

� Two artifacts of ITC experiments were identified: Backlash in the injection

syringe is largely responsible for the long-known ‘‘first injection anomaly’’ (Mizoue

and Tellinghuisen, 2004a). Errors in the definition of the cell active volume are

responsible for commonly observed values of n < 1.0 in cases where solution con-

centrations are well known and should give n¼ 1 (Tellinghuisen, 2004).

16. Statistical Error in ITC 363



II. Introduction

The method of ITC is widely used to obtain thermodynamics information about

binding processes in chemical and biochemical systems (El Harrous et al., 1994a,b;

Wiseman et al., 1989). In a typical application of this technique, one of the

reactants (M) is contained in a reaction vessel of small volume (0.2-2.0 ml), and

the second reactant (the titrant X) is added stepwise to beyond the end point of the

reaction. The instrumental responses following each injection of titrant are ana-

lyzed to obtain the heat q associated with the chemical changes from that injection,

and the experiment thereby produces a titration curve of q versus extent of

reaction. Such titration curves are analyzed by means of a nonlinear least-squares

(LS) fit to obtain estimates of the enthalpy change DH� and the equilibrium

constant K� for the reaction (El Harrous and Parody-Morreale, 1997; El Harrous

et al., 1994a,b; Wiseman et al., 1989).

By repeating the experiment over a range of temperatures, one can determine the

T dependence of DH� and K�. In fact, when K� is known as a function of T, it

becomes possible to estimate DH� a second way, from the slope of ln K� as a

function of T�1 (the van’t Hoff method). Sturtevant’s group studied several

benchmark reactions by ITC and observed that the level of agreement between

the results from the latter method ðDH�
vHÞ and the directly measured values ðDH�

calÞ
was not convincing (Liu and Sturtevant, 1995, 1997; Naghibi et al., 1995). These

observations prompted a flurry of comments, some of which raised questions

about the validity of the van’t Hoff relation itself (Holtzer, 1995; Ragone and

Colonna, 1995; Ross, 1996; Weber, 1995, 1996). More recent attempts to explain

the discrepancies have noted that the van’t Hoff estimates are inherently much less

precise than the calorimetric values, and have suggested that when this larger error

in DH�
vH is acknowledged, the two methods are consistent (Chaires, 1997; Horn

et al., 2001, 2002). However, when proper error propagation techniques are used to

estimate the error in DH�
vH, inconsistency is still the rule rather than the exception

for the available data in the literature (Mizoue and Tellinghuisen, 2004b). There

can be nothing wrong with the van’t Hoff approach, as the relevant equation,

@ lnK
�

@T

� �
P

¼ DH �

RT2
ð1Þ

follows directly from the purely mathematical Gibbs-Helmholz equation. Rather,

the problems stem from flaws in the procedures for collecting and analyzing ITC

data.

One aspect of this problem that has received little attention is the role of

statistical error in ITC data and its effect on the determination of DH� and K�.
In a recent study (Tellinghuisen, 2003), I have noted that most ITC data are

probably limited by experimental uncertainties in the delivered titrant volume,

which means that the estimates of the heat q are subject to proportional rather than

constant error. The LS analyses of such data should employ weighted fits instead
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of the unweighted fits normally done with the standard software in use. Neglect of

weights in such situations leads to significant loss of efficiency in the estimation of

DH� and K�. For treating the effect of uncertainty in the titrant volume, there are

two limiting models that yield radically different results. If the error in the injected

volume is assumed to be random, the statistical errors of the derived parameters

actually increase with increasing number of titration steps. On the other hand, if

one assumes that it is the total accumulated volume after i injections that is subject

to random error, the incremental volume in the ith injection is the difference

between two such independent quantities and is now correlated with these two

volumes. This situation requires the use of weighted, correlated, nonlinear LS for

analysis and leads to parameter standard errors that decrease with increasing

number of steps.

The key tool for implementing the statistical studies in Mizoue and Tellinghui-

sen (2004b) and Tellinghuisen (2003) was the use of the LS variance-covariance

matrix V to assess parameter confidence limits and to properly propagate statisti-

cal errors in functions of the LS parameters. As the V matrix is heavily underap-

preciated for this purpose, I have included in the present work some computations

designed to illustrate clearly its properties. Chief among these are the following: (1)

In linear LS fits with all the usual assumptions (Johnson and Faunt, 1992),

especially normally distributed (Gaussian) random error about the true values of

the dependent variable (y), theVmatrix yields exact parameter variances, standard

errors, and correlation coefficients when the error structure of the data is known;

(2) one can similarly define an ‘‘exact’’ Vnl for nonlinear LS by using exactly fitting

data; and (3) although this Vnl does not have the same rigorous validity as in linear

LS, previous Monte Carlo (MC) studies have led to a useful ‘‘10% rule of thumb’’:

if the predicted standard error for a nonlinear parameter is less than 10% of the

parameter’s magnitude, the Vnl-based prediction is likely to be good within 10% in

predicting the confidence limits (Tellinghuisen, 2000d). Note that in doing MC

computations on LS models, one must assume an error structure in order to add

the random error to the data. Thus, the simple predictions for linear models can be

used to verify the MC algorithms. In checking the extent of the error in Vnl for

nonlinear models, I have typically used 105 simulated data sets.

In the following sections, I briefly review the essential LS and thermodynamics

relations relevant to the study by ITC of the simplest binding case, 1:1 complexa-

tion ðXþM Ð MXÞ. The properties of linear and nonlinear fits are illustrated

on a simple model for van’t Hoff analysis. The Vnl matrix is then used to assess

the statistical errors in DH� and K� as estimated from ITC data for various

error structures—constant error, proportional error, and both. The use of

correlated LS is described in detail for the relevant model of titrant volume

delivery. MC calculations are used to check the validity of the Vnl matrix in cases

of relatively large parameter error, and also to assess the loss of precision

when heteroscedastic and correlated data are analyzed by ordinary unweighted

nonlinear LS.
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III. Variance-Covariance Matrix in Least Squares

A. Linear Least Squares

The LS equations are obtained by minimizing the sum S,
S ¼ Swid

2
i ð2Þ

with respect to a set of adjustable parameters b, where di is the residual (observed-
calculated mismatch) for the ith point and wi is its weight. In the present matrix

notation, b is a column vector containing p elements, one for each adjustable

parameter. Thus, its transpose is a row vector: bT ¼ (b1, b2, . . ., bp). The problem
is a linear one if the measured values of the dependent variable (y) can be related to

those of the independent variable(s) (x, u, . . .) and the adjustable parameters through

the matrix equation (Albritton et al., 1976; Hamilton, 1964; Tellinghuisen, 2000d),

y ¼ Xbþ d; ð3Þ
where y and d are column vectors containing n elements (for the nmeasured values),

and the design matrix X has n rows and p columns, and depends only on the values

of the independent variable(s) (assumed to be error free) and not on the parameters

b or dependent variables y. For example, a fit to y ¼ ax þ b/x3 þ c exp(2u)

qualifies as a linear fit, with two independent variables (x, u), three adjustable

parameters (a, b, c), and X elements Xi1 ¼ xi;Xi2 ¼ x�3
i ;Xi3 ¼ expð2uiÞ. On the

other hand, the fit becomes nonlinear if, for example, the first term is changed to x/a,

or the third to 2exp(cu). It also becomes nonlinear if one or more of the ‘‘indepen-

dent’’ variables are not error free and hence treated (along with y) as dependent

variables.

The solution to the minimization problem in the linear case is the set of

equations,

XTWXb � Ab ¼ XTWy: ð4Þ
When the data are subject to random error only, the square weight matrix W is

diagonal, with n elements Wii ¼ wi; when the data are correlated, W contains off-

diagonal elements. Equations (4) are solved for the parameters b, for example,

b ¼ A�1XTWy; ð5Þ
where A�1 is the inverse of A. Knowledge of the parameters permits calculation of

the residuals d from Eq. (3) and thence S, which in matrix form is

S ¼ dTWd: ð6Þ
Importantly, the variances in the parameters are the diagonal elements of the

variance-covariance matrix V, which is proportional to A�1 (see below).

For these equations to make sense, it is essential that the measurements yi be

drawn from parent distributions of finite variance (Hamilton, 1964). (This, e.g.,

excludes Lorentzian distributions.) If, in addition, they are unbiased estimates of
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the true means, then the LS equations will yield unbiased estimates of the para-

meters b. If the parent distributions are normal, the parameter estimates will also

be normally distributed. For these to be minimum variance estimates as well, it is

necessary that the weights be taken as proportional to the inverse variances

(Albritton et al., 1976; Hamilton, 1964; Mood and Graybill, 1963),

wi / s�2
yi : ð7Þ

Under these conditions, LS is also a maximum likelihood method. Note that it is

possible to have linear LS estimators that are unbiased but not minimum variance,

or minimum variance but not unbiased, or even unbiased and minimum variance,

but nonnormal.

1. A Priori Weights

At this point, let us assume that the parent distributions for the data are normal

(Gaussian) and that we know the syi (as we do any time we run a MC LS

calculation). With this prior knowledge of the weights, we take the proportionality

constant in Eq. (7) to be 1.00. Then, S is distributed as a w2 variate for n ¼ n � p

degreesof freedom (Albritton et al., 1976;Bevington, 1969;Hamilton, 1964;Moodand

Graybill, 1963).Correspondingly, the quantityS=n follows the reduced w2 distribution,
given by

PðzÞdz ¼ Czðv�2Þ=2 expð�nz=2Þdz ð8Þ
where z ¼ w2n and C is a normalization constant. It is useful to note that a w2 variate
has a mean of n and a variance of 2n (Abramowitz and Stegun, 1965), which means

that w2n has a mean of unity and a variance of 2/n. In the limit of large n, P(z)
becomes Gaussian.

With the proportionality constant in Eq. (7) taken as unity, the proportionality

constant connecting V and A�1 is likewise unity, giving

V ¼ A�1: ð9Þ
Since the parent data distributions are normal, the parameter distributions are also

normal, as already noted. Then our prior knowledge of the syi renders Eq. (9)

exact. This is true even when the number of data points equals the number of

adjustable parameters, giving an exact solution for the parameters (n ¼ 0). For

example, the 95% confidence interval on b1 is �1:96V
1=2
11 , so in MC calculations on

linear fit models, 95% of the estimates of b1 are expected within �1:96V
1=2
11 of the

true value. Conversely, a significant deviation from this prediction indicates a flaw

in the MC procedures.

There is much confusion in the literature regarding these matters. In general, the

off-diagonal elements in V (the covariances) are nonzero, for both linear and

nonlinear fits. This means that the parameters b are correlated. The correlation

matrix C is obtained from V through
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Cij ¼ Vij=ðViiVjjÞ1=2 ð10Þ
and yields elements that range between�1 and 1. However, each of the parameters

in a linear fit is distributed normally about its true value, with sbj ¼ V
1=2
jj , irrespec-

tive of its correlation with the other parameters. The correlation comes into play

only when we ask for joint confidence intervals of two ormore parameters, in which

case the confidence bands become ellipsoids in two ormore dimensions (Press et al.,

1986). Then the correlation is also correctly predicted by Eq. (10), obviating MC

computations for characterizing such joint confidence ellipsoids for linear LS fits.

It is useful to note from the structure of A that it scales with s�2
y and with

the number of data points n. Accordingly, V scales with s2y and with 1/n. Thus,

the parameter standard errors go as sy and as n�1/2. For example, if all syi
are increased by the factor f for a given data structure, all sbj increase by the

same factor f. To observe the n�1/2 dependence exactly, it is necessary to preserve

the structure of the data set, for example, by using the same 5 xi values on going

from n ¼ 5 to 10, 15, 20, and so on. This means that the sbj are to be interpreted in

the same manner as the standard deviation in the mean in the case of a simple

average. (One can readily verify that for a fit of data to y¼ a, the equations do yield

for sa the usual expressions for the standard deviation in the mean.)

Of course, all of the foregoing does assume prior knowledge of the statistics of the

yi. Unfortunately, from the experimental side, we never have perfect a priori informa-

tion aboutsyi.However, there are cases, especiallywith extensive computer loggingof

data, where the a priori information may be good enough to make Eq. (9) the proper

choice and the resulting V virtually exact. A good example is data obtained using

counting instruments, which often follow Poisson statistics closely, so that the vari-

ance in yiðs2yiÞ can be taken as yi. (For large yi, Poisson data are also very nearly

Gaussian.) An important reason for using prior weighting when it can be justified is

that one can then use the w2 statistic as an indicator of goodness of fit.

2. A Posteriori Weights

Attheotherextreme,wehavethe situationwherenothing isknown inadvanceabout

the statisticsof theyi, except thatwebelieve theparentdistributions tobenormaland to

have the same variance, independent of yi. In this case, the weights wi are all the same

constant, which without loss of generality we can take to be 1.00. This is the case of

unweighted least squares. The variance in y is then estimated from the fit itself, as

s2y 	 s2y ¼
Sd2i
n� p

¼ S
n

ð11Þ

which is recognized as the usual expression for estimating a variance by sampling.

The use of Eq. (11) represents an a posteriori assessment of the variance in yi. (This

was designated ‘‘external consistency’’ by Birge (1932) and Deming (1964) as

opposed to ‘‘internal consistency’’ for the situation where the syi are known

a priori.) The variance-covariance matrix now becomes
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V ¼ S
n
A�1 ð12Þ

Under the same conditions as stated before Eq. (7), s2y is distributed as a scaled

w2 variate. This means, for example, if the s2y values from an MC treatment of

unweighted LS are divided by the true value s2y used to generate the random noise,

the resulting ratios are distributed in accord with Eq. (8) for w2n .
In the case of a posteriori assessment, the uncertainty in sy can greatly limit the

reliability of the parameter standard error estimates when the data set is small. As

the variance in w2n is 2/n, the relative standard deviation in s2y is (2/n)
1/2. From error

propagation (see below), the relative standard deviation in sy is half that in s2y, or

[1/(2n)]1/2. For n ¼ 200, this translates into a nominal 5% relative standard devia-

tion in sy and hence also in all the parameter standard error estimates ðV 1=2
jj Þ; but it

is a whopping 50% when n¼ 2, as in the test model for van’t Hoff analysis explored

below (in which case the distribution of s2y is also far from normal, in fact is

exponential). It is for this reason that it is highly desirable to characterize the

data error independently from a particular experiment in those situations where it

may be difficult to obtain a large number of experimental points in each run. Such

information then permits use of the a priori V for confidence limits, and the w2 test
for the data from the experiment in question (Hayashi et al., 1996).

What about the confidence limits on the parameters in the case of a posteriori

assessment? The need to rely on the fit itself to estimate symeans the parameter errors

are no longer exact but are uncertain estimates. Accordingly, we must employ the

t distribution to assess the parameter confidence limits. Under the same conditions

that yield a normal distribution for the parameters b and scaled w2 distributions for
s2y and for the Vjj from Eq. (12), the quantities ðbj � bj;trueÞ=V 1=2

jj belong to the

t distribution for n degrees of freedom (Mood and Graybill, 1963), which is given by

f ðtÞdt ¼ C
0 ð1þ t2=nÞ�ðnþ1Þ=2

dt ð13Þ
withC0 another normalizing constant. For small n the t distribution is narrower in the
peak than the Gaussian distribution, with more extensive tails. However, the t distri-

bution converges on the unit variance normal distribution in the limit of large n,
making the distinction between the two distributions unimportant for large data sets.

3. Intermediate Situations

Sometimes, one has a priori information about the relative variation of syi with yi
but not a good handle on the absolute syi. For example, data might be read from a

logarithmic scale, or transformed in someway to simplify theLSanalysis.Asa specific

example of the latter, datamight be fitted to y¼ axþ bx2 by first dividing byx to yield

y0 � y/x, then fitting to y0 ¼ aþ bx. If the original yi have constant standard deviation

sy, then simple error propagation shows that the standard deviations in the y0i values
are sy/xi, meaning the weights wi / x2i . One can readily show that the resulting

weighted ‘‘straight-line’’ analysis yields equations [Eq. (4)] that are identical to those

for the unweighted fit to y ¼ ax þ bx2. This is a general property of linear LS fits to
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alternative forms relatable by linear variable transformations (which preserve the

normal structure of the original data). Also, the results for both b and V [through

Eq. (12)] are independent of arbitrary scale factors in the weights. In the present

example, if the latter are taken as simply wi ¼ x2i ;S=n will be an estimate of s2y.
Another situation is when data come from two or more parent distributions of

differing sy, but again known in only a relative sense. As before, the results of the

calculations are independent of an arbitrary scale factor in the weights. However,

to obtain meaningful estimates of the parent variances, it is customary to designate

one subset as reference and assign wi ¼ 1 for these data, with all other weights

taken as wi ¼ s2ref=s
2
i (hence the need for knowledge of the relative precisions).

Then the quantity S=nð¼ s2refÞ obtained from the fit is more properly referred to as

the ‘‘estimated variance for data of unit weight,’’ and the estimated variance for a

general point in the data set is s2ref=wi.

Users of commercial data analysis programs should be aware that those pro-

grams that provide estimates of the parameter errors do not always make

clear which equation—Eq. (9) or Eq. (12)—is used. For example, recent versions

of the program KaleidaGraph (Synergy Software) use Eq. (12) in unweighted

fits to user-defined functions, but Eq. (9) in all weighted fits (Tellinghuisen,

2000c). This means that in cases like those just discussed, where the weights are

known in only a relative sense, the user must scale the parameter error estimates by

the factor ðS=nÞ1=2 to obtain the correct a posteriori values. (In the KaleidaGraph

program the quantity called ‘‘Chisq’’ in the output box is just the sum of weighted

squared residuals S, which is w2 only when the input si values are valid in an

absolute sense.)

B. Nonlinear Least Squares

In nonlinear fitting, the quantity minimized is again S, and the LS equations

take a form similar to Eq. (4) but must be solved iteratively. The search for the

minimum in S can be carried out in a number of different ways (Bevington, 1969;

Johnson and Faunt, 1992; Press et al., 1986); but sufficiently near this minimum,

the corrections Db to the current values b0 of the parameters can be evaluated

from (Bevington, 1969; Deming, 1964; Press et al., 1986)

XTWXDb � ADb ¼ XTWd ð14Þ
leading to improved values,

b1 ¼ b0 þ Db: ð15Þ
The quantities W and d have the same meaning as before; but the elements of X are

Xij ¼ (@Fi/@bj), evaluated at xi using the current values b0 of the parameters. The

resultingmatrixA is now an approximation of theHessianmatrix (Press et al., 1986).

The function F expresses the relations among the variables and parameters, and it is

convenient to express it in such away that a perfect fit yieldsFi¼ 0.For the commonly

occurring case where y can be expressed as an explicit function of x, it can be written
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Fi ¼ ycalcðxiÞ � yi ¼ �di: ð16Þ
In the case of a linear fit, starting with b0 ¼ 0, these relations yield for b1 equations

identical to Eqs. (4) and (5) for b; and convergence occurs in a single cycle. In the

more general case where y cannot be written explicitly in terms of the other

variables, these equations still hold, but with d in Eq. (14) replaced by �F0,

where the subscript indicates that the Fi values are calculated using the current

values b0 of the parameters.

Regardless of how convergence is achieved, the variance-covariance matrix is

again given by Eq. (9) in the case of a priori weighting and Eq. (12) for a posteriori

weighting, with X as redefined just below Eq. (15). However, there is an important

distinction between V in the general nonlinear case versus the linear case:

the matrix A now contains a dependence on the parameters. Also, in general,

there is no need to distinguish between dependent and independent variables in

nonlinear fitting, as all variables can be taken to be uncertain (Deming, 1964). In

that case, A may also depend on the values of all the variables, not just the

(previously) independent variables. Thus, even in the case of a priori weighting,

V from Eq. (9) will vary from data set to data set. However, one can extract

estimates of V from a perfectly fitting theoretical curve and use this V in the same

fashion as in the case of linear fitting. This is the ‘‘exact’’ Vnl menioned in the

Introduction.

Through Vnl, one can estimate parameter confidence limits for a particular

nonlinear fit model and data structure almost trivially, often with a few minutes

of effort using a program like KaleidaGraph. While it is true that the nonlinear LS

parameter distributions are generally not normal, often they are close enough

thereto to permit estimation of confidence intervals in this a priori fashion with a

reliability that exceeds that achievable in typical MC calculations. This is because

the MC variance estimates are subject to the previously noted statistics of a

w2 variate, which means for a 1000-setMC calculation a relative standard deviation

of about 4.5% in the variances, or half that in the standard errors. And many

published studies have employed far fewer than 1000 data sets, with concomitant

loss in error precision as N�1/2. The 10% rule of thumb for the reliability of Vnl,

mentioned in the Introduction, actually turns out to be conservative for most of the

cases I have examined to date.

C. Statistical Error Propagation

The textbook expression,

s2f ¼
X @f

@bj

 !2

s2sj ð17Þ

is normally used to compute the propagated error in a function f of the indepen-

dent variables b, where the sum runs over all uncertain variables bj. However,

Eq. (17) assumes that these variables are uncorrelated. This assumption seldom
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holds for a set of parameters b returned by an LS fit, and one must use the more

general expression (Tellinghuisen, 2001),

s2f ¼ gTVg ð18Þ

in which the jth element of the vector g is @f/@bj. This expression is rigorously

correct for functions f that are linear in variables bj that are themselves normal

variates. For nonlinear functions of normal and nonnormal variates, its validity is

limited by the same 10% rule of thumb that applies to parameters estimated by

nonlinear LS.

In many cases, the computation of sf can be facilitated by simply redefining

the fit function so that f is one of the adjustable parameters of the fit (Tellinghuisen,

2001). For example, suppose a set of data is fitted to the quadratic function, y ¼
a þ bz þ cz2/2, where z ¼ (x � x0), and it is the errors in this function and its

derivatives that are of interest. For f¼ y, gT¼ (1, z, z2/2), from which it is clear that

sf ¼ sa for x¼ x0. Similarly, the statistical errors in the first and second derivatives

of f at x0 are sb and sc, respectively. Thus, one can bypass Eq. (18) by simply

repeating the fit for the several values of x0 that are of interest.

IV. Monte Carlo Computational Methods

The Monte Carlo LS calculations are done using programs coded in FOR-

TRAN and methods that are detailed elsewhere (Tellinghuisen, 2000d). To mini-

mize post-processing of the very large files that would be produced in a run of 105

data sets, the distributional information is obtained by binning ‘‘on the fly.’’ The

statistical averages and higher moments are similarly computed by running accu-

mulation. For most of the computations, a typical run of 105 data sets takes less

than 1 min.

The statistics for the various quantities from the MC calculations are calculated

by accumulating the relevant sums and then dividing by the number of setsN at the

conclusion. For example, the estimated variance in a parameter a is

s2a ¼ ha2i � hai2. For assessing the significance of bias, it is necessary to know the

precision of the MC parameter estimates, which (at the 68.3% or 1-s level, for

normal data) is their estimated standard error, sa/N
1/2. On the other hand, the

sampling estimates of the parameter standard errors are subject to the previously

mentioned properties of the w2 distribution, for N degrees of freedom in this case.

Thus, their relative standard errors are (2N)�1/2 ¼ 0.00224 for N ¼ 105.

The histogrammed data are analyzed by fitting to the appropriate models using

the user-defined curve-fitting function in KaleidaGraph. The uncertainties in the

binned values are taken as their square roots, in keeping with the Poisson nature of

the binning process. Bins containing fewer than six counts are normally omitted.

For the most part, the values are fitted simply as sampled points. However,
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technically the bin counts represent integrals over the specified intervals, a distinc-

tion that can make a difference if the data are not binned on a fine enough scale.

For example, in the present case, proper treatment of narrow w2n distributions

requires breaking each interval into subintervals and integrating.

V. Van’t Hoff Analysis of K�(T): Least-Squares Demonstration

With assumption of a functional form for DH�(T), Eq. (1) can be integrated to

yield a form suitable for analysis by LS fitting. In the examples discussed below,

DH� is assumed to be expressible as quadratic in the temperature T over the range

encompassed by the data,

DH
� ¼ aþ bðT � T0Þ þ cðT � T0Þ2 ð19Þ

From this expression, at T ¼ T0, DH� ¼ a, DC�
P ¼ b, and dDC�

P=dT ¼ 2c. Integra-

tion of Eq. (1) then yields

R lnðK �
=K

�
0Þ ¼ A

1

T0

� 1

T

� �
þ B ln

T

T0

� �
þ cðT � T0Þ; ð20Þ

where R is the gas constant,

A ¼ a� bT0 þ cT2
0 and B ¼ b� 2cT0: ð21Þ

If we take y as ln K� and define lnK
�
0 as one of the fit parameters, the fit to

Eq. (20) becomes linear and should obey all the rules for linear fits described above.

Alternatively, the fit of K� to the exponential form of Eq. (20) is nonlinear and can

be expected to deviate from these rules. These behaviors are illustrated through a

series of MC calculations employing the model spelled out in Table I, which is

based on observations for the complexation of Ba2þ with 18-crown-6 ether, a

reaction that is sometimes used to calibrate ITC instruments (Briggner and

Wadsö, 1991) and that has been examined for consistency between DH�
vH and

DH�
cal (Horn et al., 2001; Liu and Sturtevant, 1995). For simplicity, DC�

P is assumed

to be constant (c ¼ 0); however, the data error is intentionally set large enough to

ensure that DC�
P is not statistically defined for the five-point data set (as cases of

large relative error are more likely sources of significant deviations from linear

behavior in nonlinear fits). Note also that the assumption of proportional error in

K� means that the error in ln K� is constant, since s(ln y) ¼ sy/y.
Results of several MC computations on 105 data sets are summarized in Table II

and illustrated in Figs. 1 and 2. In cases 1 and 2, the random error is assumed to be

normal in the fitted quantity (lnK�), and the MC deviations from the true values

for the parameters, their standard errors, and w2n are reasonable—about equally

positive and negative, with 11 of 16 being less than 1s and none exceeding 2s. In
case 3, lnK� is still the fitted quantity, but the error is taken to be normal in K� (i.e.,
the random error is added to K� before the logarithm is taken). As a result of the
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log transformation, the fitted data are no longer normal, and this results in

significant bias in w2n , all parameter standard errors, and lnK
�
0. Cases 4–6 involve

the nonlinear fitting of K�, both with (cases 4 and 5) and without weighting (case

6). As the data error is taken as 10% of K�, there are several options for actually

assessing the weights: Use the true K� values (theoretical weighting, available only
in the MC context), the actual values after the random error has been added

(observed weighting), or the adjusted values from the fit itself (not included here)

(Tellinghuisen, 2000d). All choices produce bias in most of the tabulated quanti-

ties, but the magnitude of the bias varies considerably from case to case.

Even though the biases in cases 3–6 are mathematically significant, they are mostly

not practically significant from the standpoint of a single experiment. For example, the

disparity of �0.068 in K
�
0 in case 5 still represents only ’ 1=6 of 1 standard deviation

for a single experiment; and remember that this s itself, if estimated a posteriori, would

be uncertain by50% (n¼ 2). Except for case 6, noneof theMCstandard error estimates

differs bymore than 3% from the ‘‘exact’’ predictions, even for the very uncertainDC�
P,

forwhich the relative standard error is�300%. The results for the unweighted fit to the

K� values (case 6) demonstrate how neglect of weights for heteroscedastic data leads to

standard errors that must exceed the minimum variance values—by 15%, 18%, and

Table I
Model Used in Monte Carlo Tests of Van’t Hoff Analysis of K� (T)

DH
� ¼ �32; 000 J mol�1K�1 þ 130 J mol�1K�2ðT � 298:15Þ � aþ bðT � T0Þ

lnðK�Þ ¼ lnðK �
0Þ þ a�bT0

R
ð 1
T0
� 1

T
Þ þ b

R
lnðT

T0
Þ;K �

298 ¼ 5:5

n ¼ 5: ti(
�C) ¼ 5, 15, 25, 35, 45

sK�
i
¼ 0:10K

�
i ;s lnðK�

i
Þ ¼ 0:10

For log fit with T0 ¼ 298.15 K:

Xi1 ¼ 1:0;Xi2 ¼ R�1ð298:15�1 � T�1
i Þ;Xi3 ¼ R�1½ lnðTi=T0Þ þ T0=Ti � 1


Wii ¼ 100, Wij ¼ 0, i 6¼ j

b ¼
1:70475
�32; 000

130

0
@

1
A;A � XTWX ¼

5:00000� 102 �4:55537� 10�4 6:80393� 10�2

�4:55537� 10�4 1:85173� 10�7 �2:46001� 10�7

6:80393� 10�2 �2:46001� 10�7 1:58826� 10�5

0
@

1
A

V ¼
4:84137� 10�3 �1:59714� 101 �2:09873� 101

�1:59714� 101 5:56650� 106 1:54638� 105

�2:09873� 101 1:54638� 105 1:55264� 105

0
@

1
A;C ¼

1:00000 �0:09729 �0:76548
�0:09729 1:00000 0:16634
�0:76548 0:16634 1:00000

0
@

1
A

For log fit with T0 ¼ 278.15 K:

b ¼
2:67152
�34; 600

130

0
@

1
A;A ¼

5:00000� 102 1:40472� 10�2 2:00600� 10�1

1:40472� 10�2 5:79405� 10�7 9:14687� 10�6

2:00600� 10�1 9:14687� 10�6 1:53647� 10�4

0
@

1
A

V ¼
9:00642� 10�3 �5:43633� 102 2:06047� 101

�5:43633� 102 6:14868� 107 �2:95065� 106

2:06047� 101 �2:95065� 106 1:55264� 105

0
@

1
A;C ¼

1:00000 �0:73053 0:55100
�0:73053 1:00000 �0:95497
0:55100 �0:95497 1:00000

0
@

1
A
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Table II
Monte Carlo Results from 105 Data Sets on Model in Table Ia

Parameter Value db sc dsd

Exact values for T0 ¼ 298.15 and n ¼ 5:

lnK
�
0 1.70475 0.06959

K
�
0 5.5 0.3827

DH
�
0 �32,000 2359.3

DC
�
P 130 394.04

1. Error normal in lnK�; lnK� fitted:
lnðK �

0Þ 1.70485 0.46 0.06958 �0.09

DH
�
0 �31,990.7 1.25 2357.5 �0.36

DC
�
P 129.76 �0.19 395.4 1.49

w2dn 0.99709 �0.92 0.99939 �0.27

2. Error normal in lnK�; lnK� fitted, 20 data points (4 at each Ti):

lnðK �
0Þ 1.70476 0.11 0.03484 0.63

DH
�
0 �31,998.0 0.54 1176.5 �1.21

DC
�
P 129.66 �0.55 197.8 1.75

w2dn 1.00110 1.01 0.34276 �0.31

3. Error normal in K�; lnK� fitted:
lnðK �

0Þ 1.69979 �22.24 0.07049 5.79

DH
�
0 �31,991.0 1.19 2387.6 5.35

DC
�
P 129.66 �0.27 400.4 7.25

w2dn 1.02276 6.83 1.05416 24.22

4. Error normal in K�; K� fitted using theoretical weighting:

K
�
0 5.50457 3.78 0.38281 0.13

DH
�
0 �31,995.1 0.65 2378.8 3.68

DC
�
P 119.93 �8.00 398.1 4.65

w2dn 0.99662 �1.07 0.99884 �0.51

5. Error normal in K�; K� fitted using ‘‘observed’’ weighting:

K
�
0 5.43230 �54.50 0.39285 11.86

DH
�
0 �31,979.8 2.66 2405.5 8.74

DC
�
P 158.72 22.44 404.8 12.17

w2dn 1.01077 3.28 1.03959 17.71

6. Error normal in K�; K� fitted unweightede:

K
�
0 5.50332 2.38 0.44079 67.87

DH
�
0 �32,185.9 �21.14 2781.0 79.90

DC
�
P 103.88 �15.40 536.3 161.50

aUnits: J mol�1 forDH�, J mol�1 K�1 for DC
�
P. All results for 5-point data sets except where indicated

otherwise.
bDeviations (observed—true) in units of standard errors, which are s/(105)1/2 for parameters,

s/(2 � 105)1/2 for standard deviations.
cEnsemble estimates of standard deviations for Monte Carlo data.
dReduced w2 has expected value 1.00 and standard error (2/n)1/2, ¼ 1.00 for 5-point data sets,

(2/17)1/2 for 20-point data sets.
eRMS standard errors from a posteriori V [Eq. (12)] are 0.3391, 3636, and 408.3, respectively.
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Fig. 1 Histogram data for DC
�
P, as estimated in the indicated computations summarized in Table II.

The results from cases 1 and 2 fit the Gaussian curve with reasonable w2 values (32.4 for case 1, 31 points;
36.2 for case 2, 32 points), while the data from the unweighted fit (case 6) are clearly not Gaussian (w2 ¼
298). Similar data from case 3, although biased in s, do fit the Gaussian distribution adequately at this

level of scrutiny (w2 ¼ 36.2, not shown). Note that the binning interval for case 2 was half that for the

other two, resulting in its factor of 2 smaller area in this display.
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Fig. 2 Histogram data for w2n for the indicated computations of Table II. The results from cases 1 and

2 fit the theoretical distribution of Eq. (8), yielding n ¼ 1.997 � 0.007 and 17.085 � 0.076, respectively.

The estimates of S/n from the unweighted fit (case 6) were scaled to an average value of 1.00 for this plot;

they do not follow Eq. (8) for any n.
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36%, respectively. At the same time, the a posteriori estimates fromEq. (12) differ from

both the exact values (from a properly weighted fit) and the observed (MC) values;

relative to the latter they are off by �23,þ31, and �24%. This demonstrates that the

estimated V from Eq. (12) is simply wrong when it results from an unweighted fit of

data that should properly be analyzed by a weighted fit. Not surprisingly, in this

situation, the quantity called w2n also fails to follow the true w2n distribution (Fig. 2).

Interestingly, the unweighted fit does yield the least bias for K
�
0.

Case 2 and Fig. 1 illustrate how taking four values at each Ti instead of one drops

the parameter standard errors by a factor of 2.Wemight askwhatwouldhappen ifwe

simply averaged each set of four points andfitted only the five average values. Clearly,

each singleMCdata set will yield exactly the same results if we weight each set of four

by four times the original weight for individual values. This is the same as taking each

of the five averages of K� to have syi ¼ syi=2, that is, the theoretical standard

deviation in the mean. Alternatively, if we use the actual statistics of each group of

four, we will not get identical results, and the statistics of this process will not follow

the usual rules (Tellinghuisen, 1996). In effect, by this procedure, we are granting the

data the right to determine their own destiny. This disparity emphasizes the impor-

tance of having prior knowledge of the data error and using this prior knowledge to

assign the weights. If such prior weighting is used in the present case, all of the results

will be identical to those obtained for the original 20-point data sets, except one: w2n
will now follow the distribution for n ¼ 2 instead of that for n ¼ 17 (Fig. 2).

Table I includes the A, V, and C matrices for two different choices of T0, 298.15

and 278.15 K. Note first that both V matrices yield identical V33 elements, confirm-

ing expectations that the constant DC�
P should not have a statistical error that

depends on the arbitrary choice of reference temperature. The other two parameters

do vary with T, and so do their errors. To assess the error in DH� as a function of T,

note that gT in Eq. (18) is (0, 1, z), where z ¼ T � T0. It is easy to verify that

s2DH� ¼ V22 þ 2V23zþ V33z
2 ð22Þ

and that both V matrices thus yield identical estimates of s2DH� at all T. Of course,

the two V values give this quantity directly at 298.15 and 278.15 K, confirming that

one can obtain the desired standard error by simply repeating the fit for the several

T0 values of interest.

Finally, it is noteworthy that DH� and DC�
P are highy correlated at 278.15 K but

largely uncorrelated at 298.15 K. This means that the naive error propagation

formula of Eq. (17) will work fairly well on the results at the latter T0 but will be

badly in error if used with the results obtained for T0 ¼ 278.15 K.

VI. Isothermal Titration Calorimetry

A. Fit Model for 1:1 Binding

In an ITC experiment, the heat qi determined for the ith injection of titrant X

represents the result of changes in the amount of the complex MX in the active

volume V0 of the reactant vessel. The cells in the most widely used instruments are
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of the perfusion type, in which a volume n of solution is expelled each time the same

volume of titrant is injected. It is assumed that prior to each injection the system is

uniform and at equilibrium, and solution of this composition is expelled on

injection, after which the injected titrant mixes and reacts to achieve the new

equilibrium. Following the ith injection, the total concentrations (free and com-

plexed) of X and M are given by (El Harrous et al., 1994b):

½X
0;i ¼ ½X
0ð1� diÞ and ½M
0;i ¼ ½M
0di; ð23Þ
where [X]0 is the concentration of titrant in the syringe, and [M]0 is the starting

concentration of M in the reaction vessel. The dilution factor d ¼ 1 � n/V0.

At equilibrium, the concentrations of reactants and product satisfy the equilib-

rium expression (using the concentration reference state),

½MX
i
ð½X
0;i � ½MX
iÞð½M
0;i � ½MX
iÞ

¼ K � K
� � ðl mol�1Þ: ð24Þ

The number of moles of complex produced by the ith injection is thus

Dni ¼ V0½MX
i � ðV0 � nÞ½MX
i�1 ¼ V0 ½MX
i � d½MX
i�1

� � ð25Þ
and the associated heat is

qi ¼ DH
�
Dni: ð26Þ

For notational simplicity, I work with the dimensionless K� below, which is

tantamount to taking all activity coefficients to be unity at all times in Eq. (24).

I also neglect such experimental complications as the need to estimate heats of

dilution for the titrant, and the related concentration dependence of qi. Within the

framework of these assumptions, this model is exact; that is, there is no need for the

differential approximation described by Wiseman et al. (1989).

Thismodel has twoadjustable parameters,DH� andK�, and asmanydatapoints as

injections. The software in general use for analyzing ITC data includes a third

parameter, the ‘‘site number’’ ns. For 1:1 complexes, this parameter is typically within

�0.05 of 1.0 and should usually be viewed as a concentration correction factor,

needed to put the concentrations of X and M on a common footing. As inclusion of

this factor is important for achieving a good fit of typical ITC data, I have also

included it in the present model, where I have taken it as a correction factor to [M]0.

(The matter of how this factor should be applied is discussed further below.)

Knowledge of the error structure of ITC data is key to estimating the parameter

standard errors, as it is also for realisticMC calculations. There are two clear sources

of random error in ITC: (1) the extraction of qi values from the recorded data, and

(2) the delivery of the metered volume n of titrant from the syringe. The first of these

is essentially a sensitivity of measurement limitation and is expected to be roughly

constant, independent of qi. The effects of the second depend strongly on the specific

assumptionsabout thevolumeerror. If the incremental volumen is assumed topossess

random error, simple error propagation yields a proportional error, sqi ¼ qi(sn/n).
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On the other hand, if it is the total accumulated volume after i steps that is assumed

to possess random error, the incremental volume, being the difference between two

such independent quantities, possesses correlated error. These three kinds of error

affect the precisions differently and are examined individually and in combination

in the calculations described below. When simultaneous contributions from the

measurement and volume errors are considered, the variances are assumed to be

additive, for example, s2i ¼ s2q þ q2i ðsn=nÞ2 for the random volume error. Note that

random volume error leads to data that are inherently heteroscedastic, requiring a

weighted fit for proper analysis. Similarly, correlated volume error requires the

use of weighted, correlated LS. For reference, the two uncertainties are estimated

as sq ¼ 0.28 mcal and sn ¼ 0.015 ml in Wiseman et al. (1989); for the benchmark

reaction of 20CMP with RNase studied there, the volume error dominates over

most of the titration curve in the random volume error model (see below).

The point made after Eq. (10), about the dependence of V on the data error, is

worth revisiting here. If the computations for a given model are repeated after

simply scaling sq and sn by a factor f, the parameter standard errors will scale by

the same factor f. As sufficiently small data errors yield adequately Gaussian

parameter distributions, this means that the error structure for the model can

always be evaluated from Vnl. The only question then is the extent to which this

structure applies to the actual situation; in previously examined cases, the 10% rule

of thumb has proved a reliable guideline for applicability.

In the LS fitting codes, the independent variable is taken as the titration index i,

which is rigorously error free. The error in q is taken to be normal at all times, and

the solution concentrations are treated as exact. Although uncertainty in the

prepared concentrations is significant in most actual experiments, this uncertainty

is not manifested as point-to-point random error in a given experiment; and it is

anyway partly compensated through the parameter ns, as was already noted and is

discussed further below.

B. Check on 10% Rule of Thumb

For most of the calculations discussed in this and subsequent sections, [M]0 was

fixed at 1.00 mM, V0 was 1.4 ml (as in the instrument of Wiseman et al., 1989), and

DH� was 10.0 kcal/mol. The total titrant volume for m injections was typically

0.1 ml; and the precisions in K�, ns, and DH� were investigated as functions of K�
(more properly K[M]0), the number of injectionsm, and the stoichiometry range of

the experiment, Rm ¼ [X]0,m/[M]0,m.

I address first the circumstances under which Vnl can be trusted to yield reliable

estimates of the parameter errors in the analysis of ITC curves. For reference, Fig. 3

illustrates typical titration curves spanning the approximate extremes of analyzable

values of the product K[M]0. These curves represent an extension of the example, K

[M]0¼ 1000, explored inFig. 3AofElHarrous et al. (1994a).As the latterMCanalysis

also included an assumed 2% error in the concentrations, the present results cannot be

compared quantitatively; however, the results for this case are commensurate with
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those obtained there. It is interesting that even though K� is uncertain by 20% for K

[M]0¼ 1000,DH� and ns are actually quitewell defined in this case.On the other hand,

all three parameters are much less precise at the other extreme.

Figure 4 illustrates the results of MC calculations for the case K� ¼ 5 � 106 in

Fig. 3. The results for K� are clearly non-Gaussian, with a bias of þ3.4% (even

though the peak in the distribution is shifted negatively). However, the MC statisti-

cal error inK� exceeds the predicted value by less than 6%, showing that even for this

20% relative error, the predicted value from Vnl would be adequate for many

applications. The histograms for DH� and ns appear to be Gaussian, as expected

from their smaller percent standard errors (0.5% and 0.3%, respectively). However,

only the former actually fits the Gaussian with an adequately small w2—21.6 for 33

points. It is interesting that the reciprocal of K� (or the dissociation constant) is

actually much closer to Gaussian than K� itself; similar results were obtained in the

large-K� regime in the study of complexation equilibria in Tellinghuisen (2000d).

MC calculations have been carried out for a number of other choices of the ITC

parameters, for both constant and proportional error, random and correlated.

None of the results has shown any problem with the 10% rule for the analysis of

typical ITC data. Its validity extends even to the low limit of three titration

increments (m ¼ 3), where there are no degrees of freedom and the LS equations

yield exact fits at all times. Of course, the Vnl matrix can say nothing about the

extent of nonnormality or the bias, so if these are at issue, MC calculations must be

employed for the specific cases in question.
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Fig. 3 Computed ITC curves for K� ¼ 5 � 103, 1.5 � 105, and 5 � 106 and [M]0 ¼ 0.200 mM. Other

conditions: V0 ¼ 0.20 ml, Rm ¼ 2.08, n ¼ 10 ml, DH� ¼ 10 kcal/mol. Neglecting the error in n and taking

sq¼ 0.6 mcal, as in El Harrous et al. (1994a), the predicted standard errors inK� are 1.845� 103, 1.107�
104, and 1.008 � 106, respectively, while the corresponding errors in DH� are 2.486, 0.0932, and

0.0533 kcal/mol. The standard errors in the concentration correction parameter ns (taken to be 1.00)

are 0.105, 0.0074, and 0.0030 (same order).
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C. Dependence on Stoichiometry Range and Titration Increments

Having demonstrated the approximate validity of the ‘‘exact’’ nonlinear vari-

ance-covariance matrix Vnl under the relatively extreme conditions of Fig. 4, I now

use it to investigate the dependence of the ITC parameter standard errors on the

other experimental quantities. Figure 5 illustrates the computed standard errors in

K� and DH� as functions of the range of titration and the number of titration

increments, for the midrange K[M]0 value of 36 and constant error. Other para-

meters were chosen to resemble those for the instrument described in Wiseman

et al. (1989) (except the error, which was artificially large). The most interesting

result of these calculations is the observation that better precision is achieved with

fewer points and a larger titration range than is customarily employed in such

work. For small m, the standard errors exhibit structure, showing that they are

sensitive to just where the points fall on the titration curve.
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Fig. 4 Histogrammed results for (A) K� (○) and K��1 (�), and (B) DH� (○) and ns (�), from 105 MC

fits of 12-point data sets like that shown for K� ¼ 5 � 106 in Fig. 3, with superimposed random error

having sq ¼ 0.6 mcal. In each case the histogrammed quantity is Y ¼ (b � btrue)/sb, with the values for

these quantities given in the caption to Fig. 3. The smooth curves are standard Gaussians, scaled into

optimal agreement with the data for K��1 in (A) and with DH� in (B).
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The loss of precision with increasing number of points seems at odds with

expectations, but it can be understood as follows. The total heat q is limited by

the fixed amount of M in the reaction vessel, so increasing the number of titration

increments m decreases each qi. At first approximation, if K� and ns are held

constant, one obtainsm estimates of DH� from DH� ¼ qi/Dni [Eq. (26)]. The relative
error in each such estimate of DH� is approximately sq/qi, and as qi decreases with

increasing m, the error in DH� increases concomitantly. This is partially offset by

the statistical averaging effect, which goes as m�1/2. The net result is a standard

error that increases roughly asm1/2. Similar observations were made some time ago

by Doyle et al. in connection with a study of a differential absorption technique for

characterizing binding isotherms (Doyle et al., 1990).
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Fig. 5 Calculated standard errors in K� and DH� for K� ¼ 36,000 and [M]0 ¼ 1.0 mM, as functions of

the stoichiometry range and the number of titration stepsm, for constant absolute error sq ¼ 0.04 mcal.

Other parameters: V0 ¼ 1.4 ml, DH� ¼ 10 kcal/mol, and nm ¼ 0.10 ml. For reference, the total q for

complete reaction is 14 mcal, so for m ¼ 15 and Rm ¼ 5, the error on q1 is �1%.

382 Joel Tellinghuisen



The possible role of correlated error in the titrant volumes will be considered in

detail below. When the error in the incremental volume n is assumed to be random,

there are several cases to consider: (1) n and the titrant concentration [X]0 are fixed,

and the operator decides on m, and hence Rm; (2) [X]0 and the stoichiometry range

Rm are set in advance, and the operator decides onm; and (3) n and Rm are set, and

the operator varies m. In the first case, an increase in m means simply adding

additional points at the end of the titration range, which always leads to a

decrease in all of the parameter standard errors (i.e., improved precision). In case

2, the total titrant volume is fixed, so increasing m decreases n; this leads to an

increase in the relative uncertainty sn/n, and hence an m dependence similar to that

shown for constant error sq in Fig. 5. Case 3 is the least feasible from an experi-

mental standpoint, as it means altering the titrant concentration when either m is

changed for fixed Rm, or Rm is changed for fixed m. However, this case does

lead to increasing precision with increasing m, as the relative error sn/n is

now fixed. Results for this case show that minimal error in DH� occurs near

Rm ¼ 1.5, but a much larger titration range of Rm 	 4 is needed for optimal

precision in K� (Tellinghuisen, 2003). Of course, with increasing dilution of titrant,

all qi will decrease as m�1, so that eventually the constant error sq in q will

dominate.

Figure 6 illustrates the dependence of the relative errors in K� and DH� on K�
and Rm form¼ 7 and constant absolute error. There is a fairly flat minimum in the

error surface for K�, centered near K[M]0 ¼ 10, and Rm ¼ 4. DH� is an order of

magnitude more precise, with a large region at large K� where the relative error is
less than 1%. For both quantities, there is considerable structure at the error

surface for the relatively small m value of 7. Note again that the structure of

these contour diagrams is unaffected by the actual value used for sq, so, for
example, reducing sq by a factor of 10 would simply result in a relabeling of the

contours by the same factor. Also, in regions where the relative errors in K� and

DH� exceed �0.2, the actual statistical distributions may be far from Gaussian, as

already noted in the discussion of Fig. 4.

The results illustrated in Figs. 5 and 6 were obtained for fixed [M]0 ¼ 1.0 mM.

However, the worker seeking to enhance precision would also consider increasing

[M]0, as that increases total reaction heat. This fuller dependence is considered in

the work of Tellinghuisen (2005b, 2007b), where also a more reliable data variance

function is employed.

Although for efficiency I have used a programming language to generate all the

results described in this section, it is worth noting that the ‘‘exact’’ parameter

standard errors for a specific data structure can be obtained quite easily using some

desktop data presentation and analysis packages. For example, I have used Kalei-

daGraph to double-check some of the results obtained from the FORTRAN

programs. Such calculations are facilitated by defining the key quantities from

Eqs. (23)–(26) as library functions, for example,
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diðxÞ ¼ ðdfÙxÞ;
x0iðxÞ ¼ ðX0 � ð1:-diðxÞÞÞ;
y0iðxÞ ¼ ðY0 � c � diðxÞÞ;
tsmðxÞ ¼ ðx0iðxÞ þ y0iðxÞ þ 1:=aÞ;
tmpðxÞ ¼ ðtsmðxÞÙ2-4: � y0iðxÞ � x0iðxÞÞ;
mxiðxÞ ¼ ððx > 0Þ?ðV0=2 � ðtsmðxÞ-sqrtðtmpðxÞÞÞ � bÞ : 0Þ;

ð27Þ

where x is the (integer) running index for the titration steps, and di(x), x0i(x),
and y0i(x) are as defined in Eq. (23), with c¼ ns, a¼ K�, and b¼ DH�. tsm and

tmp are used in the quadratic solution for [MX]i; and df, X0, Y0, and V0 are d,

[X]0, [M]0, and V0, respectively, and can be replaced by their numerical values in
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Fig. 6 Contour plots of the relative standard errors sb/b as functions of K� and DH�, for m ¼ 7 and

constant error, sq ¼ 0.04 mcal: (A) for K�; (B) for DH�. Other parameters as in Fig. 5.
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these expressions or entered through definition statements preceding these in the

library. The fit function to be entered in the user-defined function box (General) is

then

mxiðxÞ � df � mxiðx� 1Þ ð28Þ
As the first value of x is 1, the definition of mxi(x) contains a branching

statement to set the second term in Eq. (28) ¼ 0 for this first injection of titrant.

D. When Weights Are Neglected

I now take a closer look at the prototype case of Wiseman et al. (1989) (Figs. 4A

and 5), and ask what happens when such data are analyzed by unweighted LS. As

was already noted for case 6 in Table II, when heteroscedastic data are analyzed

with neglect of weights, there are two main consequences: (1) the parameter

estimators are no longer minimum variance, so the parameter distributions must

broaden. (2) The error estimates from the a posteriori V of Eq. (12) are not reliable

and can be either pessimistic or optimistic. The magnitudes of these effects can be

determined only through MC computations.

For the aforementioned experiment in Wiseman et al. (1989), the following

values of the key parameters apply: n ¼ 4 m1, DH� ¼ �13.7 kcal/mol, [M]0 ¼
0.651 mM, K� ¼ 4.88 � 104, and Rm ¼ 2.06. As was noted earlier, sn and sq were
estimated to be 0.015 ml and 0.28 mcal, respectively. The calculated qi values range

from 1.18 for i ¼ 1 to 0.04 mcal for i ¼ 20. As the relative error in n is 0.0038, the
relative error will exceed the absolute error (sq) until i ¼ 17, where qi ¼ 0.07 mcal.

With data properly weighted for the combined errors, Vnl yields sK� ¼ 200 and

sDH� ¼ 21.0 cal/mol.

For comparison, MC calculations employing unweighted fits yield the results

illustrated in Fig. 7. The neglect of weights has led to increases in both s values, as

anticipated. The corresponding loss of efficiency for the determination of K� is

2.3342 	 5, meaning one would need to run five equivalent experiments with

unweighted analysis to match the precision achievable through proper weighting

of a single experiment. On the other hand, the biases in both K� and DH� were not
statistically significant. Interestingly, the results obtained from the a posteriori V

(by averaging the appropriate MC Vjj elements and taking the square roots) were

surprisingly close to correct for sK� (500 versus 472 observed) and only a bit worse

for sDH� (17.8 versus 25.7 cal/mol). Still, these results further illustrate how

Eq. (12), when applied naively to heteroscedastic data, can both over- and under-

shoot the actual values.

E. Correlated Error in Titrant Volume

The motorized syringes used to inject the titrant in ITC apparatuses are pro-

grammed to travel a certain distance with each injection. For such devices, it may

be more appropriate to consider the end points of travel of the plunger as the
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quantities subject to random error, rather than the incremental volume v. Then the

latter, being the difference between two independent quantities, possesses corre-

lated error. The effects of this change in assumption about the error can be seen

dramatically in MC computations: With increasing number of steps m, the case

2 model above (fixed [X]0 and Rm) now gives decreasing rather than increasing

parameter error. This effect, too, was observed previously by Doyle et al. (1990) in

fitting differences extracted from an absorbance titration curve.
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Fig. 7 Histogrammed results from 105 unweighted MC fits of 20-point data sets resembling that

illustrated in Figs. 4A and 5 of Wiseman et al. (1989), for K� (A) and DH� (B). In each case, the

histogrammed quantity is Y ¼ (b � btrue)/sb, using sb values as given in text for a properly weighted fit.

The inner curve in each case is the normal curve (s ¼ 1) scaled to the peak of the data, while the other

curves are fitted Gaussians having s ¼ 2.334 (A) and 1.232 (B).
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In the correlated LS fit needed for proper analysis of such data, the weight

matrix W of Eqs. (4)–(6) and Eq. (14) is the inverse of the variance-covariance

matrix associated with the incremental volumes (Albritton et al., 1976; Hamilton,

1964; Tellinghuisen, 1996). Let us represent the total delivered titrant volume after

i injections as ui. Then, the ith incremental volume is vi¼ ui� ui�1. The vi and ui are

related via a linear transformation,

v ¼

1 0 0 0 0

�1 1 0 0 0

0 �1 1 � � � 0 0

⋮
0 0 0 �1 1

0
BBBB@

1
CCCCAu � Lu ð29Þ

and thus Vv and Vu are related by (Hamilton, 1964; Tellinghuisen, 2001)

Vv ¼ LVuL
T ð30Þ

Because the ui are independent, Vu is diagonal, with elements s2u (constant by

assumption). As it is qi that is fitted here, these s2u values must be converted to s2qi
by error propagation, using numerical differentiation to assess dqi/dui. Calling the

resulting matrix V0
u, V0

v ¼ LV0
u L

T andW ¼ V
0�1
v . It is noteworthy that the matrix

V0
v is tridiagonal, with elements ði; iÞ ¼ ðs2qi�1 þ s2qiÞ, ði; i þ 1Þ ¼ �s2qi, and

ði; i � 1Þ ¼ �s2qi�1 (with all indices limited to the range 1 � m of the data). The

diagonal terms are thus seen to be the expected results for subtraction of two

uncorrelated quantities.

Use of this W with the model described and used above yielded formal parame-

ter error estimates (from Vnl) in good agreement with the results from the MC

computations and well within the framework of the 10% rule of thumb. For

example, in computations for Rm ¼ 3 on the model described in Fig. 5 but having

sq ¼ 0 and sv ¼ 0.0015 ml, the choice m ¼ 5 yielded 13% relative standard error in

K� and 6.4% in DH�, as compared with estimates higher by 5.0% and 4.6%,

respectively, from MC computations on 105 data sets. However, the reduced

w2 from the MC computations was 1.034, which deviates more from the expected

value of 1.00 than was found in the earlier MC results.

With this demonstrated reliability, the correlated model was used to estimate the

parameter errors as a function of m for a more realistic sv ¼ 0.015 ml (Wiseman

et al., 1989), while, for comparison, MC computations were carried out on the

same model (i.e., random error in the accumulated titrant volume ui) using ordi-

nary unweighted LS to extract the parameters and their a posteriori estimated

standard errors. The results (Fig. 8) show that unweighted LS correctly tracks the

m dependence predicted by the correlated model Vnl, but gives standard errors too

large by about a factor of 10 for K� and 2 for DH�. On the other hand, the a

posteriori V (Eq. 12) gives estimates that happen to be roughly correct only for the

range m 	 8–12, deviating sharply to overly optimistic errors for smaller m and

pessimistic for larger.
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As the error in measuring qi is presumed to be random, and as this error leads to

decreasing precision with increasing m (Fig. 5), we might expect that addition of

random error in qi to this correlated v model should neutralize the increased

precision at large m in Fig. 8. That is in fact observed. To generate the data for

theMC computations, the effects of the volume error are first computed, as before:

the ui are given random error, vi is calculated from vi ¼ ui � ui�1, and the heat qi is

calculated using a variable v version of Eqs. (23) and (25). Then random error is

added to each qi value. This error is correctly accommodated in the correlated fit

model by adding s2q to the diagonal elements of V0
v, as was confirmed in the MC

computations. Figure 9 shows that the addition of the random measurement error

has rendered K� less precise by a factor of �3, and made s�
K almost independent of

m. A smaller reduction of precision occurs for DH�, and its standard error still

decreases with increasing m.
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Fig. 8 Statistical errors in K� and DH� as a function of m, for model of Fig. 5, but with sq ¼ 0 and
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structure at small m in the ‘‘unweighted’’ and ‘‘MC’’ results is real.
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Figure 9 also includes results of analyzing these same data with neglect of the

correlation, using either unweighted LS or the weighted model that is correct for

random error in both v and qi. The MC statistics show that the weighted model

does a good job of extracting the K� values but performs less well for DH�.
However, without repeating their experiments enough times to obtain ensemble

statistics, users of the weighted model would normally rely on the a posteriori V for

error estimates. Accordingly, they would report errors for DH� that are significant-
ly too large over the full range of m in Fig. 9, and somewhat less pessimistic errors

for K� for most m. Not surprisingly, unweighted LS performs worse almost across

the board; the one exception is in the assessment of DH�, where the unweighted

model actually betters the weighted model for m > 35.
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Fig. 9 Results for same model as in Fig. 8, but with the addition of random measurement error sq ¼
0.28 mcal (as in Wiseman et al., 1989). The dashed ‘‘correlated’’ curves are from Fig. 8 (sq ¼ 0). The other

results are obtained by analyzing the sameMC data sets with neglect of correlation, using the weighted fit

model and unweighted LS. In both cases, the solid curves represent the apparent standard errors, from the

a posterioriV, while the dashed curves represent the actualMC statistics from 104 data sets for each point.
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VII. Calorimetric Versus Van’t Hoff DH� from ITC

A. Test Model

I return now to an issue raised in the Introduction, namely the matter of the

precision of DH� as estimated directly from the ITC titration curves versus that

determined indirectly from the T dependence of K�(T). To investigate this problem

in the ITC framework, I have devised a model that consists of five ITC experiments

run on the same thermodynamics model described in Table I. As was already noted,

this model was designed to resemble the Ba2þ/18-crown-6 ether complexation (ex-

cept that the actual K
�
298 of 5500 is used in the present ITC model). The model was

examined for both constant error and proportional error (random v model only).

The reaction volume was taken as 1.4 ml and the initial concentration of the crown

ether as 0.020 mol/liter. For each titration curve, 25 incremental 10-ml injections of
titrant (Ba2þ) were taken, covering a stoichiometry range of 2.0 (Ba2þ: ether). The
same conditions were assumed for all five temperatures. Under these conditions, the

magnitude of q1 was 70 mJ at 5�, dropping to 59 mJ at 45�. For the constant error
model, si was 1.0 mJ for all i. In the proportional error model, the relative s was set

at 2%. This choice made the uncertainty in DH�
cal nearly the same in the two models.

The ‘‘site parameter’’ ns was taken to be 1.00 at all times, and was defined as a

correction to [M]0, as in Eq. (27). In these model calculations, DH�
cal and DH�

vH are

identical by definition. In that case, titration data recorded at different tempera-

tures can (and should) be analyzed simultaneously (global analysis) to yield a

single reference K� value and a single determination of DH �(T), as defined here

by the two parameters a and b. The statistical errors for such a determination were

examined both for the assumption of a single ns value, and for separate ns values

for each titration curve. The latter would be the less presumptuous approach in a

set of experiments. In fact, the standard errors in the key thermodynamic para-

meters (a, b, and K
�
0) differed very little for these two approaches.

Results for K� are illustrated in Fig. 10. As the largest predicted relative error is

only �8% (for K� in the constant error model), no MC confirmations are deemed

necessary, and I present just the ‘‘exact’’ (Vnl-based) results here. From the results

in Fig. 10, two observations are noteworthy: (1) the constant error model yields

results that are less precise by almost an order of magnitude; and (2) in both

models the relative error in K� is more nearly constant than the absolute error.

The latter observation means that van’t Hoff analysis through an unweighted fit to

the logarithmic form of Eq. (20) is not a bad approximation, which is reassuring, as

the unweighted log fit is the usual approach taken for such analyses.

In keeping with all earlier indications, DH �
cal is determined with much better

relative precision (<0.8%) than K� in both error models. Results for these directly

estimated values are illustrated in Fig. 11, together with their counterpart DH�
vH

values, as obtained by fitting the fiveK� (T) values to Eq. (20). Not surprisingly, the

poorer precision in K� translates into poorer precision in DH �
vH. The curves at the

bottom of this figure show the reduction of error due to the averaging effect when
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the five individual DH�
cal values are fitted to a straight line; this reduction is not

uniform across the T range of the data, rather it is most prominent in the midrange.

The van’t Hoff results behave similarly, although even more dramatically. In both

cases, the reason is as already discussed in connection with Eq. (22). It is notewor-

thy that the results from the global fits of all five titration curves to the same linear

DH� function and a singleK
�
0 reference value yield only slight reduction in the error

of the fitted DH� relative to the results in the lower curves in Fig. 11. Further, if

DH� is fixed at the fitted results (i.e., if a and b are taken as known), the fits of the
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Fig. 10 Relative standard errors in K� from model calculations for van’t Hoff analysis, for propor-
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Fig. 11 Standard errors in DH� from the model calculations, as obtained from the individual ITC data

sets (points), from weighted fits of these points to a linear relation (curves at bottom), and from weighted

fits of K�(T) to the exponential form of Eq. (20) (upper curves). The solid points and curves represent the

proportional error model; the open points and dashed curves represent the constant error model.
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five K�(T) values to Eq. (20) return K� with standard errors insignificantly different

from those from the global analyses. Thus, while the global analysis of the ITC

data is the ‘‘proper’’ statistical procedure, there is little practical gain in this

approach over the customary one of just fitting the DH�
cal values from the several

ITC experiments run at different temperatures to an appropriate function of T. If

DH �
vH and DH�

cal are deemed consistent (as they of course are in the present model),

the subsequent fit of the individual K�(T) values with DH� taken as ‘‘known’’

further sharpens the definition of K�(T). Of course, in any effort to determine

whether the two estimates of DH� are consistent, the DH�
vH values will be limited by

the greatly reduced precision shown in the top two curves in Fig. 11.

The fits of the five K� (T) values to Eq. (20) yield parameter errors that are quite

large. For example, in the constant error model, this fit yields DC�
P;vH ¼

130� 299 J mol�1K�1. While this parameter thus appears to be undefined, it is still

necessary to include it in any attempt to evaluate the consistency between DH�
vH and

DH �
cal, because it is well defined in the linear fit of the DH �

cal values. Omitting it would

make the twomodels incompatible.With it included, the error inDH �
vH is also relatively

large (�20%) at the ends of theT range. However, theMC computations summarized

in Tables I and II have already shown that this is not a significant source of error in

estimating either the parameters or their standard errors in this case.

Although not treated here, the correlated v model of Fig. 8 yields comparative

precisions forK� and DH� that resemble those for the present random proportional

error model, that is, relative errors a factor of �2 larger for K� than for DH�. With

both constant and proportional error present, the comparative precisions fall

between the limits of the two error models, for both correlated error (Fig. 9) and

random. Thus, the results in Figs. 10 and 11 can be considered to bracket the range

of actual observations.

B. Case Study: Ba2þ Complexation with Crown Ether

The complexation of Ba2þ with 18-crown-6 ether in water (unbuffered) has been

studied by at least five groups, but the experimental results hardly show a developing

consensus (Fig. 12). TheDH�
cal values fromLiu and Sturtevant (1995) agree well with

those from Briggner andWadsö (1991) in the restricted T region where they overlap,

but the former show clear curvature over the full T range. Although statistical errors

were not reported for DH�
cal in Liu and Sturtevant (1995), the results from the

unweighted fit indicate that the errors are comparable to the size of the displayed

points. The most recent results, from Horn et al. (2001) are less precise but are still

larger in magnitude by a statistically significant 5%. The K� values from Horn et al.

(2001) appear to be much less precise than the other results; however, the quoted

errors on K� in that study are overly pessimistic, as is discussed further below.

The directly measured DH� values from Liu and Sturtevant are compared with the

van’t Hoff estimates in Fig. 13. The latter were obtained from weighted fits of their

K� values to Eq. (20), taking their tabulated uncertainties as the estimated s values.

Neither the quadratic nor the linear representation of DH� gave a statistically
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significant determination of DC�
P;vH. Even worse, both fits gave w2 values >10 (cf.

expected values of 4 and 5, respectively). This suggests that the estimated errors on

K� in Liu and Sturtevant (1995) were optimistic. With this interpretation, the

conservative approach is to use the a posteriori V of Eq. (12) to estimate the errors,

which is what I have done to generate the error bands in Fig. 13. Even with these

enlarged errors, the DH �
vH values are not consistent with the DH�

cal estimates, in

agreement with the conclusions of Liu and Sturtevant. If we take the view that only a

constant DH� is justified by the van’t Hoff analysis, we obtain DH� ¼ �28.4(6) kJ

mol�1, which, for comparison purposes, should be taken as the estimate in the

middle of the T range, or around 23 �C. The inconsistency remains.

Briggner and Wadsö (1991) published values for K� and DH� at only three

temperatures. Fitting their K� values (weighted) to a constant DH� yields �31.7

(1.8) kJ mol�1, in good agreement with their DH�
cal value of�31.42 (20) kJ mol�1 at

25 �C. Horn et al. (2001) reported that their van’t Hoff estimates of DH� were

statistically consistent with their DH�
cal values. However, if their published K�

values are analyzed by weighted LS using their uncertainties, and the error bands

on DH �
vH are calculated using Eq. (18) to properly accommodate the interpara-

meter correlation, the case for consistency is less convincing. In this weighted fit,

the w2 is 0.41, which is much smaller than the expected 6, indicating that the error

estimates on K� were pessimistic. Accordingly, use of the a posteriori V in the error

propagation calculation results in a narrowing of the error bands by a factor of�4.

Although the w2 from the weighted fit of the K� values in Horn et al. (2001) is an

order of magnitude too small, a weighted fit of the published DH�
cal values to a linear

function ofT gives a reasonable value of 9.7 (for n¼ 7). This observation is consistent

with the use of unweighted LS to analyze ITC data that are actually dominated by

proportional error (Mizoue and Tellinghuisen, 2004b). The situation is analogous to

that illustrated in Fig. 9, where the actual statistical errors in the parameters from the

unweighted analysis are significantly smaller than that indicated by the a posterioriV.

And it is the actual errors inK� andDH� that aremanifested in subsequent fits of these

quantities to functions of T. The proportional error model predicts that the relative

error inK� should be a factor of 2–3 larger than that inDH�, while the constant error
model (implicit in unweighted LS) predicts a factor of �10. The latter is consistent

with the published results in Horn et al. (2001), while the former is closer to observa-

tions from the fits of the extracted values to functions of T.

Beyond the complexation of Ba2þ with ether, few other reactions have been

examined closely for the consistency of DH�
cal and DH�

vH. Those that have been

examined also fail to yield convincing agreement (Mizoue and Tellinghuisen, 2004b).

VIII. Conclusion

A computational study of statistical error in the nonlinear LS analysis of ITC

data for 1:1 complexation reactions yields the following main results: (1) when the

data uncertainty is dominated by constant measurement uncertainty in the heat q,
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better precision is achieved in both K� and DH� for fewer titrant injections than are

customarily used; as few as five may be optimal in many cases; (2) under usual

experimental circumstances, the same result holds for data uncertainty dominated

by the relative error in the titrant volume n, if this error is assumed to be random; (3)

on the other hand, if volume error dominates and it is the error in the integral titrant

volume that is random, the precision increases with increasing number of titration

steps; (4) for typical conditions, the relative precision for K� is a factor of 2–10

poorer than that for DH�; higher precision in K� is generally favored by larger

stoichiometry ranges than are customarily used; the same holds for DH� in the

constant error model, but Rm < 2 is optimal for DH� when the volume error

dominates; (5) actual ITC data are typically dominated by the relative error in n
for large q (early titrant injections i) and by the constant absolute uncertainty in q for

small q (large i); for optimal extraction ofK� and DH�, such data require analysis by

weighted LS, or in the case of random error in the integral titrant volume, by

correlated LS; and (6) the larger relative error in K� versus DH� means that DH�
estimates obtained from van’t Hoff analysis of the T dependence of K� (DH �

vH) will

in turn be inherently less precise than the directly extracted estimates (DH�
cal).

One of the most intriguing results of this study is the observation that the

dependence of the parameter standard errors on the number of titration steps is

so completely tied to assumptions about the nature of the error in the titrant

volume: If random in the differential volume n, the precision decreases with

increasing m; if random in the integrated volume u, it increases with m. The true

situation probably lies somewhere between these two extremes, but it can be

determined only by properly designed experiments. If the random n error model

is found to dominate, experiments should be designed to use much smaller m than

is currently the practice.

The present computations have dealt with only the case of 1:1 binding, and even

if the random n error is found to dominate, it may be necessary to use m ¼ 10 or

more to demonstrate that the stoichiometry actually is 1:1. Also, in practice it is

wise to work with at least a few degrees of statistical freedom, in order to obtain

some indication of the goodness of fit. Other cases, like multiple binding (DiTusa

et al., 2001), will have to be examined specifically. However, it is possible that

there, too, better precision can be achieved using fewer injections than are com-

monly employed.

The reduced precision in DH �
vH means that DC�

P and its T derivative may not be

statistically defined in a van’t Hoff analysis, even though they may be well deter-

mined by the DH�
cal data. However, these parameters may still be necessary as

means to an end in the attempt to confirm consistency between DH�
cal and DH �

vH. If

they are neglected in the van’t Hoff analysis, then the resulting DH� estimate

should be reported as the value for the average T of the data set (or an appropri-

ately weighted average, for weighted data). This will eliminate the bias problem

noted by Chaires (1997)

With proper attention to error propagation to generate error bands on DH �
vH,

the case for consistency between DH�
cal and DH �

vH in ITC is not as sanguine as has
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been suggested in recent work (Horn et al., 2001). A number of factors have been

considered in the effort to explain the discrepancies, but one that has largely

escaped attention is the role of the ITC site parameter ns. This parameter is

typically determined with greater relative precision than either K� or DH�, and it

is clearly needed in the analysis of most ITC data to achieve a satisfactory fit. In the

1:1 binding case considered here, ns is in effect correcting for errors in the stated

concentrations of the two solutions. It is normally defined in the stoichiometry

sense MXns, which means that it is serving as a correction factor for M [i.e., ns ¼
1.05 means the true [M]0 is 5% larger than stated; see Eq. (27)]. As M is often a

macromolecule and is typically harder to prepare to known concentrations, this

is probably appropriate in most cases. However, when the titrant concentration is

less certain, it is proper to redefine the correction. The effect of such redefinition is

a correction factor of 1/ns to [X]0, and it results in a change in both K� and DH� by
the factor ns. If experiments are repeated with the same solutions over a range of

temperatures, the result will be a systematic shift in both sets of results. A constant

proportional error in K� will have no effect on DH�
vH, so the result will be an error

in the apparently more precise DH�
cal and possible discord between the two esti-

mates. When the site parameter is covering for a mix of macromolecules (e.g., 2.5%

having two sites to yield ns ¼ 1.05), the 1:1 fit model is not really correct. Either

way, the deviation of ns from ‘‘chemical’’ stoichiometry for the process under

investigation is an indication of systematic error, and a conservative assessment

of the parameter errors in such cases should include its consideration.

Throughout this work I have assumed that equal volume aliquots (n) of titrant
are added sequentially to generate the titration curve. This appears to be the only

mode used by workers in the field, also. However, from the structure evident in

Figs. 5 and 6, it seems likely that for small m and a chosen Rm, some sequence of

volumes that vary from step to step might yield smaller parameter errors. Indeed,

preliminary results from an examination of this problem show that for a 7-step

titration to Rm ¼ 3, a variable-n algorithm can reduce the statistical error in K� by
40% from the constant-n approach.

Most of the statistical errors reported, plotted, and discussed in this work have

been on the basis of the predictions of the ‘‘exact’’ nonlinear variance-covariance

matrix Vnl, bolstered by MC calculations in selected cases. To use this approach, it

is necessary to know the error structure of the data, which, of course, one always

does in an MC calculation. Unfortunately, most experimentalists still take the

ignorance approach in their LS analyses, using unweighted fits and the a posteriori

V from Eq. (12) to estimate parameter errors. Much is to be gained from taking the

trouble to assess the experimental statistical error apart from the data for a given

run (Hayashi et al., 1996; Tellinghuisen, 2000a,b). The obvious advantage is the

narrowed confidence bands that attach to the a priori V versus the a posteriori V

and its concomitant need for the t distribution to assess confidence limits (Hayashi

et al., 1996). But in addition, one has the w2 statistic to assess goodness of fit—a

quantitative answer to the question, ‘‘Are my fit residuals commensurate with my

data error’’ (Bevington, 1969; Mood and Graybill, 1963)? In view of the persistent
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discrepancies between DH�
cal and DH�

vH, it is possible that the fit models in current

use do not adequately reflect the actual physical situation in an ITC experiment. To

address this issue, reliable information about the data error is essential.

There is another ‘‘downside’’ to the naive use of unweighted LS and the

a posteriori V in cases like ITC, where the data are inherently heteroscedastic:

Eq. (12) always ‘‘lies’’ in such cases. The extent of the lie can only be determined

through MC calculations. If proportional error is assumed to dominate over the

entire titration curve, the error in sK� can be as much as a factor of �10 in the case

of correlated error (Fig. 8), resulting in a 100-fold loss in efficiency in the estima-

tion of K� (Tellinghuisen, 2003). In linear LS, neglect of weights does not bias the

estimation of the parameters. However, nonlinear LS parameters are inherently

biased to some degree; and as the bias scales with the variance (Tellinghuisen,

2000d), neglect of weights will exacerbate the bias, possibly converting an insignif-

icant bias into a significant one.
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Abstract

This chapter describes a computational framework for cell biological modeling

and simulation that is based on the mapping of experimental biochemical and

electrophysiological data onto experimental images. The framework is designed to

enable the construction of complex general models that encompass the general

class of problems coupling reaction and diffusion.
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I. Update

The Virtual Cell computational modeling and simulation software environment

has been continuously enhanced and improved over the 10 years since the initial

publication of this review. However, the primary philosophy of the project remains

the same: to provide a user-friendly, yet comprehensive, software tool for both

experimentalists and theoreticians wishing to model complex cell biological events.

A major improvement to the software architecture to this end was achieved in 2002

through a multilayered hierarchical interface in the BioModel GUI. The parent

layer is called the Physiology, which can generate several Applications, which, in

turn, can spawn multiple Simulations. The Physiology houses the details on the

chemical species, their locations within volumetric compartments or membranes

and kinetic expressions for their reactions and transport processes. Applications

provide the model specifications including the kinds of equations to solve (ordi-

nary or partial differential equations or discrete stochastic equations), mappings of

the compartments to geometries, domain boundary conditions for spatial models,

initial concentrations of all the molecular species and electrophysiology specifica-

tions such as voltage or current clamp conditions. The Physiology plus an Appli-

cation is sufficient to define the mathematics of the system and the software

automatically generates a complete mathematical description language for the

model. Finally, multiple simulations can be generated from a single Application

to permit choice of numerical method, simulation duration, parameter variations

and the implementation of sensitivity analysis. Thus, the hierarchical structure of

the BioModel enables the creation of multiple scenarios, akin to ‘‘virtual experi-

ments,’’ in which the same basic Physiology can be probed to generate many

testable hypotheses.

Another major new development since the original review is the VCell database.

Models and model components can be searched, reused and updated, as well as

privately shared among collaborating groups. When a model is mature and is used

as the basis of a published paper, it can be made accessible to any VCell user.

Additionally, exchange of models with other tools is possible via import/export of

SBML, CellML, and MatLab formats as well as direct linkages to public web-

based pathway databases. As a result of this approach, Virtual Cell has been

rapidly adopted as a tool of choice for biophysical modeling, in particular by

experimental biologists and by researchers interested in spatially resolved simula-

tions. To date, approximately 2000 Virtual Cell users have created tens of

thousands of models and simulations, with over 500 publicly available models in

the VCell database, and about 100 publications in high-profile journals (see http://

vcell.org/ for a current listing).

Other major new features of Virtual Cell include:

� Simulation of diffusion on irregularly shaped three-dimensional (3D) surfaces

for full support of reaction/diffusion/transport/flux within a membrane and

between the membrane and the adjacent volumes
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� The ability to model and simulate stochastic reaction networks, including a

choice of Gillespie and hybrid stochastic solvers

� Support for advection (i.e., velocity fields) in spatial reaction-diffusion models

and simulations

� Availability of a variety of new solvers, including a stiff-in-time partial differ-

ential equation (PDE) solver

� Parameter scans and parameter estimation algorithms

� Support for rule-based-modeling through the BioNetGen modeling language

� ‘‘Smart’’ copy and paste of arrays of parameter and initial concentration

values

� Use of image data or results from prior simulations as nonuniform initial

conditions for species in spatial models

� Support for ‘‘events’’ in nonspatial models, where a variable or time-dependent

expression can trigger a predefined reset or change in the value of other

variables

� Integration of convenient two-dimensional (2D) and 3D image segmentation

tools to directly convert experimental images into Virtual Cell geometries

� A simulation results viewer that contains a variety of tools for visualization of

complex dynamic multivariable spatial simulations, including 3D surface

rendering

� Export of simulations results into a wide variety of formats, including Quick-

time movies, Excel spreadsheets and a variety of image formats

Additional details on the algorithms within Virtual Cell can be found in several

papers and some earlier reviews (Novak et al., 2007; Schaff et al., 2001; Slep-

chenko et al., 2003). A recent paper (Moraru et al., 2008) provides an updated

report on the physics and math supported by Virtual Cell, the numerical methods

available for simulating the various classes of supported models, the layered

workflow for assembling a BioModel, some of the visualization and analysis

features of Virtual Cell, the rationale of our web-deployment strategy, as well as

the functionality of the Virtual Cell database. We have also published a compre-

hensive overview of how Virtual Cell can be used to solve a variety of common cell

biological and systems biology problems (Slepchenko and Loew, 2010).

II. Introduction

A general computational framework for modeling cell biological processes, the

Virtual Cell, is being developed at the National Resource for Cell Analysis and

Modeling at the University of Connecticut Health Center. The Virtual Cell is

intended to be a tool for experimentalists as well as theorists. Models are con-

structed from biochemical and electrophysiological data mapped to appropriate
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subcellular locations in images obtained from a microscope. Chemical kinetics,

membrane fluxes, and diffusion are thus coupled and the resultant equations are

solved numerically. The results are again mapped to experimental images so that

the cell biologist can fully utilize the familiar arsenal of image processing tools to

analyze the simulations.

The philosophy driving the Virtual Cell project requires a clear operational

definition of the term model. The idea is best understood as a restatement of the

scientific method. A model, in this language, is simply a collection of hypotheses

and facts that are brought together in an attempt to understand a phenomenon.

The choices of which hypotheses and facts to collect and the manner in which they

are assembled themselves constitute additional hypotheses. A prediction based on

the model is, in one sense, most useful if it does not match the experimental details

of the process—it then unequivocally tells us that the elements of the model are

inaccurate or incomplete. Although such negative results are not always publish-

able, they are a tremendous aid in refining our understanding. If the prediction

does match the experiment, it never can guarantee the truth of the model, but

should suggest other experiments that can test the validity of critical elements;

ideally, it should also provide new predictions that can, in turn, be verified

experimentally. The Virtual Cell is itself not a model. It is intended to be a

computational framework and tool for cell biologists to create models and to

generate predictions from models via simulations. To ensure the reliability of

such a tool, all underlying math, physics, and numerics must be thoroughly

validated. To ensure the utility and accessibility of such a tool to cell biologists,

the results of such simulations must be presented in a format that may be analyzed

using procedures comparable to those used to analyze the results of experiments.

In this chapter, we describe the current status of the mathematics infrastructure,

design considerations for model management, and the user interface. This is

followed by application to the calcium wave that follows fertilization of a frog

egg. Additional details can be found in an earlier publication (Schaff et al., 1997)

and on our web site: http://www.nrcam.uchc.edu/.

III. Modeling Abstractions for Cellular Physiology

A. Background

Often, theoreticians develop the simplest model that reproduces the phenome-

non under study (Kupferman et al., 1997). These may be quite elegant, but are

often not very extensible to other related phenomena. Other modeling efforts

characterize single physiological mechanisms (Lit and Rinzel, 1994; Sneyd et al.,

1995), but these are often developed ad hoc rather than as part of a reusable and

consistent framework.

Our approach to modeling concentrates on the mechanisms as well as the

phenomena. The goal of this approach is to provide a direct method of evaluating
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single models of individual mechanisms in the context of several experiments.

This approach enables the encapsulation of sufficient complexity that, after inde-

pendent validation, allows it to be used as a meaningful predictive tool. To include

sufficient complexity without over-whelming the user, the models are specified

in their most natural form. In the case of chemical reactions, the models are

represented by a series of reactants, products, modifiers (e.g., enzymes), their

stoichiometry, and their kinetic constants.

One of the obstacles to modeling is the lack of general-purpose simulation and

analysis tools. Each potential modeler must have resources in software develop-

ment and numerical methods at his or her disposal. Each time the model or the

computational domain is altered, the program must be changed. And in practice,

the modeling of a new phenomenon requires a new simulation program to be

written. This is a time-consuming and error-prone exercise, especially when deve-

loped without a proper software methodology.

We are developing a general, well-tested framework for modeling and simula-

tion for use by the cell biology community. The application of the underlying

equations to our framework with nearly arbitrary models and geometry is rigo-

rously investigated. The numerical approach is then properly evaluated and tuned

for performance. This methodology results in a proper basis for a general-purpose

framework. Our approach requires no user programming; rather the user specifies

models using biologically relevant abstractions such as reactions, compartments,

molecular species, and experimental geometry. This allows a very flexible descrip-

tion of the physiological model and arbitrary geometry. The framework accom-

modates arbitrary geometry and automatically generates code to implement the

specified physiological model.

Another problem is the lack of a standard format for expressing those models.

Even implementing published models can be a nontrivial exercise. Some of the

necessary details required for implementation can be missing or buried in the

references. Often the models are obscured by geometrical assumptions used to

simplify the problem. A standard modeling format is required to facilitate the

evaluation and integration of separate models. This standard format should sepa-

rately specify physiological models and cellular geometry in an implementation-

independent way.

We suggest that the abstract physiological models used with the Virtual Cell

framework can form the basis of such a standard.

The current implementation of the cell model description (Schaff et al., 1997)

involves the manipulation of abstract modeling objects that reside in the Modeling

Framework as Java objects. These modeling objects can be edited, viewed, stored

in a remote database, and analyzed using the WWW-based user interface (see User

Interface section). These objects are categorized as Models, Geometry, and Simu-

lation Context objects. This corresponds to the naming convention used in the

current Modeling Framework software.

There are also mature efforts in Metabolic Pathway modeling such as GEPASI

(Mendes, 1993). This package allows a simple and intuitive interface for specifying
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reaction stoichiometry and kinetics. The kinetics are specified by selecting from a

predefined (but extensible) list of kinetic models (such as Michaelis–Menten)

describing enzyme-mediated production of metabolites. These packages are

focused on biochemical pathways where the spatial aspects of the system are

ignored. However, for these simplified descriptions, they provide Metabolic Con-

trol Analysis (local sensitivity analysis tools), structural analysis (mass conserva-

tion identification), and a local stability analysis.

To provide a simple interface to a general-purpose modeling and simulation

capability, the problem must be broken up into manageable pieces. In the case of

the Virtual Cell, these pieces consist of abstract physiological models defined

within the context of cell structure, experimental cell geometry, and a mapping

of the physiological models to the specific geometry including the conditions of

that particular problem. For such an interface to be consistent and maintainable, it

must map directly to the underlying software architecture.

An intuitive user interface is essential to the usability of a complex application.

A prototype user interface was developed to provide an early platform for modeling

and simulation, and for investigating user interface requirements. The design goalwas

to capture the minimum functionality required for practical use of the Virtual Cell.

The Virtual Cell application is built on top of a distributed, component-based

software architecture (Fig. 1). The physiological interface is a WWW-accessible

Java applet that provides a graphical user interface to the capabilities of the

Modeling Framework. The Mathematics Framework is automatically invoked to

provide solutions to particular simulations. The architecture is designed such that

System architecture

Modeling framework Mathematics framework
Mathematical 

description

Simulation
results

Fig. 1 The System Architecture features two distributed, component-based frameworks that create a

stable, extensible, and maintainable research software platform. TheModeling Framework provides the

biological abstractions necessary to model and simulate cellular physiology. The Mathematics Frame-

work provides a general-purpose solver for the mathematical problems in the application domain of

computational cellular physiology. This framework exposes a very high level system interface that

allows a mathematical problem to be posed in a concise and implementation-independent mathematical

description language, and for the solution to be made available in an appropriate format.
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the location of the user interface and the corresponding back-end services (model

storage, simulation, data retrieval) are transparent to the majority of the applica-

tion. The typical configuration is a Java applet running in a WWW browser, with

the Database, Simulation Control, and Simulation Data services executing on a

remote machine (WWW server).

B. Specification of Physiological Models

A physiological model of the cell system under study is defined as a collection of

Cellular Structures, Molecular Species, Reactions, and Fluxes. These concepts

define cellular mechanisms in the context of cell structure, and are sufficient to

define nonspatial, compartmental simulations. With the addition of a specific

cellular geometry (usually from a microscope image), a spatial simulation is

defined. The goal is to capture the physiology independently of the geometric

domain (cell shape and scale) and specific experimental context, such that the

resulting physiological mechanisms are modular and can be incorporated into

new models with minimum modification.

1. Cellular Structures

Cellular structures are abstract representations of hierarchically organized,

mutually exclusive regions within cells where the general topology is defined but

the specific geometric shapes and sizes are left undefined. These regions are

categorized by their intrinsic topology: compartments represent 3D volumetric

regions (e.g., cytosol), membranes represent 2D surfaces (e.g., plasma membrane)

separating the compartments, and filaments represent 1D contours (e.g., microtu-

bules) lying within a single compartment. Using this definition, the extracellular

region is separated from the cytosol (and hence the ER, nucleus, etc.) by the

plasma membrane. All structures can contain molecular species and a collection

of reactions that describe the biochemical behavior of those species within that

structure.

These cellular structures are used for bookkeeping purposes, and must be

mapped to a specific cellular geometry before any quantitative simulations or

analysis can be performed. Although this introduces two parallel representations

of anatomical structures (topology and shape), the separation of physiological

models from specific simulation geometry allows the same model to be used in

various compartmental and 1D, 2D, and 3D geometric contexts without

modification.

2. Molecular Species

Species are unique molecular species (e.g., Ca2þ, IP3) or important distinct states

of molecular species (e.g., calcium-bound IP3-Receptor, unbound IP3-Receptor).

These species can be separately defined in multiple compartments, membranes, or
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filaments. Species are described by linear densities when located on filaments, by

surface densities when located in membranes, and by concentrations when located

in compartments. Species diffusion is defined separately for each cellular compart-

ment and is specified by diffusion constants.

Species can participate in reactions, fluxes, and diffusion. The behavior of

species can be described by

1. Diffusion of species within compartments, membranes, or filaments.

2. Directed motion of Species along filaments.

3. Flux of species between two adjacent compartments through the associated

membrane.

4. Advection (e.g., binding reactions) of species between compartments and

either membranes or filaments.

3. Reactions and Fluxes

Reactions are objects that represent complete descriptions of the stoichiometry

and kinetics of biochemical reactions. Reactions are collections of related reaction

steps (e.g., membrane receptor binding or cytosolic calcium buffering) and mem-

brane fluxes (e.g., flux through an ion channel).

Each reaction step is associated with a single cellular structure. The stoichiome-

try of a reaction step is expressed in terms of reactants, products, and catalysts,

which are related to species in a particular cellular structure (e.g., Ca2þ in cytosol).

This stoichiometry is depicted in the user interface as a biochemical pathway

graph.

Reaction steps located in a compartment involve only those species that are

present in the interior of that compartment. Reaction steps located on a membrane

can involve species that are present on that membrane as well as species present in

the compartments on either side of that membrane. Reaction steps located on a

filament can involve species that are present on that filament as well as species

present in the compartment that contains the filament. The kinetics of a reaction

step can be specified as either mass action kinetics with forward and reverse rate

coefficients or, more generally, by an arbitrary rate expression in terms of reac-

tants, products, and modifiers.

Each flux step is associated with a single membrane and describes the flux of a

single flux carrier species through that membrane. A flux carrier must be a species

that is defined in both neighboring compartments. For example, a flux step asso-

ciated with a calcium channel in the endoplasmic reticulum (ER) membrane would

have calcium as the flux carrier, and thus calcium must be defined in both the ER

and cytosol. A single inward flux is defined by convention (mM mm s�1) and

enforces flux conservation across the membrane. The flux is an arbitrary function

of flux carrier concentration (on either side of the membrane), membrane-bound
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modifier surface density, and of modifier concentration in the compartments on

either side of the membrane.

C. Specification of Cellular Geometry

A particular experimental context requires a concrete description of the cellular

geometry to fully describe the behavior of the cellular system. This geometric

description defines the specific morphology of the cell, and any of its spatially

resolvable organelles. This geometry is usually taken directly from experimental

images that have been segmented into mutually exclusive regions by their pixel

intensity. For example, an image may be segmented into only two classes of pixel

intensities, white (pixel intensity of 255) and black (pixel intensity of 0), where

white regions represent cytosol and black regions represent the extracellular

milieu. The actual size of the domain is defined by specifying the scale of a pixel

in microns to properly define a simulation domain.

Alternatively, the geometry may be specified analytically as an ordered list of

inequalities. Each resolved region can be represented as an inequality in x, y, and z.

Each point in the geometric domain can be assigned to the compartment

corresponding to the first inequality that is satisfied. For example, if cytosol is

represented by a sphere at the origin of radius R, and the rest of the domain is

considered extracellular, then the nested compartments can be easily specified as

follows.

cytosol : x2 þ y2 þ z2 > Rðtrue within sphere at originÞ
extracellular : 1 < 2ðalways trueÞ: ð1Þ

D. Mapping Biology to Mathematical Description

1. Mapping Cellular Structures to Experimental Geometry

The resulting geometry then has to be mapped to the corresponding cellular

structures defined in the physiological model. Each mutually exclusive volumetric

region in the geometry is naturally mapped to a single compartment, and an

interface (surface) separating any two regions maps to the corresponding mem-

brane. A compartment that is not spatially resolved in the geometry may be

considered continuously distributed within the geometric region of its parent

compartment. For example, if a particular geometry specifies spatial mappings

for only extracellular, cytosol, and the plasma membrane, then the ER and its

membrane (which are interior to the cytosol compartment) are continuously

distributed within the cytosol region of the geometry. For such continuously

distributed compartments, the volume fraction (e.g., ER volume to total cytosolic

volume) and internal surface to volume ratios (e.g., ER membrane surface to ER

volume) are required to reconcile distributed fluxes and membrane binding rates to

the spatially resolved compartments. Note that unresolved structures, such as the
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ER, need not be uniformly distributed within the cytosol compartment even if they

are described as continuous.

When spatial simulations are not required (compartmental models), specifica-

tion of volume fractions for all compartments and surface to volume ratios for all

membranes are sufficient to represent the geometric mapping.

2. Mapping of Reactions and Species to Equations and Variables

After the compartments and membranes have been mapped to concrete geometry,

the mapping of reactions to systems of equations is well defined. One or more

compartments and membranes are mapped onto a region in the computational

domain as discussed in the previous section. All of the reaction steps and membrane

fluxes that are associated with this set of compartments andmembranes are collected.

Within a single computational subdomain, species dynamics can be represented as

a system of differential equations [Eq. (2)] expressing the time rate of change of each

species Ci concentration as the sum of their reaction kinetics and their diffusion term

(Laplacian scaled by diffusion rate Di). The reaction kinetics can be expressed in

terms of a linear combination of reaction rates vj (and fluxes through distributed

membranes) that are scaled by their corresponding stoichiometry cij:
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As a result of conservation of mass in biochemical systems, the number of

independent differential equations is often less than the number of species. The

application of a stoichiometry (or structural) analysis (Reder, 1988; Sorensen and

Stewart, 1980; Villa and Chapman, 1995) allows the
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automatic extraction of a minimum set of independent variables (C1� � �Cr where r

is the rank of S), and a set of dependent variables ðCrþ1� � �CnÞ described by

conservation relationships Li [Eq. (3)] (derived from the left null space of S) that

allow expression of all dependent species concentrations as linear combinations of

independent species concentrations. Then, only the equations associated with the

independent species are used in the mathematical description.
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3. Fast Kinetics

Interrelated cellular processes often occur on a wide range of timescales causing

a problem that is commonly encountered when computing numerical solutions of

reaction/diffusion problems in biological applications. It manifests itself as a set of

equations that is said to be stiff in time. The direct approach to solving this type of

a system would result in a numerical algorithm taking prohibitively small time

steps dictated by the fastest kinetics. The typical techniques used to avoid this are

employing stiff solvers (Gear, 1971) or analytic pseudo-steady approximations

(Wagner and Keizer, 1994). We have developed a general approach based on

separation of fast and slow kinetics (Strang, 1968). We then perform the pseudo-

steady approximation on fast processes. Within this approximation, fast reactions

are considered to be at rapid equilibrium. This assumption results in a system of

nonlinear algebraic equations. To treat it correctly, the set of independent vari-

ables within the fast subsystem has to be determined. This can be done by means of

the structural analysis described earlier. The difference is that now these identified

invariants (mass conservation relationships) are only invariant with respect to the

fast kinetics. They therefore have to be updated at each time step via the slow

kinetics and diffusion. Our approach does not require any preliminary analytic

treatment and can be performed automatically. A user must only specify the subset

of reactions that has fast kinetics, and the appropriate ‘‘fast system’’ is automati-

cally generated and integrated into the mathematical description. Currently we are

using this capability to investigate the influence of mobile buffers on the properties

of calcium waves and on the conditions of their initiation.

4. Stochastic Formulation for Reaction/Diffusion Systems

When the number of particles involved in the cell processes of interest is not

sufficiently large and fluctuations become important, the replacement of the con-

tinuous description by a stochastic treatment is required. This might be used to

simulate the motion and interactions of granules in intracellular trafficking (Ainger

et al., 1997). The stochastic approach is also required for the description of

spontaneous local increases in the concentration of intracellular calcium from

discrete ER calcium channels (calcium sparks or puffs) observed in cardiac myo-

cytes (Cheng et al., 1993). In the case of discrete particles, the problem is formu-

lated in terms of locations (the state variables) and random walks instead of

concentration distributions and fluxes in the continuous description, while using

the same physical constant—the diffusion coefficient D. The chemical reactions

between discrete particles and structures (capture) or between discrete particles

and continuously distributed species are described in terms of transition probabi-

lities (reaction rates). In the latter case, we have to incorporate the stochastic

formulation into a continuous reaction/diffusion framework. This can be done

because the numeric treatment of the corresponding PDEs requires their discreti-

zation. In fact, we deal with discrete numbers that characterize each elementary
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computational volume. Thus for the case of a species treated continuously, the

source term of the PDE will contain the random contribution due to chemical

reactions with discrete particles.

Monte Carlo techniques have been employed to simulate both the reaction

events and Brownian motion of the discrete particles. Since the displacements at

time t in unbiased random walks are normally distributed with mean zero and

standard deviation (4Dt)1/2, one can model the increment of each coordinate within

a time step Dt by (4DDt)½ r where r is a random number described by the standard

normal distribution with zero mean and a unity standard deviation (Schmidt et al.,

1994). To reproduce the standard normal distribution for the Brownian movement

simulation, we use the Box–Muller method (Press et al., 1992). In this method, the

variable l ¼ (�2 ln x)1/2 cos 2p� proves to be normally distributed with the

standard deviation s ¼ 1 provided the random variables x and � are uniformly

distributed on the interval [0,1]. Methods based on the central limit theorem

(Devroye, 1986) might be less computationally intensive, but validation is

required. The interaction of particles with the membrane has been described in

terms of elastic collisions.

The selection–rejection type method has been used for the stochastic simulation

of reaction dynamics. The corresponding transition between particle states is

assumed to occur if a generated random number, uniformly distributed on [0,1],

is less than the reaction probability. In our case, particles interact with the conti-

nuously distributed species. Thus, the reaction probability for small time steps Dt is
kDt[C], where k is the reaction on rate, and [C] stands for the concentration of a

dispersed species. Clearly, for the reaction to occur, [C] should satisfy the condition

[C]Sd � n, where S is the particle surface, d is the characteristic interaction

distance, and n is the stoichiometry number. Hence the reaction is ruled out if

[C] < n/V0, provided the control volume is bigger than Sd. This condition is

necessary to eliminate the possibility of negative concentrations.

We have implemented a simple model representing the initial step in RNA

trafficking: RNA granule assembly, where discrete particles interact with the

continuously distributed species (RNA). Thus the two approaches, stochastic

and deterministic, have been combined.

E. Compartmental Simulations

For simulation of compartmental models (single-point approximations), the

ordinary differential equations (ODEs) representing the reaction kinetics are gen-

erated and passed to an interpreted ODE solver (within the client applet).

This system of equations is solved using a simple explicit integration scheme

(forward difference) that is first-order accurate in time. A higher order numerical

scheme will be integrated in the future.

The Compartmental Simulation (Preview) component executes a compartmen-

tal (single-point) simulation based on the defined physiological model and the

geometric assumptions entered in the Feature Editor (surface to volume ratios
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and volume fractions). This results in a set of nonlinear ODEs that typically are

solved in seconds. This allows an interactive, though manual, modification of

parameters and a quick determination of the effect over time. Once the simulation

is complete, each species can be viewed easily.

The Equation Viewer displays the equations generated as a result of mapping the

physiological model to either a cellular geometry model (spatial simulation) or a

single-point approximation (compartmental model). The parameter values may be

substituted (and the expression simplified) or left in their symbolic representation.

1. Model Analysis

It is important to determine the sensitivity of model behavior (i.e., simulation

results) to the choice of which physiological mechanisms and their parameter

values are incorporated. For a given model structure, the selection of parameter

values is constrained, but often not completely determined, by direct empirical

measurements and physical limitations, as well as inferred from the steady and

dynamic behavior and stability of the composite system.

It is informative to determine the relative change in model behavior due to a

relative change in parameter value. For nonspatial, compartmental models, the

software computes the sensitivity of any species concentration to any parameter as

a function of time evaluated at the nominal solution.

The current implementation lacks a direct steady-state solver. This must either

be performed by letting the dynamic system run until it converges to a steady state

or by manually doing the analytic calculations (setting rates to zero and solving the

simultaneous equations).

F. Spatial Simulations

For the solution of a complete spatial simulation, the PDEs that correspond to

diffusive species, and ODEs for nondiffusive species, are generated. These equa-

tions are sent to the remote Simulation Server where the corresponding Cþþ code

is automatically generated, compiled, and linked with the Simulation Library.

The resulting executable is then run and the results are collected and stored on

the server. The Simulation Data Server then coordinates client access to the server-

side simulation data for display and analysis.

The system of PDEs is mapped to a rectangular grid using a finite difference

scheme based on a finite volume approach (Schaff et al., 1997). The nonlinear source

terms representing reaction kinetics are evaluated explicitly (forward difference)

and the resulting linearized PDE is solved implicitly (backward difference). Those

membranes separating spatially resolved compartments are treated as discontinu-

ities in the solution of the reaction/diffusion equations. These discontinuities are

defined by flux jump conditions that incorporate transmembrane fluxes, binding to

membrane-bound species, and conservation of mass. Each boundary condition is
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defined in terms of a known flux (Neumann condition) or a known concentration

(Dirichlet condition).

G. Storage

The Database Access Form presents a rudimentary model and simulation

storage capability. The current implementation allows whole physiological models,

geometric models, and simulation contexts to be stored and retrieved. The simula-

tion context is stored in a way that includes the physiological and geometric models

such that it encapsulates all of the information to reproduce and describe a

particular spatial simulation. There is, however, currently no ability to query the

stored models for specific attributes.

IV. Application to Existing Model

This discussion describes the application of our formalism to a physiological

reaction/diffusion system within a spatial context. An existing model of fertiliza-

tion calcium waves in Xenopus laevis eggs (Wagner et al., 1998) is used as an

example. This is based on the experimental observation that fertilization results

in a wave of calcium that spreads throughout the egg from the point of sperm–egg

fusion. The calcium wave depends on the elevation of intracellular inositol 1,4,5-

trisphosphate (IP3) and propagateswith a concave shape (Fontanilla andNuccitelli,

1998). Our discussion is limited to the mechanics of the model representation

without an in-depth analysis of the model itself.

A. Background

In the case under consideration, the calcium dynamics is essentially determined

by the calcium release from the internal ER stores through IP3 sensitive channels

and the uptake through sarcoplasmic-endoplasmic reticulum calcium ATPase

(SERCA) pumps. These processes are modulated by calcium diffusion and binding

to calcium buffers that are always present in the cytosol. Additionally, a small

constant calcium leak from ER to the cytosol ensures that the flux balance is at the

initial steady state. A simplified version (Li and Rinzel, 1994) of the De Young–

Keizer model (De Young and Keizer, 1992) for the calcium channel is used. This

model implies the independent kinetics of IP3-binding, calcium activation, and

calcium inhibition sites. A Hill equation is employed to describe calcium flux

through the pumps.

As has been shown (Wagner et al., 1998), the fertilization calcium wave genera-

tion can be explained by the bistability of a matured egg. The system bistability

means that the system can maintain two stable steady states with different calcium

concentrations, and a wavefront that corresponds to a threshold between the

regions with different steady states. Thus, in the bistable system the calcium

412 James C. Schaff et al.



wave can be initiated even at a steady IP3 concentration, although a spatially

heterogeneous IP3 distribution is required to reproduce the details of the wavefront

shape. In this chapter, we map the model proposed previously (Wagner et al., 1998)

onto the 3D geometry and explicitly introduce buffers as participating species. We

treat them as a subsystem with fast kinetics rather than describe buffering with one

scaling parameter. For simplicity, we consider only immobile buffers, although our

general approach allows us to also treat mobile buffers (for example, fluorescent

indicators) as well as any other ‘‘fast’’ kinetics.

B. Extracting Physiological Model

A physiological model first consists of a set of physiological assumptions

regarding the mechanisms important to the phenomenon under study. This defines

the physiological structure of the model and includes the list of physiological

mechanisms as well as the way in which they interact.

The framework application starts with outlining model compartments and

participating species (see Fig. 2). In our problem three compartments—extracellu-

lar, cytosol, and ER—are separated by the plasma membrane and the ER mem-

brane, respectively. We have no species of interest in extracellular as well as no

RinhCa

Rinh

RactCa

Ract

CaB

B

IP3

Ca

Cytosol

Extracellular

er

Ca_ER

Fig. 2 The Cell Structure Editor allows specification of cellular structure and location of molecular

species using a drag-and-drop user interface. In this example, there are three compartments: extracellu-

lar, cytosol, and ER, which are separated by the plasma membrane and the ERmembrane, respectively.

The location of a species within the editor display indicates its association with a cellular structure.
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processes that are associated with the plasma membrane in our approximation.

Four species are present in the cytosol: calcium (Ca), IP3, and the free (B) and

Ca-bound (CaB) states of fixed calcium buffers. We also have calcium in the ER

(Ca_ER). Four species are associated with the ERmembrane: the free (Ract, Rinh)

and Ca-bound (RactCa, RinhCa) states of the activation and inhibition monomer

sites that regulate calcium flux through ER membrane channels.

In our application, the concentration of Ca_ER is considered to be constant, and

the constant IP3 distribution is described by a static, spatial function. Thus,we end up

with seven variables, corresponding to the seven identified specified species, of which

only cytosolic calcium is diffusive while the other six are treated as spatially fixed.

The initial concentration and diffusion rates are specified for each species

present within a compartment. The initial surface densities are specified for each

species present within a membrane.

We then turn to the species interaction through the chemical reactions. One can

edit the processes associated with the ER membrane in the Biochemical Pathway

Editor (see Fig. 3). This Editor permits the user to define reactionmodels as a series of

membrane fluxes and reaction steps associated with either compartments or

membranes.

Our model contains three calcium fluxes through the ER membrane due to chan-

nels, pumps, and intrinsic leak, respectively. The channel flux is enzymatically regu-

lated by the states of the activation and inhibition sites that participate in two

reactions:

Ractþ Ca $ RactCa ð4Þ

Rinhþ Ca $ RinhCa: ð5Þ
Similarly, there are editing windows for compartments. Figure 4 shows the only

reaction that takes place in the cytosol:

Caþ B $ CaB ð6Þ
To complete the reaction description, we have to specify the ‘‘fast’’ subsystem if

it exists (as described earlier this subsystem will be treated within the pseudo-

steady-state approximation). As in the original published model (17), we assume

reactions [Eqs. (4) and (6)] to be in a rapid equilibrium while reaction [Eq. (5)] and

fluxes through the ER membrane comprise the slow system dynamics. The com-

plete physiological model is described in Appendix 1.

After specifying the entire physiological model within the user interface, the

Modeling Framework then translates the physiological description into a mathe-

matical description (see Appendix 2). While doing this, it automatically creates the

system of equations, analyzes it, and determines the minimal set of independent

variables and equations that are sufficient for a complete solution. Thus, in our

case, we finally end up with four independent variables, Ca, CaB, RactCa, and

RinhCa, and the temporally constant IP3, which was explicitly defined as a variable

to facilitate visualization.
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It is worth mentioning that modelers have direct access to the Mathematical

Framework interface, which allows them to skip the physiological description and

create their own mathematical description based on a known system of equations.

This Framework is a problem-solving environment (PSE) designed for the class of

reaction/diffusion problems involving multiple spatially resolved compartments.

Thus, one can easily test published mathematical models by translating them into

the Mathematical Description Language (see Appendix 2).

C. Mapping Compartments to Simulation Geometry

Finally, we specify the geometry of the problem and boundary conditions. The

egg cell geometry approximates a sphere, so the geometry was defined analytically

as a sphere of radius 500 mm. In our case, one can reduce the computational

domain by taking into account the rotational symmetry of the problem. Thus, it

cyt

B

CaB

Ca

IP3

rand
0-0

Rinh RinhCa

Ract

RactCa

erMembrane er

Ca_ER

Fig. 3 TheMembraneReaction Editor allows specification of reaction steps (represented by dumbbell-

shaped objects) andmembrane fluxes (represented by hollow tube objects). The reaction steps are treated

as in the Compartment Reaction Editor. Themembrane fluxes are defined as the transmembrane flux of a

single molecular species (in this case Ca2þ) from the exterior compartment (cytosol) to the interior

compartment (ER lumen). In this example, the three membrane flux shapes represent the behavior of

(from top to bottom) the SERCA pump, the membrane leak permeability, and the IP3-receptor calcium

channel. The channel flux is a function of the calcium channel activating binding site states Ract/RactCa

and the inhibitory binding site states Rinh/RinhCaRI, which are modeled as independent. As in the

reaction steps, flux kinetics are hyperlinked to the corresponding flux kinetics.
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is sufficient to simulate the calcium distribution within a quarter of a sphere only.

This geometry is specified using the Geometry Builder, a stand-alone Java applet

that permits the construction of 2D or 3D cellular geometric models based on a

series of image files or analytic geometry.

As in the previous model (Wagner et al., 1998), we do not spatially resolve ER.

Instead, we treat it as continuously and uniformly distributed within the cytosol.

Correspondingly, species associated with the ER membrane are effectively des-

cribed as volume variables. The information on the surface-to-volume ratio and

the density of ER distribution is incorporated in the parameters LAMBDA1,

LAMBDA2, and LAMBDA3 (Appendixes 1 and 2), these factors convert mass

flux into rate of change of concentration in cytosol.

D. Spatial Simulation of Generated Equations

Finally, the procedure of automatic code generation is invoked: the mathemati-

cal description is read and the corresponding Cþþ files are automatically created

and executed. Figure 5 shows the 3D reconstruction (using VoxelView) of the

simulation results for the calcium concentration distribution at time 70 s after the

wave initiation. We have also tested the 2D version of the model. Our results are in

good agreement with the previous results (Wagner et al., 1998) for the

corresponding value of the buffer scaling coefficient.

The Geometry/Mesh Editor allows participation in the choice of spatial resolu-

tion, permitting a balance of computational costs and the goodness of geometric

representation. This interface directs the binding of regions of the segmented geome-

try to the corresponding features within the physiological model. An orthogonal

mesh is specified and displayed interactively.

Cytosol

CaB
B

Ca (1)

(1)
(1)

Fig. 4 Compartment Reaction Editor allows specification of reaction steps (represented by dumbbell-

shaped objects), which are defined within the interior of a particular compartment and involve only those

species that are defined within that compartment. A species participating as a reactant or a product has a

line connecting itself to the left or right side of the reaction step shape, respectively, where the number in

parentheses specifies the stoichiometry. Reaction kinetics is hyperlinked to the corresponding reaction

step shape.
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The Initial/Boundary Condition Editor allows the specification of initial condi-

tions and boundary conditions for each of the species for each feature. To afford

maximum flexibility, the boundary conditions for each simulation border may be

specified independently for each feature. For example, the concentrations may be

specified at simulation boundaries in the extracellular space to indicate a sink.

A zero molecular flux may be specified at a simulation boundary belonging to

cytosol to ensure the symmetry of function with the missing portion of cytosol (the

implied mirror image).

The Simulation Data Viewer displays the results of the current spatial simula-

tion. The species concentrations are displayed superimposed on the mesh. The

analysis capability includes graphing the spatial distribution of a species as a line

scan and graphing a time series at a single point.

Fig. 5 A three-dimensional simulation of the fertilization calcium wave in a Xenopus laevis egg. The

original published mathematical model (Wagner et al., 1998) was directly implemented using the math

interface in two and three dimensions and achieved essentially identical results. The underlying physio-

logical model was then entered into our physiological framework and the corresponding mathematical

model was automatically generated. The simulation results were in good agreement with the previous

results (Wagner et al., 1998). This is a quarter of the spherical egg with a 500-mm radius. This is a volume

rendering of the simulated intracellular concentration 70 s after wave initiation (using the automatically

generated mathematical model).
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V. Conclusions

The need for the Virtual Cell arises because the very complexity of cell biological

processes severely impedes the application of the scientific method. A pair of

separate factors that contribute to this problem are addressed by the Virtual Cell.

First, the large number of interdependent chemical reactions and structural

components that combine to affect and regulate a typical cell biological process

forces one to seek the help of a computer to build a model. This issue is the subject

of an eloquent essay by Bray (1997). We are now faced with an overwhelming body

of data describing the details of individual molecular events occurring inside cells.

As Bray puts it, ‘‘What are we to do with the enormous cornucopia of genes and

molecules we have found in living cells? How can we see the wood for the trees and

understand complex cellular processes?’’ Brays solution: ‘‘Although we poor mor-

tals have difficulty manipulating seven things in our head at the same time, our

silicon protégés do not suffer this limitation. . . . The data are accumulating and the

computers are humming. What we lack are the words, the grammar and the syntax

of the new language.’’

The second factor recognizes that scientists trained in experimental cell biology

are not typically equipped with sufficient mathematical, physical, or computation-

al expertise to generate quantitative predictions from models. Conversely, theore-

tical biologists are often trained in the physical sciences and have difficulty

communicating with experimentalists (bifurcation diagrams, for example, will

not serve as a basis for a common language). By maintaining the physical laws

and numerical methods in separate modular layers, the Virtual Cell is at the same

time accessible to the experimental biologist and a powerful tool for the theorist.

Also, by maintaining a direct mapping to experimental biochemical, electrophysio-

logical, and/or image data, it ensures that simulation results will be communicated

in a language that can be understood and applied by all biologists.

Acknowledgments

We are pleased to acknowledge the support of NIH (GM35063) and the Critical Technologies

Program of the state of Connecticut. The National Resource for Cell Analysis and Modeling is funded

through NIH Grant RR13186.

Appendix 1:. Physiological Model Description

Name oocyte3d

Species CalciumBufferUnbound

Species CalciumBufferBound

Species IP3ReceptorCalciumActivationSiteUnbound

Species IP3ReceptorCalciumActivationSiteBound
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Species IP3ReceptorCalciumInhibitionSiteUnbound

Species IP3ReceptorCalciumInhibitionSiteBound

Species Calcium

Species IP3

Compartment extracellular {}

Compartment cytosol {

Context Ca Calcium { InitialCondition 0.1153 DiffusionRate
300.0}

Context IP3 IP3 { InitialCondition 0.12 DiffusionRate 0.0 }

Context B CalciumBufferUnbound { InitialCondition
1398.3876590291393 DiffusionRate 0.0 }

Context CaB CalciumBufferBound { InitialCondition
1.6123409708605976 DiffusionRate 0.0 }

}

Membrane plasmaMembrane cytosol extracellular {

SurfaceToVolume 1.0

VolumeFraction 0.5

}

Compartment er {

Context Ca_ER Calcium { InitialCondition 10.0 DiffusionRate
0.0 }

}

Membrane erMembrane er cytosol {

SurfaceToVolume 1.0

VolumeFraction 0.5

Context Ract IP3ReceptorCalciumActivationSiteUnbound {

InitialCondition0.009123393902531743DiffusionRate0.0}

Context RactCa IP3ReceptorCalciumActivationSiteBound {

InitialCondition8.766060974682582E-4DiffusionRate0.0}

Context Rinh IP3ReceptorCalciumInhibitionSiteUnbound {

InitialCondition0.009286200705751254DiffusionRate0.0}

Context RinhCa IP3ReceptorCalciumInhibitionSiteBound {

InitialCondition7.137992942487463E-4DiffusionRate0.0}

}

Reaction TestReaction {

SimpleReaction cytosol {

Reactant Ca Calcium cytosol 1

Reactant B CalciumBufferUnbound cytosol 1
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Product CaB CalciumBufferBound cytosol 1

Kinetics MassActionKinetics {

Fast

Parameter K 100.0;

ForwardRate 1.0;

ReverseRate K;

}

}

SimpleReaction erMembrane {

Reactant Ca Calcium cytosol 1

Reactant Ract IP3ReceptorCalciumActivationSiteUnbound
erMembrane 1

Product RactCa IP3ReceptorCalciumActivationSiteBound
erMembrane 1

Kinetics MassActionKinetics {

Fast

Parameter dact 1.2;

ForwardRate 1.0;

ReverseRate dact;

}

}

SimpleReaction erMembrane {

Reactant Ca Calcium cytosol 1

Reactant Rinh IP3ReceptorCalciumInhibitionSiteUnbound
erMembrane 1

Product RinhCa IP3ReceptorCalciumInhibitionSiteBound
erMembrane 1

Kinetics MassActionKinetics {

Parameter TAU 4.0;

Parameter dinh 1.5;

ForwardRate (1.0 / TAU);

ReverseRate (dinh / TAU);

}

}

FluxStep erMembrane Calcium {

Catalyst IP3 IP3 cytosol

Catalyst RactCa IP3ReceptorCalciumActivationSiteBound
erMembrane
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Catalyst Ract IP3ReceptorCalciumActivationSiteUnbound
erMembrane

Catalyst Rinh IP3ReceptorCalciumInhibitionSiteUnbound
erMembrane

Catalyst RinhCa IP3ReceptorCalciumInhibitionSiteBound
erMembrane

Kinetics GeneralKinetics {

Parameter LAMBDA1 75.0;

Parameter dI 0.025;

Rate (�LAMBDA1 * (Ca_ER--Ca) * pow(((IP3 / (IP3 + dI)) *
(RactCa/(RactCa+Ract))*(Rinh/(RinhCa+Rinh))),3.0));

}

}

FluxStep erMembrane Calcium {

Kinetics GeneralKinetics {

Parameter LAMBDA2 75.0;

Parameter vP 0.1;

Parameter kP 0.4;

Rate (LAMBDA2 * vP * Ca * Ca/((kP * kP) + (Ca * Ca)));

}

}

FluxStep erMembrane Calcium {

Kinetics GeneralKinetics {

Parameter LAMBDA3 75.0;

Parameter vL 5.0E-4;

Rate (�LAMBDA3 * vL * (Ca_ER--Ca));

}

}

}

Appendix 2:. Mathematical Description

name oocyte3d_generated

Constant K 100.0; Constant dact 1.2; Constant TAU 4.0;

Constant dinh 1.5; Constant LAMBDA1 75.0; Constant dI 0.025;

Constant LAMBDA2 75.0; Constant vP 0.1; Constant kP 0.4;

Constant LAMBDA3 75.0; Constant vL 5.0E�4; Constant Ca_init
0.1153;
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Constant B_init 1398.3876590291393; Constant CaB_init
1.6123409708605976;

ConstantRact_init0.009123393902531743;ConstantRactCa_init
8.766060974682582E�4;

ConstantRinh_init0.009286200705751254;ConstantRinhCa_init
7.137992942487463E�4;

Constant Ca_ER 10.0;

VolumeVariable Ca VolumeVariable IP3 VolumeVariable CaB

VolumeVariable RactCa VolumeVariable RinhCa

FunctionIP3_init0.12+(exp(�0.133333*(500.0�sqrt(x*x+y*y+
z*z))) * (0.12 + (0.84 * (x < �170.0) * exp(�pow((0.0025 * sqrt
(y*y + z*z)), 4.0)))));

Function K_B_total (B_init + CaB_init);

Function K_Ract_total (Ract_init + RactCa_init);

Function K_Rinh_total (Rinh_init + RinhCa_init);

Function B (K_B_total -- CaB);

Function Ract (K_Ract_total -- RactCa);

Function Rinh (K_Rinh_total -- RinhCa);

CartesianDomain {

Dimension 3

Size 1050.0 525.0 525.0

Origin �525.0 0.0 0.0

Compartment cytosol ((x*x + y*y + z*z) < (500.0*500.0));

Compartment extracellular 1.0;

}

CompartmentSubDomain cytosol {

Priority 2

BoundaryXmDirichlet BoundaryXp Dirichlet BoundaryYm
Dirichlet

BoundaryYp Dirichlet BoundaryZm Dirichlet BoundaryZp
Dirichlet

PdeEquation Ca {

Rate ((vL *(Ca_ER � Ca) * LAMBDA3) � (LAMBDA2*vP*Ca*Ca/
(kP*kP+Ca*Ca))--(Rinh*Ca/TAU)�(RinhCa*dinh/TAU))+
((Ca_ER � Ca) * pow((IP3/(IP3 + dI)*RactCa/(RactCa +
Ract) * Rinh/(RinhCa + Rinh)), 3.0) * LAMBDA1));

Diffusion 300.0;

Initial 0.1153; }
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OdeEquation IP3 {

Rate 0.0;

Initial 0.12 + (exp(�0.13333 * (500.0 � sqrt(x*x +
y*y + z*z))) * (0.12 + (0.84 * (x < �170.0) * exp
(�pow((0.0025 * sqrt(y*y + z*z)), 4.0))))); }

OdeEquation CaB { Rate 0.0; Initial 1.6123409708605976; }

OdeEquation RactCa { Rate 0.0; Initial
8.766060974682582E�4; }

OdeEquation RinhCa {

Rate ((Rinh * Ca/TAU) � (RinhCa * dinh/TAU));

Initial 7.137992942487463E�4; }

FastSystem {

FastInvariant (RactCa + Ca + CaB);

FastInvariant IP3;

FastRate ((Ca * (K_B_total � CaB)) � (K*CaB));

FastRate ((Ca * (K_Ract_total � RactCa)) � (dact *
RactCa));

FastInvariant RinhCa; }

}

CompartmentSubDomain extracellular {

Priority 1

BoundaryXm Dirichlet BoundaryXp Dirichlet

BoundaryYm Dirichlet BoundaryYp Dirichlet

BoundaryZm Dirichlet BoundaryZp Dirichlet

PdeEquation Ca { Rate 0.0; Diffusion 300.0; Initial 0.0; }

OdeEquation IP3 { Rate 0.0; Initial 0.0; }

OdeEquation CaB { Rate 0.0; Initial 0.0; }

OdeEquation RactCa { Rate 0.0; Initial 0.0; }

OdeEquation RinhCa { Rate 0.0; Initial 0.0; }

}

MembraneSubDomain cytosol extracellular {

JumpCondition Ca {

InFlux 0.0;

OutFlux 0.0;

}

}

Mesh { Size 100 50 50 }

Task { Output 35.0 Unsteady 0.1 0.0 105.0 }
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I. Update

In the 18 years since my essay on Fractal Applications in Biochemical Networks

appeared, laying out some fundamentals of (then) modern dynamical systems

theory, including self-organization, chaos, and fractals, there has been an explo-

sion of developments in these areas of mathematics, physics, and computations,

and to a lesser extent in biology. Here, I shall mention only two recent examples

from a now vast and rapidly growing literature. However, the fundamentals

described in my essay have remained intact and still have usefulness.

In nonequilibrium, highly nonlinear systems with many dynamic degrees of free-

dom, the phenomenon of self-organized criticality (SOC) appears in their macro-

scopic behaviors. It involves scale invariances and generates complexity both in

nature and in engineered designs and computations, often arising from deceptively

‘‘simple’’ conditions or equations. In them, underlying geometries of space and time

express fractals, power laws, and 1/f noise. In physics, SOC can be found in the study

of phase transitions, and in biology it appears both during development of an

organism and in evolution of populations. Neurosciences and genetics have become

especially informed by these concepts. I offer two examples below.

(1) A new algorithm explores the effects of long-term evolution on fractal gene

regulatory networks (Bentley, 2004). It exhibits a case of ‘‘biomimesis’’ in which the

use of genes expressed as fractal proteins enables greater evolvabilty of gene regu-

latory networks. The investigations led to an algorithm that could be effectively

applied to robotic controls and to invention of efficient and fault-tolerant controllers,

more like robust natural designs than the brittle designs we commonly propose.

(2) It has proved difficult to characterize the complex neural dynamics of the

neocortex that express abilities to learn and adapt, while remaining ‘‘plastic.’’ Edel-

man (2004) suggested that recurrent neural networks must be involved. Recently

Lazar et al. (2009) introduced SORN: a self-organizing recurrent neural network

that illustrates the potential of that approach. It learns to ‘‘encode information in the

form of trajectories through its high dimensional state space’’—an achievement that
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mimics the ability of the natural neocortex to learn ‘‘representations’’ of complex

spatio-temporal stimuli. Three types of plasticity seem to be required.

In spite of the demonstrated heuristic value of computational modeling, some of

the experimental results in systems creating spontaneous fractal networks in the

laboratory have been refractory to such modeling. They seem to be ‘‘transcompu-

table’’! The vigor of researches on fractal applications in biology promises a rich

future for the subject.

II. Introduction

A. Aims of This Chapter

The purpose of this chapter is to present to a readership of biochemists, molecular

biologists, and cell physiologists some of the terms and concepts ofmodern dynamical

systems theory, including chaotic dynamics and fractals, with suggested applications.

Although chaos and fractals are different concepts that should not be confounded,

they intersect in the field of modern nonlinear dynamics. For example, models of

chaotic dynamics have demonstrated that complex systems canbe globally stable even

though locally unstable and that the global stability reveals itself through the confine-

ment of the motion of the system to a ‘‘strange attractor’’ with a microscopic fractal

geometry. Some of the technical aspects of chaos, fractals, and complex dynamical

systems are sketched in the Glossary at the end of this chapter, where appropriate

references to the papers of experts can be found. The details in theGlossary permitme

to use a freer style in the body of this chapter, where I shall explore the possible

relevance of fractals to the understanding of both structure and function in biology.

The general motivation for biologists to examine chaotic dynamics and fractal

geometries arises from recognition that most of physics addresses only simple

systems, no matter how elaborate the mathematical apparatus seems to the uniniti-

ated. For the purposes of theorizing, the simple systems examined, both objects and

processes, are preferably rather uniform (all electrons are alike; there are only a few

quarks), analytically smooth, conservative (nondissipative), time-symmetric (revers-

ible), and linear. Biological systems, in contrast, are notably complex, nonlinear,

dissipative, irreversible, and diverse. In the last 20 years, for the first time, we have

witnessed the development of several branches of mathematics, both ‘‘pure’’ and

applied, that attempt to confront nonlinearity and complexity in a systematic way.

That development led to modern dynamical systems theory and vigorous extensions

of nonlinear mechanics. These advances have transformed discussions of the shapes

of common objects such as trees, clouds, coastlines, and mountains; of the stability

of complex systems; of noise and apparent randomness; of the genesis and nature of

turbulence and the Red Spot of Jupiter; of the intervals between drops in a dripping

faucet; of the music of Bach; and so on. . . .Nowwe begin to see biological forms and

functions examined from the same mathematical perspectives.

To provide a more specific motivation for biochemists to attend to the terms and

concepts of modern dynamical systems theory, I ask the reader to accept on trial,

as it were, the hypothesis that biological systems depend on a chemical network

18. Fractals in Biochemistry 427



whose synthetic capabilities lead to many forms with fractal geometries (including

bronchial and vascular trees and dendritic branchings of neurons), and many

processes that organize time in a fractal manner. We further hypothesize that

biological systems are not inherently noisy, but follow state-determined dynamics

(motion and change) of the deterministic chaotic class. Their chaotic dynamics

produce their marginal stability, many of their structures, and their fractal organi-

zation of time. Furthermore, biological systems with their very large numbers of

degrees of freedom (i.e., high dimensionality) have biochemical traffic patterns as

fluxes, transports, and transformations whose stability can be comprehended

formally only through the confinement of their motions to low-dimensional,

chaotic, strange attractors. (Note: These are all assumptions, for the sake of

discussion.)

Because we lack commonplace terms or familiar metaphors to convey the

essence of modern dynamical systems theory, I rely on the Glossary in either its

alphabetical or indicated logical order to help the reader through the jargonistic

jungle. I doubt that deterministic chaos and fractal time will ultimately prove to be

the most useful or insightful models of the complexity of biological systems.

Fractals and chaos have little in them of theoretical profundity, in spite of their

attendant and fashionable mathematical pyrotechnics. But as models of data, they

may be the best we now have for complex systems.

B. Discovery of Fractals: Background Reading and Computing

Fractals can pertain to the organization of both space and time. It is astonishing,

given that so much of our terrestrial surround has fractal shapes, that the concept

can be attributed chiefly to one person: Benoit (1977). A revised edition entitled

The Fractal Geometry of Nature appeared in 1982–1983. This work is idiosyncratic,

imaginative, and difficult for the layman to read. Mandelbrot showed that recur-

sive phenomena can generate fractals, and one kind of basic fractal expression is

a statement describing a recursion. For example, for a univariate system, the

recursion is

xnþ1 ¼ f ðxn; cÞ: ð1Þ
The (n þ 1)th value of the recursive function is a function of the nth value plus a

constant. The function for the recursion may be deterministic, stochastic, or even a

combination. The example commonly used for a purely deterministic recursion is

Znþ 1 ¼ Zn
2 þ C, where Z and C are complex numbers. Mandelbrot’s insight was to

examine recursions on the complex plane, instead of on the real number line. His

recursion serves as a basis for the definition of both the Mandelbrot and Julia sets

(Peterson, 1988). These remarkable sets are portrayed in the complex plane, where

they show very irregular and stunning shapes with extremely elaborate boundaries.

(Julia sets may be exactly self-similar at all scales of magnification, but aMandelbrot

set, consisting of all values of C that have connected Julia sets, has a fantastic fine
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structure at all scales, including repetition, and is not exactly self-similar across

scales. The details change.)

In the case of generating fractal trees as computer images of this recursion, if the

parameters remain constant through various generations of branching, a some-

what regular tree looking like a bracken fern is obtained, but if the parameters for

the branchings are random, then very irregular shapes are obtained. In the mathe-

matical generation of fractals by recursion rules, orders of magnitude from 0 to1
are permitted. However, in the real, physical world, there are cutoffs both at the

lower and at the higher ends. The measurement of the length of a coastline would

stop with a grain of sand; most physical and biological systems damp out or filter

out very high frequencies.

In book form fractals and the mathematical background (not easy) are available

in Peitgen and Richter (1986), Barnsley (1988), Devaney (1989a,b, 1990).

From these sources, the careful reader will find a deeper understanding of fractals

than arising from merely supposing that a fractal is a geometric object having a

fractional dimension. Some trivial fractal objects actually have integer dimension,

but so do some that are not so trivial. In the discussion of biological structure and

function in this chapter, I shall be emphasizing both structures that do in fact have

fractional dimensions and also functions, revealed as time histories, that produce

1/fm spectra typical of fractal time, wheremffi 1 or, more generally, some noninteger

value. The key to this fractal viewof both structure and function lies in twoof the very

strong features of fractals: lackof a characteristic scale and some self-similarity across

all levels of magnification or minification. In the strongest cases, self-similarity lies in

the detailed shapes, or patterns, but in weaker cases it can be found only in statistical

characteristics. Because most fractals are not homogeneous (i.e., not identical at

every scale), the more closely you examine them, the more details you find, although

there will not necessarily be infinite layers of detail.

The creation of fractal structures in the physical/biological world, as opposed to

their generation in recursive computer models, may require the operation of

chaotic dynamics. Chaotic processes acting on an environment such as the sea-

shore, atmosphere, or lithosphere can leave behind fractal objects such as coast-

lines, clouds, and rock formations. I wish to emphasize that the mathematics of

fractals was developed independently of the mathematics of chaotic dynamics.

Although there were antecedants, I think it is fair to say that the general scientific

communities became aware of chaotic dynamics through a 1971 paper on turbu-

lence by Ruelle and Takens, and aware of fractals through Mandelbrot’s 1977

book already cited. In biology, some of these modern concepts were adumbrated in

works by N. Rashevsky.

The common occurrence of fractal geometries in biological morphologies, also

found in physical structures, suggests but does not prove that chaotic dynamics are

very widespread in nature and should be found in biological morphogenetic

processes. That search is a current and advanced topic for biological investigations

and should provide, in my opinion, an enrichment of Edelman’s ‘‘topobiology,’’

(Edelman, 1988) which at present suffers from a lack of detailed, mathematical
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modeling. J. Lefevre in 1983 attempted to extend Mandelbrot’s illustration of a

fractal network, space-filling in two dimensions, into three dimensions for the

bronchial tree. A fine account of the possible importance of fractal processes in

morphogenesis has been provided by West (1987). It is now thought that many

aspects of mammalian morphology involve fractal tree branchings, including

bronchi, arteriolar networks, cardiac conduction systems, and neuronal dendrites.

III. Fractal Morphology in Mammals: Some Branchings

A. Bronchial Tree and Pulmonary Blood Flow

The bronchial tree meets all of the criteria for a fractal form (see Glossary). The

conduits through which gases flow to and from the lungs branch repeatedly from the

single trachea to the terminal structures, the alveoli. West et al. have recently

reanalyzed lung casts of humans and several other mammalian species originally

prepared in 1962 by Weibel et al. They found the type of scaling characteristic of a

fractal geometry. The fractal dimension, D, 2 < D < 3, may have provided a

mechanism for converting a volume of dimension three (blood and air in tubes)

into a surface area of dimension two, facilitating gas exchange. Goldberger et al.

(1990) have discussed these findings. Fractal branching systems greatly amplify

surface area available for distribution or collection, or for absorption, or even for

information processing.

Glenny and Robertson (1990) have examined the fractal properties of pulmonary

blood flow and characterized the spatial heterogeneity. Their data fit a fractal model

very well with a fractal dimension (Ds) of 1.09� 0.02, where aDs value of 1.0 reflects

homogeneous flow, and 1.5would indicate a randomflowdistribution in theirmodel.

B. Vascular Tree

Elsewhere I have discussed the branching rules of the mammalian vascular tree

(Yates, 1991). As in the case of the bronchii, casts have been used (by Suwa) to

discover the branching rules of the vascular tree, and that tree also turns out to be a

fractal structure.

C. Morphology of the Heart

The branching of the coronary arterial network is self-similar, as is that of the

fibers (chordae tendineae) anchoring the mitral and triscupid valves to the ventric-

ular muscle. Furthermore, the irregular spatial branching of the conduction system

of the heart (His–Purkinje system) sets up a fractal-like conduction network, which

has been interpreted as having important functional consequences because it forces

a fractal temporal distribution on electrical impulses flowing through (Goldberger

and West, 1985).
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D. Neurons (Dendrites)

By the criteria for fractals given in the Glossary and the preceding discussion, the

branching of the dendritic tree of many neurons is fractal. Goldberger et al. (1990)

have suggested that this dendritic fractal geometry may be related to chaos in the

nervous system, a feature of the nervous system suggested by the work of Freeman

(1991). Such conjectures are interesting but not yet proved to be correct. (See the

comment of L. Partridge in the Glossary, section on chaos.)

The above examples represent a small sample of the data which seem to establish

that branching treelike structures with fractal geometries abound in the biological

realm, both for animal and plant life. However, it is less clear that biological

processes are organized in fractal time. I consider that question next, cautioning

the reader that I am not comfortable with the current fad for casually imposing

chaotic dynamics and fractal concepts on models of physiological processes. These

models should be examined skeptically, as provocative possibilities yet to be

proved.

E. Fractal Time: Prelude to Fractal Function and Temporal Organization

The main purpose of this chapter is to show how fractals might help to describe

and explain biochemical and physiological processes. A first step toward that goal

is recognition of the general form of fractals; a second step is the examination of

fractal structures in space. Now the third step is an examination of temporal

organization from the fractal viewpoint. The final step will consist of applications

to research in biochemistry and cellular physiology.

F. Time History Analysis, Scaling Noises

Consider a record of the amplitude of a single biochemical or physiological

variable over the duration of some experiment. If the variable is continuous, as in

the case of blood pressure, it may be recorded continuously or intermittently

(discrete sampling). For time history analysis in digital computers, continuous

records are ordinarily discretized at constant sampling interval and converted to

a string of numbers. If the variable has the nature of an irregular event, such as the

beat of the heart, it may be merely counted or treated as a point process. (As a first

approximation, these are usually expected to generate a Poisson exponential

distribution of interevent intervals, as in radioactive decay of a specific type from

a specific source, but recently attention has been directed to more complicated

point processes, for example, in the analyses of neuronal firing in parts of the

auditory system.)

Time histories of biological variables can be hypothesized to have been gener-

ated either by a deterministic process or by a random process. In the field of

nonlinear topological dynamics under discussion in this chapter, varying deter-

ministic processes can be periodic, quasi-periodic, or chaotic. The random
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processes include (1) point processes with Poisson distributions, (2) processes

generating intermittent or episodic pulses (‘‘pulsatility’’), and (3) processes that

generate broad, rather featureless spectra such as white noise (1/f0 spectrum) or

Brownian motion noise (1/f2 spectrum; where f is the frequency against which an

associated component of variance—roughly amplitude squared—is being plotted).

But there is another case: Mandelbrot has called attention to stochastic fractals, an

example of which is fractional Gaussian noise. The power spectrum in the low

frequency range for such a univariate, real-valued function with fractal dimension

D (1�D� 2) can be shown to be proportional to f1�2H, where 0�H< 1, andH is

a constant related to D. In other words, fractional Gaussian noise corresponds to

what is generically termed 1/f m (m ffi 1) noise, where the power spectrum reveals

concentration of low frequency energy, with a long higher frequency tail. Famil-

iarly, the spectrum of such processes is broadly referred to as ‘‘1/f.’’ (The more

general case where m is not an integer is discussed below.)

Some point processes can be modeled as stochastic fractals, such as the activity

of primary discharge patterns of some neurons. However, the enthusiasm for

searching for processes with 1/f spectra in biology lies not in the direction of

stochastic processes, but in the domain of deterministic chaos, whose dynamics

can produce both fractal time and fractal spatial structures. (The finding of a 1/f

spectrum in a biological time history does not prove that the generator was

deterministic chaos. It does, however, permit that hypothesis.) The ‘‘noise’’ classi-

fication according to the spectral sequence 1/f 0, 1/f 1, 1/f 2 is implemented by a log–

log plot in which log (amplitude squared) is plotted against log (frequency or

harmonic number). The three kinds of noise in the sequence will produce log–log

plots with a slope of 0 (white or Johnson noise), approximately �1 (Mandelbrot

noise), or �2 (Brownian noise). Mandelbrot has called these various noises ‘‘scal-

ing noises.’’ If an investigator plots the power spectrum of the time history of a

finite length record on a single variable, using the log–log transformation, and

finds that the background, band-limited but broad, ‘‘noise’’ does not fall on a line

with slope 0, �1, or �2, he could either reject the scaling noise model and assume

some other basis for the background variations, or he might consider a harmoni-

cally modulated fractal noise model (if the data wander back and forth across a

straight line with a slope of �1). Such a model has been provided by West (1987)

and is of the form

yðzÞ ¼ ½A0 þ A1 cosð2p ln z= lnbÞ�=za; ð2Þ
where A0, A1, a, and b are parameters.

It should be noted that the log–log transformation of the power spectrum does

not obliterate any spectral lines identifying periodic processes, which can occur on

top of a background of scaling noise. In summary, an investigator believing that

the time history of the variable he is looking at might have resulted from chaotic

dynamics might well start with the search for the 1/f spectrum characteristic of

fractal time, remembering that the presence of a 1/f spectrum is compatible with,

but does not establish, the presence of a deterministic, chaotic generator of the time
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history. (In practice it is not always easy to decide on the value of a negative slope

in a log–log plot of the power spectrum of real biological data.)

Because fractal time, like fractal space, has the features of heterogeneity, self-

similarity, and absence of a characteristic scale, it follows that if recorded on a

tape, fractal noise always sounds the same when the tape speed is varied (making

allowances for changes in loudness). In contrast, the pitch of any periodic process

will be a function of tape speed (rising as the tape speed is increased, a familiar

phenomenon when fast forward is used).

Schlesinger (1987) offered a technical but clear account of fractal time and 1/f

noise in complex systems. In what follows, I paraphrase some points of his article,

possibly relevant to biochemical and physiological data in which time appears as

an independent variable. It should be an embarrassment to biochemists that time

rarely appears explicitly in plots of their data, their idea of kinetics too often being

merely a relationship between a reaction velocity (time implicit) and a (steady)

substrate concentration.

Suppose that a biologist is observing a process that seems to have some kind of

‘‘pulsatility’’ in which there is a variable time between events or peak concentra-

tions. A starting point for the analysis of pulsatility is to suppose that there is some

probability for time between events

cðtÞdt ¼ Prob½time between events 2 ðt; tþ dtÞ�: ð3Þ
There will be a mean time hti and a median time, tm, between events

hti �
ð1
0

tcðtÞdt;
ðtm
0

cðtÞdt ¼ 1

2
: ð4Þ

Schlesinger gives the references that provide the basis for these and others of his

statements that follow. If hti is finite, then we can say that some natural scale exists

in which to measure time. For a very long series of data, it will appear that events

occur at the constant rate hti�1. If hti is very large, then events will occur at a slow

rate, but we would not call such events rare. When hti ¼1, there is no natural time

scale in which to gauge measurements, and events are indeed rare. Note that even

under these conditions, tm is finite, so events still occur.

Schlesinger then considers the case that we have three events in a row at times

t ¼ 0, t ¼ t, and t ¼ T, where the value of T is known. We want to know the

probability of the middle event that occurs at t ¼ t

f ðtÞ ¼ cðtÞcðT � tÞÐ T
0
cðsÞcðT � sÞds

; ð5Þ

where ‘‘the denominator insures the proper normalization.’’ For a purely random

process c(t) ¼ l exp(�lt), and f(t) is a uniform distribution in the interval (0, T).

In that case, the most likely time for the middle event is t ¼ T/2; that is, on the

average, events occur at rather regular intervals. However, if hti is infinite, the

process cannot resemble a constant rate renewal; so then t ¼ T/2 is the least likely
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value of t, and values of t closer to t ¼ 0 and t ¼ T are more probable. For such

rare events (mean renewal rate of zero), the time sequence of events appears in self-

similar clusters like points in a Cantor set (one of the best known demonstrations

of self-similarity and fractal dimension). For proof of this by no means obvious

result, see the references provided by Schlesinger.

One example of a physical mechanism that can generate such a fractal time

distribution of events is hopping over a distribution of energy barriers. A small

median jump time can exist and be consistent with an infinite mean jump time.

In physics, these ideas have become important in describing charge motion in some

disordered systems. In that case, c(t) can represent the probability density for an

electron’s not moving, but it can also represent the probability density for remain-

ing in a correlated motion.

It still has to be answered why 1/f noise is so prevalent in physical and biological

systems. Schlesinger gives a plausible argument which says that this kind of noise is

generic in the same sense that the Gaussian distribution arises from the central

limit theorem which governs sums of independent random variables with finite

second moments. Consider a process that is described by a product of random

variables. Then, for an event to occur, several conditions have to be satisfied

simultaneously or in sequence. If P is the probability for the event to occur, and if

P ¼ p1p2� � �pN ; ð6Þ
then

logP ¼
XN
i¼1

logpi ð7Þ

has a Gaussian distribution and P has a log-normal distribution:

PðtÞ ¼ 1

pst
expð�½ logðt=htiÞ�2=2s2Þ; ð8Þ

where hti and s2 are the mean and variance of the distribution, respectively. As

more factors N participate, s increases (see next section) and PðtÞ ffi 1=t over a

range of t values. The greater the value for s is, the more extensive the range is over

which the t�1 behavior persists and thus the larger the range is over which 1/f noise

is found. Schlesinger concludes, ‘‘The underlying product of the random variables

idea that leads to a log-normal distribution of relaxation times and naturally to 1/f

noise provides a generic generation of this phenomenon. . . . The real message of 1/f

noise is that a scale-invariant distribution of relaxation times has been generated.’’

(See the following section for a similar account by Bassingthwaighte.)

An earlier paper by Careri et al. (1975) provides a contrasting background for

the analysis of Schlesinger; it examined statistical time events in enzymes. The great

progress in understanding spatial aspects of enzyme action has not been matched

by an equally important analysis of the temporal aspects. Carerri et al. explored

elementary processes and assessed the microscopic mechanisms by comparative

studies on representative model systems using the theory of random processes.
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They modeled relaxation and concentration fluctuation spectroscopy by use of the

fluctuation-dissipation theorem. This theorem relates the average time for the

decay of spontaneous microscopic fluctuations to the time course observed after

a small perturbation around equilibrium. They focused on the correlation time

(especially the autocorrelation time of a statistically stationary variable) as the

basic quantity of interest because it gives a direct measure of the time interval over

which a variable is behaving more or less regularly and predictably. For longer

time intervals, the behavior becomes progressively more random in this model.

However, the authors caution that in their kind of analysis of random processes,

they must assume that the variables involved are statistically stationary and

linearly superimposed, and that such an assumption may not hold for an enzyme,

where the different classes of fluctuations may interact in a nonlinear way, merging

into a new cooperative with nonstationary effects of great chemical interest—

precisely the point of modern, nonlinear dynamics!

The presence of 1/f noise in a dynamic system does not imply any particular

mechanism for its generation. For that, one needs to draw on phase-space plots,

Liapunov exponents, embedding plots, etc., for a more detailed investigation of

dynamic behavior in complex biological systems. Recently Sun (1990) considered

the general case that a fractal system follows a generalized inverse power law

equation of the form 1/fm, where m is any fractional number. He reexpresses

such a system in fractional power pole form (not shown here) which, as he points

out, has a much wider representation of natural and physiological phenomena

than does a 1/f1 view because its low frequency magnitude is finite instead of

infinite (as f! 0). He then offers a time domain expression of such a fractal system

consisting of a set of linear differential equations with time-varying coefficients.

If the fractal dimensions mi approach unity or any other integer numbers, his

equations lead to regular time-invariant systems. Most importantly, he shows that

certain familiar dynamic systems whose performance criteria are well known

become more stable in the fractal domain. Thus, he confirms the view expressed

earlier by Bruce West that fractal systems are error tolerant and, in that sense,

more stable than their nonfractal counterparts.

A clear and profound explanation of 1/f noise has been provided by Bak et al.

(1987). As they remark, ‘‘One of the classical problems in physics is the existence of

the ubiquitous ‘1/f’ noise which has been detected for transport in systems as

diverse as resistors, the hour glass, the flow of the river Nile, and the luminosity

of stars. The low-frequency power spectra of such systems display a power-law

behavior f�b over vastly different time scales. Despite much effort, there is no

general theory that explains the widespread occurrence of 1/f noise.’’ They then

argue and demonstrate numerically that dynamical systems with extended spatial

degrees of freedom naturally evolve into self-organized critical structures of states

which are barely stable. They propose that this SOC is the common underlying

mechanism behind the common occurrence of 1/f noise and self-similar fractal

structures. The combination of dynamic minimal stability and spatial scaling leads

to a power law for temporal fluctuations. It should be emphasized that the
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criticality in their theory is fundamentally different from the critical point at phase

transitions in equilibrium statistical mechanics, which can be reached only by

tuning of a parameter. These authors refer to critical points that are attractors

reached by starting far from equilibrium, and the scaling properties of the attractor

are insensitive to the parameters of the model. In fact, this robustness is essential in

supporting their conclusion that no fine tuning is necessary to generate 1/f noise

and fractal structures in nature. They end their article with the remark, ‘‘We

believe that the new concept of SOC can be taken much further and might be the

underlying concept for temporal and spatial scaling in a wide class of dissipative

systems with extended degrees of freedom.’’

The ubiquity of physical and biological processes in which some measure of

‘‘intensity’’ (such as frequency of usage or occurrence, physical power, or proba-

bility) varies inversely with fm (where f is a frequency or a rank order) forces us to

speculate about interpretations of different values of m, whether integer (0, 1, 2) or

fractional. A rich and varied literature bears on such systems, real and model. The

mathematical treatments are advanced, and we have no compact, reduced figure of

thought to encompass all 1/fm phenomena. There are, however, some informal

inferences that may be drawn, and they are considered next.

G. Fractals and Scatter in Biological Data: Heterogeneity

Bassingthwaighte (1988) has noted that there are spatial variations in concen-

trations or flows within an organ, as well as temporal variation in reaction rates or

flows, which appear to broaden as the scale of observation is made smaller (e.g.,

smaller lengths, areas, volumes, or times), for the same constant total size or

interval, composed of Ni units, where i indexes an observational scale (number of

pieces or intervals in the population of samples). He then asks, ‘‘How can we

characterize heterogeneity independently of scale?’’ This scale-dependent scatter in

physiological and biochemical observations is a property inherent in the biological

system and cannot be accounted for entirely by measurement error. Bas-

singthwaighte considers the example of channel fluctuations: ‘‘When the duration

of openings of ion channels is measured, the variation is broader when the

observations are made over short intervals with high-resolution instrumentation

and narrower when made over long intervals with lower fidelity. While this

problem seems obvious when considered directly, no standard method for

handling it has evolved.’’ Given any arbitrary choice for the size of the domain,

one wishes to consider, how could one describe the heterogeneity of the system in a

fashion that is independent of the magnitude of the domain or the period of

observation? The fractal concept provides the answer.

As an example, consider the measurement of variation in regional flows

throughout some organ whose total blood flow is known. The mean flow per

gram of tissue is the total flow divided by the mass of the organ. Next, assume

that the flows everywhere are steady and that the organ is chopped up into weighed

pieces and the flow to each piece is known (from the deposition of indicator or
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microspheres) so that we have an estimate of the flow per gram for each piece. The

relative dispersion of the regional flows is given by the standard deviation divided

by the mean (the usual coefficient of variation, CV). Empirically we find that the

finer the pieces we chopped the organ into, the greater the relative dispersion or

coefficient of variation is. So, what is the true variation? From experimental data

Bassingthwaighte obtained the result for relative dispersion (which he designated

RD and I call CV):

CV ¼ CVðN ¼ 1ÞND�1; ð9Þ
where N is the number of pieces and D is the fractal dimension, a measure of

‘‘irregularity.’’ In a plot of CV versus N, the real value of CV(N ¼ 1) can only be 0,

and so it cannot actually be on the fractal curve. Therefore, the value of CV(N¼ 1)

in these data had to be obtained by extrapolation of the log–log plot to its

intercept. It was found that extrapolated CV(N ¼ 1) ¼ 12.9%.

To generalize the expression for relative dispersion,

CVðwÞ ¼ CVðw ¼ 1gÞw1�D; ð10Þ
where w is the mass of the observed pieces of tissues and D is the fractal dimension

(which in the case of blood flow in the myocardium had an observed value of 1.18).

(The exponent can beD� 1 or 1�D, depending on whether the measure is directly

or inversely proportional to the measuring stick strength.) Thus it is the fractal

dimension, not the coefficient of variation for any particular set of data that

expresses the ‘‘true’’ heterogeneity.

The same approach can be applied to temporal fluctuations, and the equation

has the same form as that for spatial heterogeneity

CVðtÞ ¼ CVðt ¼ 1 unitÞt1�Dt : ð11Þ
In this case, we examine the standard deviation of flows over a given interval t,

divided by the mean flow determined over a much longer time. The broader the

standard deviation is, the shorter the interval t is over which the flows are measured.

Some arbitrary reference interval (t ¼ 1) must be chosen. Preliminary analyses of

capillary flowfluctuations give aDt value of approximately 1.3. Similarly, Liebovitch

et al. (1987) obtained patch-clamp data on ion channel openings or closings in lens

epithelial cells. They compared a fractal model with mono- or multiexponential rate

constants and obtained better fits with the fractal model.

The important conclusion is that suggested by Bassingthwaighte: fractals link

determinism and randomness in structures and functions.

IV. Chaos in Enzyme Reactions

To further illustrate possible applications of concepts of chaos and fractals for

the interpretation of biochemical phenomena, I consider the historically impor-

tant, brief report by Olsen and Degn (1977) of perhaps the first direct experimental
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demonstration of chaos in a chemical reaction system. They studied the behavior

of oxygen concentration as a function of time in a peroxidase-catalyzed oxidation

of NADH in a system open to O2 in a stirred solution, where the O2 could enter by

diffusion from the gas phase. They observed sustained ‘‘oscillations’’ by continu-

ously supplying NADH to the reaction mixture. They discovered that the wave-

form of the variations depended on the enzyme concentration. At one

concentration, sustained, regular, true oscillations were observed; but at other

concentrations, the large variations showed no apparent periodicity. This irregular

fluctuation was analyzed by plotting each amplitude against the preceding ampli-

tude, and each period against the preceding period, according to the mapping

technique introduced by Lorenz. (The study of such iterated maps originally arose

from a desire to understand the behavior of solutions of ordinary differential

equations, and they can be used to identify random, periodic, or chaotic beha-

viors.) Such maps draw diagrams of transition functions, and, according to a

theorem of Li and Yorke (1975), if the transition function allows the period 3

(which can be tested graphically on the map), then it allows any period and chaos

exists. (Devaney credits this idea to an earlier source; see the videotapes already

mentioned.) By this means, Olsen and Degn demonstrated graphically that the

fluctuations in the concentration of the reactant O2 at a certain enzyme concentra-

tion produced a transition function admitting period 3. By the Li and Yorke

criterion (not necessary but sufficient to identify chaos), the reaction kinetics

were indeed chaotic. In the absence of chaos theory, the data most likely would

have been uninterpretable or regarded merely as showing a contaminating noise of

unknown origin. With chaos theory, it could be concluded that the data accurately

conveyed the real (deterministic, nonlinear) dynamics of the reaction.

V. Practical Guide to Identification of Chaos and Fractals in
Biochemical Reactions

Suppose that a biochemist is monitoring the concentration or thermodynamic

activity of a reactant under conditions that the reaction is not at equilibrium. (It

may be in a constrained steady state, or it may be tending toward an equilibrium,

depending on the conditions.) Traditionally, such kinetic systems are usually

thought to have either monotonic or periodic behavior. Examples of nonmono-

tonic, nonperiodic behavior have long been known, but before the advent of

deterministic chaos theory it was usually assumed that the variations had to be

attributed to some kind of ‘‘noise.’’ It was not easy to imagine where the noise

came from during controlled in vitro studies. Today, contamination of the reaction

kinetics by some random process should not be the first choice for modeling;

deterministic chaos deserves to be tried.

The first step in such an analysis consists of converting the concentration data

into a string of numbers (usually at equally spaced time intervals). If the data were

continuously recorded, as might be the case for hydrogen ion concentration using a
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pH electrode, then the data must be discretized. Here, the choice of sampling

interval depends on the frequency range the experimenter wishes to explore,

recognizing restrictions imposed by the frequency response of the recording equip-

ment. Once the string of pairs of numbers (concentration, time of observation) has

been obtained, several practical considerations arise that I cannot treat formally

here. These concern whether the data should be in any way smoothed or filtered

according to what is known about measurement uncertainty. In addition, there

must be an a priori policy for interpolation across missing points. Choices about

the length of the record or the number of successive points to be included in the

analysis can bear critically on the results of subsequent computations. Some of the

most powerful techniques for exploring chaotic dynamics require more points

(more than a thousand) than biochemists may have. If the conditions of the

reaction are nonstationary, so that the statistical properties of segments of record

are different in different pieces of the record, then it may be desirable to use less

than the whole record length for analysis. But there is a caveat: As I have pointed

out elsewhere in this chapter, one chaotic dynamic can produce different spectral

results depending on the piece of the record used, even when the underlying

dynamics are actually the same throughout. This is tricky business, and the

investigator must proceed cautiously.

Having chosen a sampling interval and a length of record, the investigator may

then apply spectral analysis and examine the power spectrum for evidence of

periodicities (peaks) and broad-band, background ‘‘noise.’’ If that background

has a 1/fm property, as revealed by a log–log plot of power (amplitude2) versus

frequency, yielding a straight line of negative slope �m, then the value of m can

give some clue as to the nature of the process; m equals 2 is consistent with an

assumption that a Brownian motion, diffusion process is dominant; an m of

approximately 1 hints that chaotic dynamics may be operating (this is not a critical

test).

The next step might be the graphical iteration technique in which each value xtþ1

is plotted against the preceding value xt, along the whole time series. The resulting

iterated map gives the transition function for the reactant whose concentration was

x. If the plot yields a random scattergram, the process is random. However, if the

plot reveals regularities, a chaotic ‘‘attractor’’ may be present.

Next, the ‘‘correlation dimension’’ of the data string may be computed using the

Grassberger and Procaccia, 1983), not further described here. If the computed

dimension has a noninteger value greater than 2, then chaotic dynamics are

suggested. (In my experience, if the correlation dimension ranges larger than 10,

it is best just to assume that white noise is present.) There are many reservations

about the interpretation of the correlation dimension as being the (fractal) dimen-

sion of a chaotic attractor (not reviewed here). It is safest just to regard it as some

kind of ‘‘complexity’’ estimate on the dynamics of the reactant. As a practical

matter, this complexity will range from 2þ to 10þ; the larger the number is, the

greater the complexity of the dynamics will be. (In theory the correlation dimen-

sion can range from zero to infinity.)
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There is a new measure of the complexity of dynamics that is mathematically

robust and makes fewer assumptions than are required for the computation of the

correlation dimension. Pincus (1991) has introduced a regularity statistic for

biological data analysis that he calls ‘‘approximate entropy,’’ abbreviated ApEn.

It is a relative, not absolute, measure. Its rigorous use may require as many as 1000

data points, but its robustness permits valuable results from strings of time series

data no longer than perhaps 200 points. This measure has been used to detect

abnormal hormone pulsatility in physiological systems. Pincus developed ApEn as

a corrective to blind applications of certain algorithms to arbitrary time series data.

He commented (personal communication, 1991), ‘‘These algorithms include esti-

mates of Kolmogorov–Sinai (K–S) entropy and estimates of system dimension.

These algorithms were developed for application to deterministic systems, yet are

frequently applied to arbitrary data with questionable interpretations and no

established statistical results. Sometimes attempts are made to apply these algo-

rithms to very noisy processes, but again, statistical understanding is lacking.

Furthermore, correlated stochastic processes are almost never evaluated in this

way. There are severe difficulties with such blind applications of these popular

algorithms. One cannot establish underlying determinism via the correlation di-

mension algorithm.’’ At the present time ApEn may be the best we can do to

specify ‘‘complexity’’ of a time series, particularly given that biological systems

may produce very messy, weakly correlated stochastic processes. However, like all

other aggregated measures, ApEn loses information.

VI. Summary, or What Does It All Mean?

I have tried to convey some of the new trends of thought regarding the perfor-

mance of complex systems that have been provided by mathematical advances,

particularly in topology. It would be impossible to try to fill in every step required

for a clear understanding of the separate concepts of chaos and fractals that come

together in the modern dynamic systems theory addressing the behavior of com-

plex, nonlinear systems. I have provided only a few primary or secondary refer-

ences out of the hundreds now available in this rapidly moving branch of applied

mathematics. The bibliographies of the references I offer do give a foundation for

understanding the new developments. Most of the material I have cited, and the

references cited in them, are mathematically somewhat advanced and not easily

accessible to a nonspecialist reader. Gleick (1987) provide very attractive accounts of

some of the excitement in the field, of some of the leading personalities, and of some

of the claims. However, in my opinion, a lay article inevitably must fail to convey the

substance of chaos and fractals. Here, I have tried to indicate some of that substance,

without figures and with only a few equations. This effort, too, must fail, but it

should at least avoid misleading the reader about some of the achievements and the

perplexities attendant on these new views of dynamics. A scholarly examination of

the history of these trends inmathematics would show, as Ralph Abraham has done,
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that not all the fashionable and even faddish ideas are really new; there are strong

antecedants going back to at least the early 1900s.

The study of chaos and fractals in a biological setting provides many valuable

lessons, some of which I list below. Complex results do not imply complex causes.

Simple systems need not behave in simple ways. Complex systems can have simple

behavior. Randomness out does not imply randomness in (or inside). Small transient

or distant causes can have large long-term effects. There can be instability at every

point in phase space, while trajectories within it may be confined: aperiodic, never

repeating, yet staying close together. Erratic behavior can be stable. Global behavior

can differ from local behavior and may be predictable even when local behavior may

be unpredictable. When a quantity changes, it can change arbitrarily fast. Determin-

istic, continuum dynamics can be intermittent. Trends can persist through seeming

randomness. There can be scaling symmetry (i.e., self-similarity) across all levels of

observation in systems having no characteristic scale of space or time. The region of

phase space in which trajectories settle down can have noninteger dimension. Transi-

tions from one dynamicmode of behavior to another can occur through bifurcations

that can be subtle, catastrophic, or explosive.Anonlinear system, such asmaybe seen

in a hydrodynamic field, may have regions with steady behavioral modes, separated

by chaotic boundaries that are stable (e.g., the Red Spot of Jupiter, which may be a

vortex stabilized by a chaotic surround, or whichmay be a soliton). Fluctuationsmay

be enhanced and captured as a new form or function.

The list could go on, but the items above should convey the explanatory richness

of the concepts of chaos and fractals and their potential for changing our view-

points about determinism and randomness, about stability, evolution, speciation,

noise. . . . Surely these are nontrivial yields to be had from a study of these subjects.

Perhaps for the first time we have mathematics of complexity mature enough to

describe motions and transformations within biochemical and physiological sys-

tems. But not all of those competent to understand the mathematical developments

in detail are comfortable with the tendency, possibly a rampant distortion, to view

more and more of biological processes through the spectacles of chaos and fractals.

Are we ready to abandon all the old-fashioned models of deterministic systems

contaminated by additive or multiplicative noise of various types? Is there really so

much of chaotic dynamics in living systems? How can we tell?

Admittedly, deterministic chaotic dynamics can imitate many different kinds of

what we previously thought of as random ‘‘noise.’’ Above all, there is a kind of

efficiency or compactness about the concepts of chaos and fractals as applied to

biological dynamics. They can dispel some of our confusion about properties of

data, as I have tried to illustrate, and arguably they justify the claim that under-

neath many appearances of complexity lies some kind of deeper simplicity—an

assumption that physicists have long made.

I have described some crude tests for the presence of fractal time, fractal space,

and chaotic dynamics in living systems. There are no standalone, solid tests; howev-

er, there are indicators of the operation of chaotic dynamics and the presence of

fractal space or time. The most important yield for biologists arising from the study
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of chaotic dynamics and fractals seems to me to pertain to the fundamental

biological concept (originated separately by Sechenov, Bernard, and Cannon) of

‘‘homeostasis.’’ Homeostasis says something about the stability, vitality, health, and

persistence of a living system and its ability to accommodate perturbations without

dying. The very nonlinear world of chaotic dynamics and fractal geometries seems to

me to justify substitution of the term ‘‘homeodynamics’’ for homeostasis. Homeo-

dynamics carries with it the potential for a deeper understanding of what it means

for a complicated system to be stable and yet show very rich behaviors, including the

possibilities of development of individuals and evolution of species. Our thinking

itself is evolving as shown in the following diagram.

Biological Stability in Space and Time

Homeostasis
ðlinear limitedÞ

�!Chaos

Fractals
Homeodynamics

ðnonlinear generalÞ

VII. Glossary

In the setting of this book this glossary must necessarily be only semitechnical.

The subject of fractals properly belongs to topology, whose contributions to dynam-

ics cannot be appreciated without knowledge of sets, maps (linear and nonlinear),

manifolds, metric spaces, and vectorfields. A brief reading list for some of the

relevant mathematics might include the following: Barnsley, 1988; Devaney,

1989a,b; Peitgen and Richter, 1986; Stewart, 1989; Abraham and Shaw, 1982–1988.

A. Instruction to Reader

The following terms are partially defined and presented in alphabetical order:

attractor (basin of attraction), bifurcation, chaos, complexity, cycle, dimension,

dynamics, dynamical system (and state vector), fractals, limit cycle, linear, mani-

fold, maps (mapping), noise, nonlinear, quasi-periodicity, spectral analysis, stabil-

ity, state, and vectorfield. Terms in italics in the definitions that follow are

themselves defined elsewhere in the Glossary. The alphabetical order is not the

logical order. Any reader wishing to use this Glossary as an introduction to

modern nonlinear dynamics should read the entries in the following, more logical

order: complexity, state, dynamics, dynamical system, manifold, maps, vectorfield,

attractor, linear, nonlinear, bifurcation, chaos, fractals, dimension, limit cycle,

quasi-periodicity, noise, spectral analysis, and stability.

B. Attractor (Basin of Attraction)

Modern nonlinear dynamics provides qualitative predictions of the asymptotic

behavior of the system of interest in the long run. These predictions may hold even

when quantitative predictions are impossible. In each vectorfield of a dynamical
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scheme there are certain asymptotic limit sets reachable sooner or later from a

significant set of initial conditions. Each asymptotic set in each vectorfield of a

dynamical scheme is an attractor. The set of initial states that tends to a given

attractor asymptotically as time goes to infinity comprises the basins of the

attractor. Initial conditions from which the system will not reach the attractor

belong to a separator. Attractors occur in three types: static (an attractor limit

point); periodic (an attractive limit cycle or oscillation); and chaotic (meaning any

other attractive limit set). If the attractor has a topological dimension that is not an

integer, it is considered ‘‘strange,’’ and many nonlinear systems have such strange

attractors (that are fractals). A strange attractor has weird geometry such as

fractional dimension or nondifferentiability.

C. Bifurcation

Bifurcation theory asks how the equilibrium solution, or value, of interest for a

dynamical system changes as some control parameter or variable is gradually

changed. The equilibrium solution (itself a dynamical behavior or dynamical

mode) can change in a subtle manner or in a very abrupt, catastrophic, or explosive

manner at critical parameter values. Changes in states such as the freezing of liquid

water into ice represent a familiar bifurcation. Changes in flows from laminar to

turbulent as the velocity is increased (for a given geometry) also represent a

familiar bifurcation.

D. Chaos

A readable introduction to the subject of chaos has been provided by Morrison

(1991). The simplest view of chaos is that it is an irregular (aperiodic) fluctuation of

a variable—unpredictable in the long term—generated by a fully deterministic

process without noise. That view is all very well if one knows the deterministic

system in advance, but if all one has is irregularly varying data, proof that the

dynamics are chaotic is difficult, and may be impossible. It is important to note

that even if long-term prediction of chaotic systems is impossible, accurate short-

term prediction is possible. The chaotic orbit of the planet Pluto is an example.

Chaotic dynamics are deterministic, not random, although they may imitate

various kinds of noise. Broad-band power spectra are often associated with chaotic

dynamics. They may show the 1/f spectrum of Mandelbrot noise. All of the known

chaotic attractors have a fractal microstructure that is responsible for their long-

term unpredictable behavior. The power spectrum of a periodic attractor is a

discrete, or line, spectrum, but the power spectra of chaotic motions on attractors

are usually continuous or ‘‘noisy-looking.’’

Farmer et al. computed the spectra for the Rössler chaotic attractor under six

different parameter values for the simple equations generating the chaotic dynam-

ics (see discussion by Schaffer, 1987). For each of six parameter values, the motion

was indeed chaotic, but the spectra varied from sharp peaks (periodic behavior) to
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featureless spectra (broad band noise). Similar results from other chaotic systems

give a warning: dividing a single chaotic trajectory into subsamples, so that the

data sets are relatively short, causes the same chaotic process to reveal itself

through very different spectra.

The onset of chaos is often preceded by an apparently infinite cascade of period

doublings, so that by the time one reaches the chaotic region all cycles of period 2n

have gone unstable, even though they are still there. (Odd periods also appear; see

Devaney videotapes for illustration.) As a result, the chaotic orbit wanders among

former basins of attraction. We can conclude that spectral analysis, even of rather

dense biological data, is not a reliable means to identify chaotic dynamics. How-

ever, the spectra are useful in their own right because they do identify such

periodicities as may be present, regardless of origin.

Formal definitions of chaos require that systems show, as typical orbits on their

attractors, trajectories with a positive Liapunov exponent. Chaos is characterized

by the fact that adjacent initial conditions lead to exponentially diverging trajec-

tories (i.e., there is extremely close dependence on initial conditions in the long

run), and the exponent describing this divergence is the Liapunov exponent.

In addition, the Kolmogorov–Sinai criterion requires that a chaotic system should

have nonzero entropy.

There is currently active research under way on the development of practical

algorithms that can be used to compute numerically the dimensions and Liapunov

numbers (which I do not define here), given the values of some variables as a

function of time. The algorithms being used have many potential problems. There

is debate on two aspects: (1) the requirements for the size of the data set being

analyzed and (2) the effects of noise, large derivatives, and geometry of the

attractor. Because of these difficulties, unambiguous interpretation of published

reports is difficult. Any claim for ‘‘chaos’’ based solely on calculation of dimension

or the Liapunov numbers without additional supporting evidence such as well-

characterized bifurcations must be viewed with extreme skepticism at present

(Glass and Mackey, 1988).

Fractals and chaos are separate concepts and should not be confounded.

‘‘Chaos’’ refers to the dynamics of a system; ‘‘strange attractor’’ characterizes

the (often fractal) geometry of an attractor. Chaotic dynamics can have attractors

that are not strange; nonchaotic dynamics can display strange attractors, and not

all strange attractors are chaotic!

Chaotic dynamics may describe the transient motions of a point in a phase space

of high dimension, even infinity. The lower dimension region of phase space to

which the motions tend asymptotically as time goes to infinity (the chaotic or

strange attractor) will usually have a fractal dimension. It is thought that most

strange or chaotic attractors have fractal dimensions, usually greater than 2þ. Even
though in principle dimension can reach infinity, as a practical matter biological

data rarely support a claim for the dimensionality of an attractor higher than

about 6þ�10þ. (White noise, which has no attractor, can generate an apparent

dimension of about 10 using the correlation dimension algorithms.)
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Some physicists view the world algorithmically, saying that the existence of

predictable regularities means that the world is algorithmically compressible. For

example, the positions of the planets in the solar system over some interval

constitute a compressible data set, because Newton’s laws may be used to link

these positions at all times to the positions and velocities at some initial time. In

this case, Newton’s laws supply the necessary algorithm to achieve the compres-

sion. However, there is a wide class of theoretical and perhaps actual systems, the

chaotic ones, that are not algorithmically compressible.

Whenever one has a mathematical model of a two-variable limit cycle oscillator

(a nonlinear system) and adds just one more variable to it (such as a depletable

source that regenerates at a finite rate), one is extremely likely to discover a chaotic

regime after some fiddling with the parameters (Rössler, 1987). To produce chaos

through nonlinear models based on ordinary differential equations, one needs at

least three continuous independent variables. However, in the case of nonlinear

discrete models (e.g., with finite difference equations), the dynamics of a single

variable can have chaotic regimes.

Because random processes are often characterized by their interevent histo-

grams, and because it is well known that in the Poisson process case the interevent

histogram is an exponential function, a problem arises: namely, deterministic

chaotic systems can also give rise to exponential interevent histograms. Thus, it

is not a simple matter to distinguish between random noise and deterministic chaos,

and it is always possible that irregular dynamics in many systems that have been

ascribed to chaos may be noise, or vice versa. Glass and Mackey (1988) remark,

‘‘The strongest evidence for chaotic behavior comes from situations in which there

is a theory for the dynamics that shows both periodic and chaotic dynamics as

parameters are varied. Corresponding experimental observation of theoretically

predicted dynamics, including irregular dynamics for parameter values that give

chaos in the deterministic equations, is strong evidence that the experimentally

observed dynamics are chaotic.’’ Other approaches to the identification of chaos

include the power spectrum, Poincaré map, Liapunov number, and dimension

calculations (but see the caveat, above, by Glass and Mackey).

If a chaotic attractor exists inside a basin of attraction in the phase space of a

dynamical system, then globally the dynamics will be stable as time goes on,

although microscopically, within the attractor, they may be locally unstable.

However, if the parameters of the system change in such a way that a chaotic

attractor collides with the boundaries of its attraction basin, all the chaotic

trajectories will become only transients (metastable chaos), and eventually the

system escapes the basin of chaos and evolves toward some other attractor in the

phase space. When topological, unstable chaos occurs between two stable attrac-

tors, the basins acquire a fractal nature with self-similarity at their boundaries,

which then possess fine structure at each scale of detail, creating a fuzzy border.

It is an open question whether low-dimension chaos and nonlinear mappings are

relevant to the nervous system. Freeman (1991) has argued strongly that they are.

Lloyd Partridge (personal communication, 1991) points out that there seems to be
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no universally accepted definition of what constitutes deterministic chaos, but at

least two things seem to appear in all definitions. First, chaos describes the continu-

ously changing pattern of some variable in a system in which future values are

determined by the operation of rules of change on the present value. Second, those

rules are very sensitive to initial conditions. The generation of a chaotic response is

always determined by the internal rules of the system while that system has only

constant (including zero) input or uniform periodic input. Outputs that are consid-

ered chaotic continue to change in a never exactly repeating manner, yet they stay

within specific bounds. Thus, while individual response values cannot be predicted,

the bounds of possible responses can only be learned by observations. Partridge

closes his presentation as follows: ‘‘I conclude that the contributions of nonlineari-

ty, discontinuity, feedback, and dynamics to neural function demands serious

examination. At the same time, the division between truly chaotic and nonchaotic

effects that may result from these properties falls within the range that these studies

should span and does not represent an important division. Thus, while understand-

ing of the results of formal study of chaotic behavior can be a valuable background

for neural science, distinguishing sharply between chaos and the variety of related

phenomena, in particular neural function, may be relatively useless.’’

Among some of those who understand chaotic dynamics very deeply, such as

Stuart Kauffman, there is a lingering feeling that the emergence of order in self-

organizing systems is in some sense ‘‘anti-chaotic’’ (Kauffman, 1991). Using

Boolean networks as models, Kauffman tries to show that state cycles, as dynamic

attractors of such networks, may arise because Boolean networks have a finite

number of states. A system must therefore eventually reenter a state that it has

previously encountered. In less formal terms I have tried to advance the same idea

under the term ‘‘homeodynamics,’’ discussed later. Kauffman concludes that

parallel-processing Boolean networks poised between order and chaos can adapt

most readily, and therefore they may be the inevitable target of natural selection.

According to this view, evolution proceeds to the edge of chaos. Kauffman con-

cludes, ‘‘Taken as models of genomic systems, systems poised between order and

chaos come close to fitting many features of cellular differentiation during ontoge-

ny—features common to organisms that had been diverging evolutionarily for

more than 600 million years. . . . If the hypotheses continue to hold up, biologists

may have the beginnings of a comprehensive theory of genomic organization,

behavior and capacity to evolve.’’ Although I am somewhat dubious that Boolean

networks are the best form for modeling the dynamics of biological systems

(Boolean networks can have arbitrary dynamics violating physical law), I think

Kauffman has captured an important idea.

E. Complexity

There is no general agreement as to what constitutes a complex system. Stein

(1989) remarks that complexity implies some kind of nonreducibility: the behavior

we are interested in evaporates when we try to reduce the system to a simpler,
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better understood one. In my opinion the best definition of a complex system is

that according to Rosen (1987). He notes that complex systems are counterintui-

tive, that is, they may do things that are unexpected and apparently unpredictable.

Their behavior may show emergent properties, because complex systems do not

appear to possess a single, universal, overarching description such as those postu-

lated for simpler physical, mechanical, or thermodynamic systems. For example,

an organism admits a multiplicity of partial descriptions, and each partial descrip-

tion, considered by itself, describes a simpler system, that is, one with a prescribed

set of states and a definite dynamical law or state transition rule. Thus, an organism

can present itself to different observers in various ways, each of which can be

described simply according to a standard Newtonian-like paradigm, but the

description will be different for different observers. A complex system is one that

cannot be comprehensively described. A complex system is not effectively explain-

able by a superposition of the simple subsystem descriptions; it does not fit the

Newtonian dynamical scheme.

F. Cycle

I use ‘‘cycle’’ and ‘‘rhythm’’ synonymously to describe a time history of a variable

(usually referred to as a time series) in which there is a recurrent amplitude variation

with statistical regularity (stationarity). The duration of one variation back to its

original starting point is the length of one cycle, or the period. The reciprocal of

period is frequency. A noise-free, sine-wave generator produces perfect cycles of

constant period, amplitude, phase, andmean value. In the presence of certain kinds

of noise, there may be wobble, that is, there may be variation on the length of the

period, as well as on amplitude, but if the dispersion is not so great as to obscure the

underlying periodicity around some average period, we may still wish to claim

the presence of a cyclic process. The shape of the recurring process can range

from a train of spikes (as in nerve impulses, which have height but little width)

separated by intervals, on one extreme, to a pure sine wave which is very rounded

with no intervals between events on the other extreme. (Fourier-based spectral

analysis deals well with the latter, but poorly with the former shapes.)

Time histories that are cyclic can be (1) periodic, (2) nearly periodic (this is an

informal term, used when a little unexplained wobble is observed), or (3) quasi-

periodic. In contrast is the acyclic (usually called aperiodic) time series in which

there is no regularity in the occurrence of any amplitude value. Aperiodic time

histories can be generated by deterministic chaotic dynamics, by some random

processes, or by a mixture of both.

G. Dimension

The familiar three dimensions of Euclidean space give us an intuitive feeling for the

meaning of the term. However, the concept of a topological dimension is more

elaborate and not easy to explain in lay terms. As Peterson (1988) remarks,
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‘‘Experiments with soap films show the tremendous variability in the shapes of

surfaces. Computer-generated pictures of 4-dimensional forms reveal unusual geo-

metric features. The crinkly edges of coast lines, the roughness of natural terrain, and

the branching patterns of trees point to structures too convoluted to be described as

1-, 2-, or 3-dimensional.’’ Instead mathematicians express the dimensions of these

irregular objects as decimal fractions rather thanwhole numbers. In the case of whole

numbers, for example, any set of four numbers, variables, or parameters can be

considered as a four-dimensional entity. In the theories of special and general

relativity, three-dimensional space and time together make up a four-dimensional

continuum.Going beyond the fourth dimension requires only addingmore variables.

The Encyclopedic Dictionary of Mathematics states (Volume I, Section 121,

‘‘Dimension Theory’’): ‘‘Toward the end of the 19th century, G. Cantor discovered

that there exists a 1-to-1 correspondence between the set of points on a line

segment and the set of points on a square; and also, G. Peano discovered the

existence of a continuous mapping from the segment onto the square. Soon, the

progress of the theory of point-set topology led to the consideration of sets which

are more complicated than familiar sets, such as polygons and polyhedra. Thus it

became necessary to give a precise definition to dimension, a concept which had

previously been used only vaguely.’’ (The rest of the section gives a highly technical

definition of the dimension of metric spaces.)

Glass and Mackey (1988) offer this definition of one of the simplest meanings of

(capacity) dimension. Consider a set of points in N-dimensional space. Let n(e) be
the minimum number of the N-dimensional cubes of side e needed to cover the set.

Then the dimension, d, of the set is

d ¼ lim
e!0

log�ðeÞ
logð1=eÞ : ð1Þ

For example, to cover the length of a line L, n(e)¼ L/e, and d is readily computed

to be 1. Similarly, for a square of side L, we have n(e) ¼ L2/e2 and d ¼ 2.

Unfortunately, the many different views of dimension touch on mathematical

issues much too deep for this chapter. A sense of those intricacies can be found

in Mayer-Kress, 1986). It will have to suffice for my purposes to invoke the

technical capacity dimension or the intuitive notion that a dynamical system has

a hyperspace defined by one dimension for each dynamical degree of freedom.

These two views do not always coincide. For example, the capacity dimension of a

limit cycle based on a two-dimensional nonlinear differential equation (e.g., the

van der Pol equation) is 1 for the limit set of the orbit, but 2 for the basin of

attraction feeding asymptotically onto the orbit. The number of degrees of free-

dom in the van der Pol oscillator is 2 in either the separated x and y form or the

acceleration, velocity, and position form for a single variable. (Both forms are

presented elsewhere in the Glossary.) In spite of the difficulties, ‘‘dimension’’ can

be used as a qualitative term corresponding to the number of independent vari-

ables needed to specify the activity of a system at a given instant. It also corre-

sponds to a measure for the number of active modes modulating a physical
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process. Layne et al. (1986) point out that it is therefore a measure of complexity.

However, many also make use of the correlation dimension based on the algorithm

proposed by Grassberger and Procaccia, 1983). An application can be found in

Mayer-Kress et al. (1988).

H. Dynamics

The basic concepts of dynamics have been expressed byAbrahamand Shaw (1982)

as follows: ‘‘The key to the geometric theory of dynamical systems created by

Poincaré is the phase portrait of a dynamical system. The first step in drawing this

portrait is the creation of a geometric model for the set of all possible states of the

system. This is called the state space. On this geometric model, the dynamics deter-

mined a cellular structure of basins enclosed by separatrices. Within each cell, or

basin, is a nucleus called the attractor. The states which will actually be observed in

this systemare the attractors. Thus, the portrait of the dynamical system, showing the

basins and attractors, is of primary importance in applications. . . . The history of a

real system [can be] represented graphically as a trajectory in a geometric state space.

Newton added the concept of the instantaneous velocity, or derivative, of vector

calculus. The velocity vectorfield emerged as one of the basic concepts. Velocities are

given by the first time derivative (tangent) of the trajectories. The prescription of a

velocity vector at each point in the state space is called a velocity vectorfield.’’

I. Dynamical System and State Vector

A system with n degrees of freedom, that is, with n different, independent

variables, can be thought of as living in an n-space. The n coordinates of a single

point in the n-space define all the n variables simultaneously. If the motion of the

point in n-space follows some rule acting on the positions (magnitudes) of the

variables and their velocities, then that rule defines a dynamical system; the n

variables are then more than a mere aggregate. The point in n-space that is moving

is called a configuration or state vector. The rule defining the dynamical system

expresses the law relating the variables and the parameters (Parameters are more

or less constant or very slowly changing magnitudes that give the system its

particular identity). Influences (controls) may act on the dynamical system either

through the variables or the parameters. Controls change the motions of the

system. A simple dynamical scheme is a function assigning a smooth vectorfield

to the manifold of instantaneous states for every point in the manifold of control

influences. The smooth function is a mapping.

J. Fractals

Fractal geometry is based on the idea that the natural world is not made up of

the familiar objects of geometry: circles, triangles, and the like. The natural world

of clouds, coastlines, and mountains cannot be fully described by the geometry of

circles and squares. Fractals are structures that always look the same, either
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exactly or in a statistical sense, as you endlessly enlarge portions of them. Accord-

ing to a usage becoming standard, fractal forms ordinarily have three features:

heterogeneity, self-similarity, and the absence of a well-defined (characteristic)

scale of length. The first feature is not an absolute requirement, but the other

two are. There must be nontrivial structure on all scales so that small details are

reminiscent of the entire object. Fractal structures have both irregularity and

redundancy and, as a result, they are able to withstand injury.

Fractals were first conceived by Mandelbrot. They are geometric fragments of

varying size and orientation but similar in shape. It is remarkable that the details of a

fractal at a certain scale are similar (although not necessarily identical) to those of

the structure seen at larger or smaller scales. There is no characteristic scale. All

fractals either have this look-alike property called self-similarity, or, alternatively,

they may be self-affine. As Goldberger et al. (1990) comment, ‘‘Because a fractal is

composed of similar structures of ever finer detail, its length is not well defined.

If one attempts to measure the length of a fractal with a given ruler, some details will

always be finer than the ruler can possibly measure. As the resolution of the

measuring instrument increases, therefore, the length of a fractal grows. Because

length is not a meaningful concept for fractals, mathematicians calculate the ‘dimen-

sions’ of a fractal to quantify how it fills space. The familiar concept of dimension

applies to the objects of classical, or Euclidean, geometry. Lines have a dimension of

one, circles have two dimensions, and spheres have three. Most (but not all!) fractals

have noninteger (fractional) dimensions. Whereas a smooth Euclidean line precisely

fills a one-dimensional space, a fractal line spills over into a two-dimensional space.’’

A fractal line, a coastline, for example, therefore has a dimension between one and

two. Likewise a fractal surface, of a mountain, for instance, has a dimension between

two and three. The greater the dimension of a fractal is, the greater the chance is that

a given region of space contains a piece of that fractal.

Peterson (1988) points out that for any fractal object of size P, constructed of

smaller units of size p, the number,N, of units that fit into the object is the size ratio

raised to a power, and that exponent, d, is called the Hausdorff dimension.

In mathematical terms this can be written as

N ¼ ðP=pÞd ð2Þ
or

d ¼ logN= logðP=pÞ: ð3Þ
This way of defining dimension shows that familiar objects, such as the line, square,

and cube, are also fractals, although mathematically they count as trivial cases. The

line contains within itself little line segments, the square contains little squares, and

the cube little cubes. (This is self-similarity, but without heterogeneity.) But applying

the concept of Hausdorff dimension to other objects, such as coastlines, gives a

fractional dimension. Fractals in nature are often self-similar only in a statistical

sense. The fractal dimension of these shapes can be determined only by taking the

average of the fractal dimensions at many different length scales.
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The correlation dimension (not defined here, but see Grassberger and Procaccia,

1983)) serves as a lower bound for the fractal dimension. The fractal dimension

itself is a number bounded below by the topological dimension (0 for a point, 1 for

a line, 2 for a surface, etc.) and above by the Euclidean dimension in which the

fractal is located (a point is on a line, Euclidean dimension 1; a line is on a surface,

Euclidean dimension 2; etc.) The topological dimension approximately corre-

sponds to the number of independent variables required for the definition of the

function. The Euclidean dimension is the dimension of the range of the function.

Mandelbrot (1983) discusses dimension in very advanced terms using the concept

to define a fractal: ‘‘A fractal is by definition a set for which the Hausdorff–

Besicovitch dimension strictly exceeds the topological dimension’’ (p. 15). But he

thought this definition incomplete.

Chaotic attractors are all fractals, and usually they are of a dimension greater

than 2, but not all systems with self-similar phase space (fractal properties) are

necessarily ascribable to a chaotic system. I want to emphasize again that chaos

and fractals should not be confused with each other. ‘‘Chaos’’ is about dynamics;

‘‘fractals’’ is about geometry. It happens that chaotic attractors often have a fractal

microstructure geometry, but that does not make fractals and chaos synonymous.

In the case of processes, fractals can be stochastic or they can be deterministic.

Stochastic fractals are an example of fractional Gaussian noise where the power

spectrum contains large amounts of low frequency energy. Fractal noise (1/fm spec-

trum, m ffi 1, or, more generally, a noninteger) is very structured and is a long-time

scale phenomenon. Measures that deal with short-time scales such as correlation

functions and interspike interval histograms cannot assess fractal activity.

To identify fractals in objects, for example, in the case of branching structures

common in biological objects, two types of scaling can be compared: one exponen-

tial and the other fractal. If a tree structure follows the simple exponential rule:

d(z, a)¼ d0 e
�az, where d(z, a) is the average diameter of tubes in the zth generation,

d0 is the diameter of the single parent trunk or vessel, and a is the characteristic

scale factor, then a semilog plot of ln d(z, a) versus z will give a straight line with

negative slope, �a. In contrast, a fractal tree has a multiplicity of scales, and each

can contribute with a different weighting or probability of occurrence that is

revealed by an inverse power law. In that case, dðzÞ / 1=zm, where m is the power

law index, m ¼ 1 � D, and D is the fractal dimension. Bak et al. (1987) Now a log–

log plot of ln d(z) versus ln z gives a straight line of negative slope �m. (There may

be harmonic modulation of the data around the pure power law regression line

without overcoming the fractal scaling; West, 1987).

K. Limit Cycle

The limit cycle is a nonlinear cyclic time series creating, when abstracted, a

closed orbit (on certain plots described below) of a wide variety of shapes (but not

including that of a circle; the circle represents a pure, harmonic, linear oscillation in

these plots). In the single-variable picture of a limit cycle, we plot the velocity of a
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variable against its magnitude. However, in some systems under nonholonomic

constraints, velocities and magnitudes or positions are independently specifiable;

thus the plot of velocity versus magnitude of a single variable is actually a two-

variable plot. Poincaré studied nonlinear differential equations with two variables

in which it is possible to have an oscillation that is reestablished following a small

perturbation delivered at any phase of the oscillation. He called such oscillations

stable limit cycles. One of the most thoroughly examined versions is the simple

two-dimensional differential equation proposed by van der Pol to model nonlinear

limit cycle oscillations:

d2m
dt2

� eð1� m2Þ dm
dt

þ m ¼ b cosðatÞ: ð4Þ

When b¼ 0 there is a unique, stable limit cycle oscillation. Alternatively, the van

der Pol oscillator is given by the following pair of equations:

dx

dt
¼ 1

e
y� x3

3
þ x

� �
; ð5aÞ

dy

dt
¼ ex; e > 0: ð5bÞ

A one-dimensional, nonlinear finite difference equation (e.g., the logistic equa-

tion discussed under the section on maps) at certain parameter values can also

generate stable limit cycles.

It has been a challenge to generalize the limit cycle concept beyond the two-

dimensional (two degrees of freedom, two variable) case. However, generalization

is essential for the understanding of homeodynamic stability of biological systems

(Yates, 1982). Complex modes of behavior almost always appear if two nonlinear

oscillatory mechanisms are coupled, either in series or in parallel. Any interaction

between two limit cycles can produce complex periodic oscillations, or chaos. (In

biological systems the term ‘‘near-periodic’’ best describes the motions, and this

result is to be expected of homeodynamic systems of all kinds.)

L. Linear

A linear term is one which is first degree in the dependent variables and their

derivatives. A linear equation is an equation consisting of a sum of linear terms.

If any term of a differential equation contains higher powers, products, or tran-

scendental functions of the dependent variables, it is nonlinear. Such terms include

(dy/dt)3, u(dy/dt), and sin u, respectively. (5/cos t)(d2y/dt2) is a term of first degree

in the dependent variable y, whereas 2uy3(dy/dt) is a term of fifth degree in the

dependent variables u and y.

Any differential equation of the form below is linear, where y is the output and u

the input:
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Xn
i¼0

aiðtÞ d
iy

dti
¼ u: ð6Þ

If all initial conditions in a system are zero, that is, if the system is completely at

rest, then the system is a linear system if it has the following property: (1) if an

input u1(t) produces an output y1(t), and (2) an input u2(t) produces an output

y2(t), (3) then input c1u1(t) þ c2u2(t) produces an output c1y1(t) þ c2y2(t) for all

pairs of inputs u1(t) and u2(t) and all pairs of constants c1 and c2.

The principle of superposition follows from the definition above. The response y(t)

of a linear system due to several inputs u1(t), u2(t), . . ., un(t) acting simultaneously is

equal to the sum of the responses of each input acting alone, when all initial condi-

tions in the system are zero. That is, if yi(t) is the response due to the input ui(t), then

yðtÞ ¼
Xn
i¼1

yiðtÞ: ð7Þ

Any system that satisfies the principle of superposition is linear. All others are

nonlinear.

M. Manifold

A manifold is a geometrical model for the observed states of a dynamical or

experimental situation and is identical to the n-dimensional state space of a model of

the situation.Each instantaneous statehasa location inn-space,andall those locations

achievable by the system following a rule for its motion constitute a manifold.

N. Maps (Mapping)

Functions that determine dynamical systems are called mappings or maps. This

terminology emphasizes the geometric process of taking one point to another. The

basic goal of the theory of dynamical systems is to understand the eventual (i.e.,

asymptotic) behavior of an iterative or ongoing process. In dynamical systems

analysis we ask, where do points go, and what do they do when they get there? The

answer is a mapping.

A map is a rule. The rule can be deterministic or statistical, linear or nonlinear,

continuous or discrete. In dynamical systems, a mapping is the rule or law governing

motion and change as a function of state configuration, initial velocities and

positions, and constraints. An example of a discrete, nonlinear dynamical law of

one dimension is

xnþ1 ¼ f ðxnÞ; f 6¼ a constant; ð8Þ
where f is a function carrying out the mapping. A notation for this map is f: x! x,

which assigns exactly one point f(x) 2 x to each point x 2 x, when (x, d) is a metric

space. A common example is the nonlinear population growth model or logistic

map:
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xnþ1 ¼ f ðxnÞ ¼ rxnð1� xnÞ: ð9Þ
In this dynamic rule, time appears as a generational step (discrete map). The

level of the population, x, as a function of time (or iteration number) goes from

some initial condition toward extinction (0), constancy, oscillation, period dou-

bling oscillations, or chaos as r is extended in the range of positive values starting

close to zero and increasing past 3. The switching of dynamical outcomes (extinc-

tion, constancy, oscillation, period doubling, and chaos) occurs at successive

critical values of r, at which the iterated dynamics undergo a bifurcation (change

in behavioral mode).

For the logistic equation above as often displayed for illustration, plotting xnþ1

against xn, at a given value of parameter r, results in a parabola that opens

downward. The parabola sits on the xn axis between 0 and 1. The plotting of one

value of x to the next creates a graph called a return map, which is also a transition

function.

Maps can address real or complex numbers. An important example involving

complex numbers is

znþ1 ¼ z2n þ c; ð10Þ
where c is a complex constant and the mapping rule is

fc : z ! z2 þ c: ð11Þ
This mapping results in quadratic Julia sets and the famous Mandelbrot set,

which have led to astonishing computer graphical demonstrations (Douady, 1986).

In summary, if a rule exists that assigns to each element of a set A an element of

set B, this rule is said to define a mapping (or simply, map) function or transfor-

mation from A into B. (The term transformation is sometimes restricted to the case

where A ¼ B.) The expression f: A ! B or (A ! B) means that f is a function that

maps A into B. If f: A! B and A 2 A, then f(a) denotes the element of B, which is

assigned to A by f.

O. Noise

Noise is any unwanted (from the point of view of the investigator) variation in

data. Noise may be stochastic (random) or deterministic; it is traditionally thought

of as being random and pernicious. Curiously, the presence of low levels of noise

can actually improve detection of weak signals in systems with stochastic reso-

nance. In that case, a bistable system operates as a detector when a sufficiently

strong external force—a signal—provokes it into a change of state. If the force is

too weak, the system stays in its original state and detects no signal. The addition

of noise injects energy into the variations or fluctuations in each state and changes

the probability, if the barrier between states is low, that the system might change

state. Then, when a weak signal arrives, combined with the noise, a state change

may be accomplished, whereas the signal, without the energizing noise, would not

be sufficient to overcome the energy barrier.
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One way to describe noise is through its spectral analysis or its distributional

characteristics. The discrete events making up a Poisson distribution generate an

exponential interval histogram. Brownian motion generates a 1/f 2 spectrum; frac-

tal, brown (Mandelbrot, Zipfian) noise generates a 1/f 1 spectrum; band-limited,

‘‘white’’ (or uniform) noise generates a 1/f 0 spectrum (where f is frequency). More

generally, 1/f m spectra, where m is not an integer, characterizes a fractal system

(Sun, 1990).

P. Nonlinear

Because nonlinearity is a more general concept than is linearity, it can be

understood from the very restricted definition of linearity already given. There

are many different kinds and causes of nonlinearity, some of them ‘‘hard,’’ such as

sharp thresholds or saturations, and some of them ‘‘soft,’’ such as found in some

memory elements of a system. For a good discussion of linearity and nonlinearity,

see DiStefano et al. (1990).

Q. Quasi-Periodicity

An attractor that is a torus (i.e., the surface of a doughnut) and that allows a

trajectory winding around it an infinite number of times, filling its surface but

never intersecting itself, describes quasi-periodicity. The attractor has integral

dimensions and is not ‘‘strange.’’ It can be created in the case of two rhythms

that are completely independent, whose phase relationships we examine. The phase

relations between the two rhythms will continually shift but will never repeat if the

ratio between the two frequencies is not rational. Glass and Mackey (1988) note

that the dynamics are then not periodic, but they are also not chaotic because two

initial conditions that are close together remain close together in subsequent

iterations. If two periodic motions have periods with a common measure, both

being integer multiples of the same thing, and are added together, then their result

is itself periodic. For example, if one motion has a period of 3 s and the other 5 s,

their (linear) combination will repeat every 15 s. But if there is no common

measure, then the motion never repeats exactly, even though it does almost

repeat—thus the term ‘‘quasi-periodic.’’ Quasi-periodicity is often found in theo-

retical classic, conservative dynamics, although it is not considered to be a motion

typical of a general dynamical system in the mathematical world. In the physical/

biological world, something that might be called ‘‘near-periodicity’’ is very typical

of observational data. Whether this ubiquitous near-periodicity is formal quasi-

periodicity is an open question. Some think it is chaos, but have not proved it for

biological data sets. Elsewhere, I have argued that near-periodicity is neither quasi-

periodicity nor chaos, but the temporal organization to be expected of a home-

odynamic, complex, system (Yates, 2008).
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R. Spectral Analysis

Classic Fourier-based spectral analysis consists of fitting time history data with a

linear series of sines and cosines. Any recurrent process can be modeled by a Fourier

series, but many of the terms in the series will simply adjust the shape of the fit. The

Fourier series is harmonic, and all the terms have commensurate frequencies (the

quotient of any two frequencies is a rational number). Spectral analysis consists of

partitioning the variance of a variable undergoing a time history into frequency

bands or windows or bins. In the absence of noise, a linear, additive mixture of pure

sines and cosines will lead to a line spectrum with extremely sharp ‘‘peaks’’ at the

relevant frequencies. Roughly, the ‘‘power’’ at each frequency where there is a line is

given by the square of the amplitude of the periodic term having that frequency.

A Fourier series model of raw biological time history data usually produces

broad ‘‘peaks’’ rather than a line spectrum. One must then have a theory of peak

broadening. One possibility is that the underlying process was quasi-periodic rather

than purely periodic. Another notion would be that the underlying process was

purely periodic but contaminated by noise. Still another hypothesis would be that

the underlying dynamics were chaotic. (Chaotic dynamical systems can produce

near-periodicity as well as other spectral pictures.) Spectral analysis alone cannot

resolve the underlying nature of the generator of a time history. Many theoretical

systems can start out quasi-periodic, but as excitation of the system is increased the

motion may become ‘‘random’’ or, more exactly, chaotic. In the quasi-periodic

regime, motions can be decomposed into a Fourier series with a few fundamental

frequencies and overtones. The spectrum will consist of a small number of possibly

sharp lines. In the chaotic regime, the trajectories sample much more (perhaps all)

of the allowed phase space, and the spectrum becomes broad but may still manifest

some frequency bands in which there are hints of ‘‘peakedness.’’ But chaotic

dynamics can also produce a 1/f spectrum of Mandelbrot noise.

S. Stability

Stability is as difficult to define as is dimension. It hasmultiplemeanings. For linear

systems, we have a complete theory of stability, but for nonlinear systems, there can

bemultiple interpretations. For example, if trajectories fromnearby initial conditions

stay close to each other and asymptotically approach a fixed point, or an orbit, or else

wind themselves around the surface of an invariant 2-torus,we can easily imagine that

the dynamical system is stable in the region of those initial conditions. The situation

becomes more confusing if from nearby conditions trajectories diverge exponentially

but nevertheless asymptotically find a low-dimension, chaotic attractor that provides

the limit set for all points generated by the trajectories as time approaches infinity.

We could then think of the attractor as defining a bounded behavior for the dynami-

cal system and consider the system to be globally stable on the attractor.

The most useful concept of stability for nonlinear systems, in my opinion, is

asymptotic orbital stability. It pictures a limit cycle in more than topological one
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dimension, and takes the view that nearby trajectories converge to an orbital

process in which certain states (nearly) recur at (nearly) identical intervals. There

may be wobble on amplitudes and wobble on frequencies, but same conditions are

seen repetitively, even though the repetition is not precisely periodic. It is near-

periodic. (I prefer this term to quasi-periodic because the latter has a precise

meaning that may be too restricted to account for the observed recurrent behavior

of most biological processes.) For the purposes of this chapter, a nonlinear

dynamic system will be considered stable if it asymptotically approaches a limit

point, a limit cycle, or a chaotic attractor as it evolves from its initial conditions.

However, in a broader view, according to the homeodynamic heuristic (Yates,

1982), complex dynamical systems express their stability in a global, limit cycle-

like, near-periodic motion. (I have not achieved a formal proof of this conjecture.)

T. State

A state is a set of data that in the deterministic limit (of a state-defined system)

gives us all that we need to know to predict future behavior. The present state is an

input, some deterministic dynamic rule operates on it, and the future state is the

output. The state is a vector whose values allow the estimation of future states.

In the absence of noise, reconstruction of a state space can be accomplished even

from a single time series as partial information. In other words, we can work with

data whose dimension is lower than that of the true dynamics. In the presence of

noise, the reconstruction of the state space is not always possible. The concept of

state and state-determined systems follows from the Newtonian–causal tradition,

and it fails to deal adequately with complexity (Rosen, 1987; Yates, 2008).

U. Vectorfield

A vectorfield is amapping that assigns a tangent vector or velocity to each point in

some region of interest in a manifold. For each control bearing on a dynamical

system, the dynamical system rule or mapping creates a particular vectorfield, giving

the positions andmotions for the state vector point of the system. The vectorfield is a

model for the habitual tendencies of the situation to evolve from one state to another

and is called the dynamic of the model. The vectorfield may have slow or fast regions

in it, according to the velocity of the configurational point.

A vectorfield is a field of bound vectors, one defined at (bound to) each and every

point of the state space. The state space, filled with trajectories, is called the phase

portrait of the dynamical system. The velocity vectorfield can be derived from the

phase portrait by differentiation in state-determined systems. The phrase dynami-

cal system specifically denotes this vectorfield. For analytic tractability, we like to

hypothesize that the vectorfield of a model of a dynamical system is smooth,

meaning that the vectorfield consists of continuous derivatives with no jumps or

sharp corners.
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Note: Much of dynamical systems theory addresses state-determined systems,

whose velocities are specified by the state, for example, _X ¼ f ðX ; . . .Þ. But complex

biological systems may not be state-determined systems (Yates, 2008) (This issue

depends somewhat on how one defines ‘‘state.’’).
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Abstract

Scientific and industrial effort is now increasingly focused on the development of

closed-loop control systems (artificial pancreas) to control glucose metabolism of

people with diabetes, particularly type 1 diabetes mellitus. The primary prerequi-

site to a successful artificial pancreas, and to optimal diabetes control in general, is

the continuous glucose monitor (CGM), which measures glucose levels frequently

(e.g., every 5 min). Thus, a CGM collects detailed glucose time series, which carry

significant information about the dynamics of glucose fluctuations. However, a

CGM assesses blood glucose (BG) indirectly via subcutaneous determinations. As

a result, two types of analytical problems arise for the retrieval and interpretation

of CGM data: (1) the order and the timing of CGM readings and (2) sensor errors,

time lag, and deviations from BG need to be accounted for. In order to improve the
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quality of information extracted from CGM data, we suggest several analytical

and data visualization methods. These analyses evaluate CGM errors, assess risks

associated with glucose variability, quantify glucose system stability, and predict

glucose fluctuation. All analyses are illustrated with data collected using MiniMed

CGMS (Medtronic, Northridge, CA) and Freestyle Navigator (Abbott Diabetes

Care, Alameda, CA). It is important to remember that traditional statistics do not

work well with CGM data because consecutive CGM readings are highly interde-

pendent. In conclusion, advanced analysis and visualization of CGM data allow

for evaluation of dynamical characteristics of diabetes and reveal clinical informa-

tion that is inaccessible via standard statistics, which do not take into account the

temporal structure of data. The use of such methods has the potential to enable

optimal glycemic control in diabetes and, in the future, artificial pancreas systems.

I. 2010 Update of Developments in the Field

The clinical utility of continuous glucose monitoring (CGM) for the optimiza-

tion of glycemic control in type 1 diabetes (T1DM) has been demonstrated by a

landmark study published by the New England Journal ofMedicine in 2008, which

showed a significant improvement in glycated hemoglobin after 6 months of CGM

in adults with T1DM (The Juvenile Diabetes Research Foundation Continuous

Glucose Monitoring Study Group, 2008). The methods for analysis of CGM data

presented in this chapter have been further elaborated and presented in conjunc-

tion with methods for modeling and control of (BG) metabolism in humans in an

extensive recent review (Cobelli et al., 2009).

With the rapid development of both CGM devices and analytical methodology

in the past 2 years, closed-loop control (artificial pancreas) became possible. The

next logical step was therefore the demonstration of the feasibility of subcutaneous

closed-loop control. To date, several studies have reported clinical results for

closed-loop glucose control using subcutaneous CGM and insulin delivery (Brut-

tomesso et al., 2009; Clarke et al., 2009; El-Khatib et al., 2010; Hovorka et al.,

2010; Kovatchev et al., 2009a; Weinzimer et al., 2008). These studies used one of

two algorithmic strategies known as proportional-integral-derivative (PID; Wein-

zimer et al., 2008) or model-predictive control (MPC; Bruttomesso et al., 2009;

Clarke et al., 2009; El-Khatib et al., 2010; Hovorka et al., 2010). In January 2010

the Juvenile Diabetes Research Foundation (JDRF) announced strategic industri-

al partnerships aiming to bring closed-loop control systems to market within 4

years.

The development of closed-loop control systems is being greatly accelerated by

employing computer simulation. Such in silico testing provides direction for clini-

cal studies, out-ruling ineffective control scenarios in a cost-effective manner.

Comprehensive simulator of the human metabolic system equipped with a ‘‘popu-

lation’’ of in silico images of N ¼ 300 ‘‘subjects’’ with type 1 diabetes, separated in

three ‘‘age’’ groups, has been recently introduced (Kovatchev et al., 2009b).
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The biometric and metabolic parameters of these ‘‘subjects’’ range widely to

approximate the interperson variability observed in vivo. In addition, the simula-

tion environment includes three continuous glucose sensors, as well as two brands

of insulin pumps. With this technology, any meal and insulin delivery scenario can

be pilot-tested efficiently in silico, prior to its clinical application by placing a

virtual CGM and a virtual insulin pump on virtual subjects (Kovatchev et al.,

2009b). In 2008, this simulator was accepted by the FDA as a substitute to animal

trials in the preclinical testing of closed-loop control algorithms. Since then,

a number of algorithm designers have used our simulation environment to test

their closed-loop control strategies; animal trials in this area have been almost

completely abandoned.

The first international study using closed-loop control algorithm developed

entirely in silico without prior animal trials has been completed by a collaborative

team of researchers from the Universities of Virginia (USA), Padova, (Italy), and

Montpellier (France): Twenty adults with type 1 diabetes were recruited. Open-

and closed-loop control sessions were scheduled 3–4 weeks apart, continued for

22 h, and used CGM and insulin pump. The only difference between the two

sessions was insulin dosing done by the patient under physician’s supervision

during open loop and by the control algorithm during closed-loop (Bruttomesso

et al., 2009; Clarke et al., 2009). Compared to open-loop, closed-loop control

reduced significantly nocturnal hypoglycemia and increased the amount of time

spent overnight within the overnight target range of 70–140 mg/dl (Kovatchev

et al., 2009a).

This study was followed by two clinical trials, which reported positive results

from manually controlled artificial pancreas tested in 17 children with T1DM

(Hovorka et al., 2010), and from using bihormonal approach employing glucagon

to reduce hypoglycemia (El-Khatib et al., 2010).

In conclusion, the methods presented in this chapter have found application in

the emerging fields of metabolic simulation and closed-loop control.

II. Introduction

In health, the metabolic network responds to ambient glucose concentration and

glucose variability (Hirsch and Brownlee, 2005). The goals of the network are to

reduce basal and postprandial glucose elevations and to avoid overdelivery of

insulin and hypoglycemia. In both type 1 and type 2 diabetes mellitus (T1DM,

T2DM), this internal self-regulation is disrupted, leading to higher average glucose

levels and dramatic increases in glucose variability. Recent national data show that

nearly 21 million Americans have diabetes, and one in three American children

born today will develop the disease. In individuals with T1DM, the immune system

destroys the pancreatic b cells. As a result, thousands of insulin shots are needed

over a lifetime with T1DM, accompanied by testing of BG levels several times a

day. In T2DM, increased insulin resistance is amplified by the failure of the b cell
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to compensate with adequate insulin delivery. Both T1DM and T2DM are lifelong

conditions that affect people of every race and nationality and are leading causes of

kidney failure, blindness, and amputations not related to injury. The only treat-

ment of diabetes proven to reduce the risks of serious complications is tight control

of BG levels (DCCT 1993; UKPDS, 1998). It is estimated that diabetes and its

comorbidities account for more than $132 billion of our nation’s annual health

care costs and one out of every three Medicare dollars (U.S. Senate hearing, 2006).

Monitoring of BG levels and accurate interpretation of these data are critical to

the achievement of tight glycemic control. Since measuring mean BG directly is not

practical, the assessment of glycemic control is with a single simple test, namely,

hemoglobin A1c (HbA1c; Santiago, 1993). However, the development of CGM

technology has changed this conclusion (Klonoff, 2005). It is now feasible to

observe temporal glucose fluctuations in real time and to use these data for

feedback control of BG levels. Such a control could be patient initiated or actuated

by a control algorithm via variable insulin infusion. Increasing industrial and

research effort is concentrated on the development of CGM that sample

and record frequent (e.g., every 1–5 min) glucose level estimates. Several devices

are currently on the U.S. and European markets (Klonoff, 2005, 2007). While the

accuracy of these devices in terms of approximating any particular glucose level is

still inferior to self-monitoring of blood glucose (SMBG; Clarke and Kovatchev,

2007), CGM yields a wealth of information not only about current glucose levels

but also about the BG rate and direction of change (Kovatchev et al., 2005). This is

why a recent comprehensive review of this technology’s clinical implications,

accuracy, and current problems rightfully placed CGM on the roadmap for

21st-century diabetes therapy (Klonoff, 2005, 2007).

While CGM is new and the artificial pancreas is still experimental (Hovorka,

2005;Hovorka et al., 2004; Steil et al., 2006; Weinzimer, 2006), the current gold-

standard clinical practice of assessment is SMBG. Contemporary SMBG memory

meters store up to several hundred self-monitoring BG readings, calculate various

statistics, and visualize some testing results. However, SMBG data are generally

one dimensional, registering only the amplitude of BG fluctuations at intermittent

points in time. Thus, the corresponding analytical methods are also one dimen-

sional, emphasizing the concept of risk related to BG amplitude, but are incapable

of capturing the process of BG fluctuations over time (Kovatchev et al., 2002,

2003). In contrast, CGM can capture the temporal dimension of BG fluctuations,

enabling detailed tracking of this process. As a result, the statistical methods

traditionally applied to SMBG data become unsuitable for the analysis and

interpretation of continuous monitoring time series (Kollman et al., 2005;

Kovatchev et al., 2005). New analytical tools are needed and are being introduced,

ranging from variability analysis (McDonnell et al., 2005) and risk tracking

(Kovatchev et al., 2005) to time series and Fourier approaches (Miller and Strange,

2007). Before proceeding with the description of the analytical methods of this

chapter, we will first formulate the principal requirements and challenges posed by

the specifics of CGM data.
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(1) CGM assesses BG fluctuations indirectly by measuring the concentration of

interstitial glucose (IG), but is calibrated via self-monitoring to approximate BG

(King et al., 2007). Because CGM operates in the interstitial compartment, which

is presumably related to blood via diffusion across the capillary wall (Boyne et al.,

2003; Steil et al., 2005), it faces a number of significant challenges in terms of

sensitivity, stability, calibration, and physiological time lag between blood and IG

concentration (Cheyne et al., 2002; Kulcu et al., 2003; Stout et al., 2004). Thus,

analytical methods are needed to assess and evaluate different types of sensor

errors due to calibration, interstitial delay, or random noise.

(2) The CGM data stream has some inherent characteristics that allow for

advanced data analysis approaches, but also call for caution if standard statistical

methods are used. Most importantly, CGM data represent time series, that is,

sequential readings that are ordered in time. This leads to two fundamental

requirements to their analysis: First, consecutive sensor readings taken from the

same subject within a relatively short time are highly interdependent. Second, the

order of the CGM data points is essential for clinical decision making. For

example, the sequences 90! 82! 72 mg/dl and 72! 82! 90 mg/dl are clinically

very different. In other words, while a random reshuffling of CGM data in time

will not change traditional statistics, such as mean and variance, it will have a

profound impact on the temporal interpretation of CGM data. It is therefore

imperative to extract CGM information across several dimensions, including risk

associated with BG amplitude as well as time.

(3) Amost important critical feature of contemporaryCGMstudies is their limited

duration.Because the sensors of theCGMdevices are generally short-lived (5–7days),

the initial clinical trials of CGM are bound to be relatively short term (days), and

therefore their results cannotbeassessedby slowmeasures, suchasHbA1c,which take

2–3 months to react to changes in average glycemia (Santiago, 1993). Thus, it is

important to establish an array of clinical and numerical metrics that would allow

testing of the effectiveness of CGMover the relatively short-term, few-day life span of

the first CGM sensors. Before defining such an array, we would reiterate that the

primary goalofCGMand the artificial pancreas isb (andpossibly a)-cell replacement.

Thus, the effectiveness of CGM methods needs to be judged via assessment of their

ability to approximate nondiabetic BG concentration and fluctuation.

These principal requirements are reflected by the analytical methods presented

in this chapter, which include (i) decomposition of sensor errors into errors due to

calibration and blood-to-interstitial time lag, (ii) analysis of average glycemia and

deviations from normoglycemia, (iii) risk and variability analysis of CGM traces

that uses a nonlinear data transformation of the BG scale to transfer data into a

risk space, (iv) measures of system stability, and (v) prediction of glucose trends

and events using time-series-based forecast methods. The proposed analyses are

accompanied by graphs, including glucose and risk traces and system dynamics

plots. The presented methods are illustrated by CGM data collected during clinical

trials using MiniMed CGMS and Freestyle Navigator.
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Before proceeding further, it is important to note that the basic unit for most

analyses is the glucose trace of an individual, that is, a time-stamped series of CGM

or BG data recorded for one person. Summary characteristics and group-level

analyses are derived after the individual traces are processed to produce meaning-

ful individual markers of average glycemia, risk, or glucose variation. The analyti-

cal methodology is driven by the understanding that BG fluctuations are a

continuous process in time, BG(t). Each point of this process is characterized by

its value (BG level) and by its rate/direction of BG change. CGM presents the

process BG(t) as a discrete time series {BG(tn), n¼ 1, 2, . . .} that approximates BG

(t) in steps determined by the resolution of the particular device (e.g., a new value

displayed every 5 min).

III. Decomposition of Sensor Errors

Figure 1 presents the components of the error of MiniMed CGMS assessed

during a hyperinsulinemic hypoglycemic clamp involving 39 subjects with T1DM.

In this study reference, BG was sampled every 5 min and then reference data were

synchronized with data from the CGMS. The calibration error was estimated as

the difference between CGMS readings and computer-simulated recalibration of

the raw CGMS current using all reference BG points to yield an approximation of

the dynamics of IG adjusted for the BG-to-IG gradient (King et al., 2007). The

physiologic BG-to-IG time lag was estimated as the difference between reference

BG and the ‘‘perfectly’’ recalibrated CGMS signal. The mean absolute deviation

(MAD) of sensor data was 20.9 mg/dl during euglycemia and 24.5 mg/dl during
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descent into and recovery from hypoglycemia. Computer-simulated recalibration

reduced MAD to 10.6 and 14.6 mg/dl, respectively. Thus, during this experiment,

approximately half of the sensor deviation from reference BG was attributed to

calibration error; the rest was attributed to BG-to-IG gradient and random sensor

deviations.

A diffusion model was fitted for each individual subject’s data, as well as

globally across all subjects. While the details of this model have been reported

previously (King et al., 2007), of particular importance is the finding that ‘‘global,’’

across-subjects parameters describe the observed blood-to-interstitial delays rea-

sonably well (King et al., 2007). The availability of global parameters allows

glucose concentration in the interstitium to be numerically estimated directly

from reference BG data. This in turn allows for (i) setting the accuracy benchmark

by simulating a sensor that does not have calibration errors, (ii) tracking and

correction of errors due to calibration, and (iii) numerical compensation for BG-

to-IG differential through an inverted diffusion model estimating BG from the

sensor’s IG approximation (in essence, the reference BG line in Fig. 1 could be

derived numerically from the IG line, thereby reducing the influence of interstitial

time lag).

IV. Measures of Average Glycemia and Deviation from Target

Certain traditional data characteristics are clinically useful for the representa-

tion of CGM data. The computation of mean glucose values from CGM data and/

or BG data points is straightforward and is generally suggested as a descriptor of

overall control. Computing of pre- and postmeal averages and their difference can

serve as an indication of the overall effectiveness of meal control. Computing

percentage of time spent within, below, or above preset target limits has been

proposed as well. The suggested cutoff limits are 70 and 180 mg/dl, which create

three commonly accepted glucose ranges: hypoglycemia (BG � 70 mg/dl; ADA,

2005); normoglycemia (70 mg/dl < BG � 180 mg/dl), and hyperglycemia (BG >
180 mg/dl). Percentage of time within additional bands can be computed as well to

emphasize the frequency of extreme glucose excursions. For example, when it is

important to distinguish between postprandial and postabsorptive (fasting) con-

ditions, a fasting target range of 70–145 mg/dl is suggested. Further, %time

<50 mg/dl would quantify the frequency of severe hypoglycemia, whereas %time

>300 mg/dl would quantify the frequency of severe hyperglycemia. Table IA

includes the numerical measures of average glycemia and measures of deviation

from target.

Plotting glucose traces observed during a set period of time represents the

general pattern of a person’s BG fluctuation. To illustrate the effect of treatment

observed via CGM, we use previously published 72-h glucose data collected pre-

and 4 weeks postislet transplantation (Kovatchev et al., 2005). Figure 2 presents

glucose traces [of the process BG(t)] pre- and posttransplantation with
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Fig. 2 Glucose traces pre- and postislet transplantation with superimposed aggregated glucose traces.

Aggregated traces represent the time spent below/within/above target range.

Table I
Summary Measures Representing CGM Traces

(A) Average glycemia and deviations from target

Mean BG Computed from CGM or blood glucose data for the entire test

% time spent within target

range of

70–180 mg/dl; below 70 and

above 180 mg/dl

For CGM, this generally equals to % readings within each of these

ranges. For BGmeasurements that are not equally spaced in time,

we suggest calculating the % time within each range via linear

interpolation between consecutive glucose readings

% time �50 mg/dl Reflects the occurrence of extreme hypoglycemia

% time >300 mg/dl Reflects the occurrence of extreme hyperglycemia

(B) Variability and risk assessment

BG risk index ¼ LBGI þ HBGI � measure of overall variability in ‘‘risk space’’

Low BG index (LBGI) Measure of the frequency and extent of low BG readings

High BG index (HBGI) Measure of the frequency and extent of high BG readings

SD of BG rate of change A measure of the stability of closed-loop control over time
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superimposed aggregated glucose traces. The aggregated traces represent the time

spent below/within/above target range.

The premise behind aggregation is as follows: Frequently one is not particularly

interested in the exact BG value because close values such as 150 and 156 mg/dl are

clinically indistinguishable. It is, however, important whether and when BG

crosses certain thresholds, for example, 70 and 180 mg/dl as specified in the

previous section. Thus, the entire process BG(t) can be aggregated into a process

described only by the crossings of the thresholds of hypoglycemia and hyperglyce-

mia. In Fig. 2A and B, the aggregated process is depicted by squares that are black

for hypoglycemia, white for normoglycemia (euglycemia), and gray for hypergly-

cemia. Each square represents the average of 1 h of CGM data. It is evident that

the aggregated process presents a clearer visual interpretation of changes resulting

from islet transplantation: posttreatment of most of the BG fluctuations are within

target, leading to a higher density of green squares. Possible versions of this plot

include adding thresholds, such as 50 and 300 mg/dl, which would increase

the levels of the aggregated process to five, and a higher resolution of the plot in

the hypoglycemic range where one square of the aggregated process would be the

average of 30 min of data. Table IIA includes a summary of the suggested graphs.

V. Risk and Variability Assessment

Computing standard deviation (SD) as a measure of glucose variability is not

recommended because the BG measurement scale is highly asymmetric, the hypo-

glycemic range is numerically narrower than the hyperglycemic range, and the

distribution of the glucose values of an individual is typically quite skewed

(Kovatchev et al., 1997). As a result from this asymmetry, SD would be

Table II
Graphs Visualizing CGM Traces and the Effectiveness of Treatmenta

(A) Average glycemia and deviations from target

Glucose trace (Fig. 2) Traditional plot of frequently sampled glucose data

Aggregated glucose trace

(Fig. 2)

Corresponds to time spent below/within/above a preset target range.

Visualizes the crossing of glycemic thresholds

(B) Variability and risk assessment

Risk trace (Fig. 3) Corresponds to LBGI, HBGI, and BGRI. Designed to equalize the size

of glucose deviations toward hypo- and hyperglycemia, emphasize

large glucose excursions, and suppress fluctuation within target

range, thereby highlighting essential variance

Histogram of BG rate of

change (Fig. 4)

Represents the spread and range of glucose transitions. Related to

system stability. Corresponds to SD of BG rate of change

Poincaré plot (Fig. 5) Represents the spread of the system attractors and can be used for

detection of cyclic glucose fluctuations

aEach graph corresponds to a numerical measure from Table I.
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predominantly influenced by hyperglycemic excursions and would not be sensitive

to hypoglycemia. It is also possible for confidence intervals based on SD to assume

unrealistic negative values. Thus, instead of reporting traditional measures of

glucose variability, we suggest using risk indices based on a symmetrization trans-

formation of the BG scale into a risk space (Kovatchev et al., 1997, 2001). The

symmetrization formulas, published a decade ago, are data independent and have

been used successfully in numerous studies. In brief, for any BG reading, we first

compute:

f ðBGÞ ¼ 1:509� ½ð lnðBGÞÞ1:084 � 5:381�
if BG is measured in mg/dl or

f ðBGÞ ¼ 1:509� ½ð lnð18� BGÞÞ1:084 � 5:381�
if BG is measured in mmol/liter. Then we compute the BG risk function using

rðBGÞ ¼ 10� f ðBGÞ2

and separate its left and right branches as follows:

rlðBGÞ ¼ rðBGÞif f ðBGÞ < 0 and 0 otherwise;
rhðBGÞ ¼ rðBGÞiff ðBGÞ > 0 and 0 otherwise:

Given a series of CGM readings BG1, BG2, . . . BGn, we compute the low and

high BG indices (LBGI, HBGI) as the average of rl(BG) and rh(BG), respectively

(Kovatchev et al., 2001, 2005):

LBGI ¼ 1

n

Xn

i¼1

rlðBGiÞ

and

HBGI ¼ 1

n

Xn

i¼1

rhðBGiÞ

.

The BG risk index is then defined as BGRI ¼ LBGI þ HBGI

In essence, the LBGI and the HBGI split the overall glucose variation into two

independent sections related to excursions into hypo- and hyperglycemia and, at

the same time, equalize the amplitude of these excursions with respect to the risk

they carry. For example, in BG space, a transition from 180 to 250 mg/dl would

appear threefold larger than a transition from 70 to 50 mg/dl, while in risk space

these fluctuations would appear equal. Using the LBGI, HBGI, and their sum

BGRI complements the use of thresholds described earlier by adding information

about the extent of BG fluctuations. A simple example would clarify this point.

Assume two sets of BG readings: (110,65) and (110,40) mg/dl. In both cases we

have 50% of readings below the threshold of 70 mg/dl; thus the percentage readings

below target are 50% in both cases. However, the two scenarios are hardly
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equivalent in terms of risk for hypoglycemia, which is clearly depicted by the

difference in their respective LBGI values: 5.1 and 18.2. Table IB includes the

suggested measures of glucose variability and associated risks.

Figure 3A and B present 72-h traces of BG dynamics in risk space corresponding

to the glucose traces of Fig. 2A and B at baseline and postislet transplantation.

Each figure includes fluctuations of the LBGI (lower half) and HBGI (upper half),

with both indices computed from 1-h time blocks (Kovatchev et al., 2005). In

particular, Figs. 2A and 3A demonstrate the effect of transforming BG fluctua-

tions from glucose to risk values. A hypoglycemic event at hour 30 of study in

Fig. 2A is visually expanded and emphasized in Fig. 3A (black circles). In contrast,

the magnitude a hyperglycemic event at hour 54 in Fig. 2A is reduced in Fig. 3A to

reflect the risk associated with that event (gray circles). Further, comparing

Fig. 3A–B, it becomes evident that the magnitude of risk associated with glucose

fluctuations decreases as a result of treatment. The average LBGI was 6.72 at

baseline and 2.90 posttransplantation. Similarly, the HBGI was reduced from 5.53

at baseline to 1.73 after islet transplantation.
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Fig. 3 CGM data in risk space: converting data equalizes numerically the hypoglycemic and hyper-

glycemic ranges and suppresses the variance in the safe euglycemic range.
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Thus, the advantages of a risk plot include the following: (i) the variance carried

by hypo- and hyperglycemic readings is equalized; (ii) excursions into extreme

hypo- and hyperglycemia get progressively increasing risk values; and (iii) the

variance within the safe euglycemic range is attenuated, which reduces noise during

data analysis. In essence, Figs. 3A and B link better glycemic control to a narrower

pattern of risk fluctuations. Because the LBGI, HBGI, and the combined BGRI

can theoretically range from 0 to 100, their values can be interpreted as percentages

of maximum possible risk.

VI. Measures and Plots of System Stability

Analysis of BG rate of change (measured in mg/dl/min) is suggested as a way to

evaluate the dynamics of BG fluctuations on the timescale of minutes. In mathe-

matical terms, this is an evaluation of the ‘‘local’’ properties of the system as

opposed to ‘‘global’’ properties discussed earlier. Being the focus of differential

calculus, local functional properties are assessed at a neighborhood of any point in

time t0 by the value BG(t0) and the derivatives of BG(t) at t0. The BG rate of change

at ti—is computed as the ratio [BG(ti) � BG(ti��1)]/(ti � ti�1), where BG(ti) and

BG(ti�1) are CGM or reference BG readings taken at times ti and ti�1 that are close

in time. Recent investigations of the frequency of glucose fluctuations show that

optimal evaluation of the BG rate of change would be achieved over time periods

of 15 min (Miller and Strange, 2007; Shields and Breton, 2007), for example, △t ¼
ti � ti�1 ¼ 15. For data points equally spaced in time, this computation provides a

sliding approximation of the first derivative (slope) of BG(t). A larger variation of

the BG rate of change indicates rapid and more pronounced BG fluctuations and

therefore a less stable system. Thus, we use the SD of the BG rate of change as a

measure of stability of closed-loop control. Two points are worth noting: (i) as

opposed to the distribution of BG levels, distribution of the BG rate of change is

symmetric and, therefore, using SD is statistically accurate (Fig. 4) and (ii) the SD

of BG rate of change has been introduced as a measure of stability computed from

CGM data and is known as Continuous Overall Net Glycemic Action (CONGA)

of order 1 (McDonnell et al., 2005).

Figure 4A and B present histograms of the distribution of the BG rate of change

over 15 min, computed from MiniMed CGMS data of our transplantation case.

It is apparent that the baseline distribution is more widespread than the distribu-

tion posttransplantation. Numerically, this effect is reflected by 19.3% of BG rates

outside of the [�2, 2] mg/dl/min range in Fig. 4A versus only 0.6% BG rates outside

that range in Fig. 4B. Thus, pretransplantation the patient experienced rapid BG

fluctuations, whereas posttransplantation the rate of fluctuations was reduced

dramatically. This effect is also captured by the SD of the BG rate of change,

which is reduced from 1.58 to 0.69 mg/dl/min as a result of treatment.

Another look at system stability is provided by the Poincaré plot (lag plot) used

in nonlinear dynamics to visualize the attractor of the investigated system
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(Brennan et al., 2001): a smaller, more concentrated attractor indicates system

stability, whereas a more scattered Poincaré plot indicates system irregularity,

reflecting poorer glucose control. Each point of the plot has coordinates BG(ti�1)

on the X axis and BG(ti) on the Y axis. Thus, the difference (Y–X) coordinates of

each data point represents the BG rate of change occurring between times ti�1 and

ti�1. Figure 5A and B present Poincaré plots of CGM data at baseline and postislet

transplantation. It is evident that the spread of the system attractor is substantially

larger before treatment compared with posttreatment. Thus, the principal axes of

the Poincaré plot can be used as numerical metrics of system stability.

Another use of the Poincaré plot is to scan data for patterns of oscillation.

Because the plot of an oscillator is an ellipse (see Fig. 5C), elliptical configuration

of data points would indicate cyclic glucose fluctuations. Table IIB includes a

summary of the suggested graphs.

VII. Time-Series-Based Prediction of Future BG Values

Most contemporary CGM systems include glucose prediction capabilities, in

particular hypoglycemia and hyperglycemia alarms. Practically all predictions are

currently based on a linear extrapolation of glucose values, for example, projection

ahead of the current glucose trend. Because glucose fluctuations are generally

nonlinear, such projections frequently result in errors and typically have a high

false alarm rate. In contrast, a time-series model-based sliding algorithm designed

to continually predict glucose levels 30 to 45 min ahead had substantially higher

accuracy than typical linear projections (Zanderigo et al., 2007). The sliding

algorithm works as follows. For each time series, a linear model is fitted, continu-

ally at any sampling time, against past glucose data by weighted least squares.

Then, the model is used to predict the glucose level at a preset prediction horizon.

In model fitting, data points are ‘‘weighted’’ using a forgetting factor of 0.8 (which

was determined to be optimal in numerical experiments), that is, the weight of the

BG rate of change (mg/dl/min)

SD = 1.58

−6 −5 −4 −3 −2 2 3 4 5 6−1 10 −6 −5 −4 −3 −2 2 3 4 5 6−1 10

SD = 0.69
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Fig. 4 Histograms of the distribution of the BG rate of change over 15 min, computed fromMiniMed

CGMS data pre- and postislet transplantation.
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kth point before the actual sampling time is (0.8)k. Figure 6 presents the action of

the prediction algorithm at a prediction horizon of 30 min. While the algorithm

tends to exaggerate transient peak and nadir glucose values, its overall predictive

capability is very good. Judged by continuous glucose error-grid analysis (CG-

EGA; Kovatchev et al., 2004), >80% of predicted versus actual values fall in CG-

EGA zone A and>85% fall in zones Aþ B. As would be expected, the accuracy of

the prediction is highest during euglycemia, with 97% of predicted versus actual

values falling in CG-EGA zones A þ B.

Finally, a statistical disadvantage of the CGM data stream is the high interde-

pendence between data points taken from the same subject within a relatively short

time. As a result, standard statistical analyses, such as t tests, while appropriate for

independent data points, will produce inaccurate results if applied directly to CGS

data. The reason is a severe violation of the statistical assumptions behind the

calculation of degrees of freedom, which are essential to compute the p value of any

statistical test. In order to clarify the dependence of consecutive CGM data points,

we have computed their autocorrelation and have shown that it remains significant

for approximately 1 h, after which its significance drops below the level of 0.05

(Kovatchev and Clarke, 2008). Thus, CGM readings separated by more than 1 h in

time could be considered linearly independent, which is sufficient for some statisti-

cal tests. A note of caution is that linear independence does not imply stochastic

independence, which might be essential in some cases. Another conclusion from

this autocorrelation analysis is that CGM data aggregated in 1-h blocks would be

reasonably approximated by a Markov chain, which opens a number of possibi-

lities for the analysis of aggregated data. Finally, the linear dependence between
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Fig. 6 Thirty-minute real-time prediction of glucose fluctuation using an auto-regression algorithm.
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consecutive data points practically disappears at a time lag of �30 min. Therefore,

a projection of BG levels more than 30 min ahead, which is using linear methods,

would be inaccurate. This last point has significant clinical impact on the settings

of hypo- or hyperglycemia alarms, many of which are based on linear projections

of past CGM data.

VIII. Conclusions

The intent of this chapter was to introduce a set of mathematically rigorous

methods that provide statistical and visual interpretation of frequently sampled BG

data, which might serve as a basis for evaluation of the effectiveness of closed-loop

control algorithms. Because amajor purpose of closed-loop control is to reduce BG

fluctuations, these methods augment the traditional approaches with understand-

ing and analysis of variability-associated risks and the temporal structure of glucose

data. Table I presents a summary of the metrics suggested for the analysis of CGM

data, whereas Table II presents corresponding graphs. It is envisioned that this

system of methods would be employed both in in silico computer simulation trials

(Kovatchev et al., 2008) and in clinical trials involving patients.

Acknowledgments

This chapter was prepared with support of the JDRFArtificial Pancreas Consortium. The theoretical

development of some of the presented metrics was supported by Grant RO1 DK 51562 from the

National Institutes of Health. Data and material support were provided by Abbott Diabetes Care

(Alameda, CA).

References

American Diabetes Association (ADA) Workgroup on Hypoglycemia (2005). Defining and reporting

hypoglycemia in diabetes: A report from the American Diabetes Association workgroup on hypogly-

cemia. Diabetes Care 28, 1245–1249.

Boyne, M., Silver, D., Kaplan, J., and Saudek, C. (2003). Timing of changes in interstitial and venous

blood glucose measured with a continuous subcutaneous glucose sensor. Diabetes 52, 2790–2794.

Brennan, M., Palaniswami, M., and Kamen, P. (2001). Do existing measures of Poincare plot geometry

reflect nonlinear features of heart rate variability? IEEE Trans. Biomed. Eng. 48, 1342–1347.

Bruttomesso, D., Farret, A., Costa, S., Marescotti, M. C., Vettore, M., Avogaro, A., Tiengo, A. C.,

et al. (2009). Closed-loop artificial pancreas using subcutaneous glucose sensing & insulin delivery,

and a model predictive control algorithm: Preliminary studies in Padova and Montpellier. J Diabetes

Sci. Technol. 3, 1014–1021.

Cheyne, E. H., Cavan, D. A., and Kerr, D. (2002). Performance of continuous glucose monitoring

system during controlled hypoglycemia in healthy volunteers. Diabetes Technol. Ther. 4, 607–613.

Clarke, W. L., and Kovatchev, B. P. (2007). Continuous glucose sensors continuing questions about

clinical accuracy. J. Diabetes Sci. Technol. 1, 164–170.

Clarke, W. L., Anderson, S. M., Breton,M. D., Patek, S. D., Kashmer, L., and Kovatchev, B. P. (2009).

Closed-loop artificial pancreas using subcutaneous glucose sensing and insulin delivery and a model

predictive control algorithm: The Virginia experience. J. Diabetes Sci. Technol. 3, 1031–1038.

476 Boris Kovatchev et al.



Cobelli, C., Dalla Man, C., Sparacino, G., Magni, L., Nicolao, G., and Kovatchev, B. P. (2009).

Diabetes: Models, signals, and control. IEEE Rev. Biomed. Eng. 2, 54–96.

Diabetes Control and Complications Trial (DCCT) Research Group (1993). The effect of intensive

treatment of diabetes on the development and progression of long-term complications of insulin-

dependent diabetes mellitus. N. Engl. J. Med. 329, 978–986.

El-Khatib, F. H., Russell, S. J., Nathan, D. M., Sutherlin, R. G., and Damiano, E. R. (2010).

A bihormonal closed-loop artificial pancreas for type 1 diabetes. Sci. Transl. Med. 2, 27–35.

Hirsch, I. B., and Brownlee, M. (2005). Should minimal blood glucose variability become the gold

standard of glycemic control? J. Diabetes Complicat. 19, 178–181.

Hovorka, R. (2005). Continuous glucose monitoring and closed-loop systems. Diabet. Med. 23, 1–12.

Hovorka, R., Chassin, L. J., Wilinska, M. E., Canonico, V., Akwi, J. A., Federici, M. O., Massi-

Benedetti, M., Hutzli, I., Zaugg, C., Kaufmann, H., Both, M., Vering, T., et al. (2004). Closing the

loop: The adicol experience. Diabetes Technol. Ther. 6, 307–318.

Hovorka, R., Allen, J. M., Elleri, D., et al. (2010). Manual closed-loop insulin delivery in children and

adolescents with type 1 diabetes: A phase 2 randomised crossover trial. The Lancet 375, 743–751.

King, C. R., Anderson, S. M., Breton, M. D., Clarke, W. L., and Kovatchev, B. P. (2007). Modeling of

calibration effectiveness and blood-to-interstitial glucose dynamics as potential confounders of the

accuracy of continuous glucose sensors during hyperinsulinemic clamp. J. Diabetes Sci. Technol. 1,

317–322.

Klonoff, D. C. (2005). Continuous glucose monitoring: Roadmap for 21st century diabetes therapy.

Diabetes Care 28, 1231–1239.

Klonoff, D. C. (2007). The artificial pancreas: How sweet engineering will solve bitter problems.

J. Diabetes Sci. Technol. 1, 72–81.

Kollman, C., Wilson, D. M., Wysocki, T., Tamborlane, W. V., and Beck, R. W. (2005). Diabetes

research in children network: Limitation of statistical measures of error in assessing the accuracy of

continuous glucose sensors. Diabetes Technol. Ther. 7, 665–672.

Kovatchev, B. P., andClarke,W. L. (2008). Peculiarities of the continuous glucosemonitoring data stream

and their impact on developing closed-loop control technology. J. Diabetes Sci. Technol. 2, 158–163.

Kovatchev, B. P., Cox, D. J., Gonder-Frederick, L. A., and Clarke, W. L. (1997). Symmetrization of the

blood glucose measurement scale and its applications. Diabetes Care 20, 1655–1658.

Kovatchev, B. P., Straume, M., Cox, D. J., and Farhi, L. S. (2001). Risk analysis of blood glucose data:

A quantitative approach to optimizing the control of insulin dependent diabetes. J. Theor. Med. 3,

1–10.

Kovatchev, B. P., Cox, D. J., Gonder-Frederick, L. A., and Clarke, W. L. (2002). Methods for

quantifying self-monitoring blood glucose profiles exemplified by an examination of blood glucose

patterns in patients with type 1 and type 2 diabetes. Diabetes Technol. Ther. 4, 295–303.

Kovatchev, B. P., Cox, D. J., Kumar, A., Gonder-Frederick, L. A., and Clarke, W. L. (2003).

Algorithmic evaluation of metabolic control and risk of severe hypoglycemia in type 1 and type 2

diabetes using self-monitoring blood glucose (SMBG) data. Diabetes Technol. Ther. 5, 817–828.

Kovatchev, B. P., Gonder-Frederick, L. A., Cox, D. J., and Clarke, W. L. (2004). Evaluating

the accuracy of continuous glucose-monitoring sensors: Continuous glucose-error grid analysis

illustrated by TheraSense Freestyle Navigator data. Diabetes Care 27, 1922–1928.

Kovatchev, B. P., Clarke, W. L., Breton, M., Brayman, K., and McCall, A. (2005). Quantifying

temporal glucose variability in diabetes via continuous glucose monitoring: Mathematical methods

and clinical applications. Diabetes Technol. Ther. 7, 849–862.

Kovatchev, B. P., et al. (2009a). Personalized subcutaneous model-predictive closed-loop control of

T1DM: Pilot studies in the USA and Italy. Diabetes 58(Supplement 1), 0228-OR.

Kovatchev, B. P., Breton, M. D., Dalla Man, C., and Cobelli, C. (2009b). In silico preclinical trials: a

proof of concept in closed-loop control of type 1 diabetes. J. Diabetes Sci. Technol. 3, 44–55.

Kulcu, E., Tamada, J. A., Reach, G., Potts, R. O., and Lesho, M. J. (2003). Physiological differences

between interstitial glucose and blood glucose measured in human subjects. Diabetes Care 26,

2405–2409.

19. Analysis of Continuous Glucose Monitoring Data 477



McDonnell, C. M., Donath, S. M., Vidmar, S. I., Werther, G. A., and Cameron, F. J. (2005). A novel

approach to continuous glucose analysis utilizing glycemic variation. Diabetes Technol. Ther. 7,

253–263.

Miller, M., and Strange, P. (2007). Use of Fourier models for analysis and interpretation of continuous

glucose monitoring glucose profiles. J. Diabetes Sci. Technol. 1, 630–638.

Santiago, J. V. (1993). Lessons from the diabetes control and complications trial. Diabetes 42,

1549–1554.

Shields, D., and Breton, M. D. (2007). Blood vs. interstitial glucose dynamic fluctuations: The Nyquist

frequency of continuous glucose monitors. ‘‘Proc. 7th Diabetes Technol Mtg’’ p. A87.

San Francisco, CA.

Steil, G. M., Rebrin, K., Hariri, F., Jinagonda, S., Tadros, S., Darwin, C., and Saad, M. F. (2005).

Interstitial fluid glucose dynamics during insulin-induced hypoglycaemia. Diabetologia 48,

1833–1840.

Steil, G. M., Rebrin, K., Darwin, C., Hariri, F., and Saad, M. F. (2006). Feasibility of automating

insulin delivery for the treatment of type 1 diabetes. Diabetes 55, 3344–3350.

Stout, P. J., Racchini, J. R., and Hilgers, M. E. (2004). A novel approach to mitigating the physiological

lag between blood and interstitial fluid glucose measurements. Diabetes Technol. Ther. 6, 635–644.

The Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group (2008).

Continuous glucose monitoring and intensive treatment of type 1 diabetes. N. Engl. J. Med. 359,

1464–1476.

U.S. Senate hearing (2006). The Potential of an Artificial Pancreas: Improving Care for People with

Diabetes. September 27.

UK Prospective Diabetes Study Group (1998). Intensive blood-glucose control with sulphonylureas or

insulin compared with conventional treatment and risk of complications in patients with type 2

diabetes. Lancet 352, 837–853.

Weinzimer, S. (2006). Closed-loop artificial pancreas: Feasibility studies in pediatric patients with type 1

diabetes. ‘‘Proc. 6th Diabetes Technology Meeting’’ p. S55Atlanta, GA.

Weinzimer, S. A., Steil, G. M., Swan, K. L., Dziura, J., Kurtz, N., and Tamborlane, W. V. (2008). Fully

automated closed-loop insulin delivery versus semi-automated hybrid control in pediatric patients

with type 1 diabetes using an artificial pancreas. Diabetes Care 31, 934–939.

Zanderigo, F., Sparacino, G., Kovatchev, B., and Cobelli, C. (2007). Glucose prediction algorithms

from continuous monitoring data: Assessment of accuracy via continuous glucose-error grid analysis.

J. Diabetes Sci. Technol. 1, 645–651.

478 Boris Kovatchev et al.



CHAPTER 20

Analyses for Physiological and
Behavioral Rhythmicity

Harold B. Dowse*,†

*School of Biology and Ecology
University of Maine
Orono, Maine, USA

†
Department of Mathematics and Statistics
University of Maine
Orono, Maine, USA

I. Introduction

II. Types of Biological Data and Their Acquisition

III. Analysis in the Time Domain

IV. Analysis in the Frequency Domain

V. Time/Frequency Analysis and the Wavelet Transform

VI. Signal Conditioning

VII. Strength and Regularity of a Signal

VIII. Some Practical Considerations on Statistical Comparisons of Analytical Results

IX. Conclusions

References

I. Introduction

Biological systems that evolve in time often do so in a rhythmic manner. Typical

examples are heart beating (Bodmer et al., 2004; Dowse et al., 1995), circadian

(Dowse, 2007), and ultradian (Dowse, 2008) biological cycles, and acoustic com-

munication, for example, in Drosophila mating (Kyriacou and Hall, 1982). Using

objective analysis techniques to extract useful information from these time series is

central to understanding and working with the systems that produce them. Digital

signal analysis techniques originating with astrophysics, geophysics, and electron-

ics have been adapted to biological series and provide critical information on any

ESSENTIAL NUMERICAL COMPUTER METHODS
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inherent periodicity, namely its frequency or period as well as its strength and

regularity. The latter two may be two separate matters entirely.

The mode of data acquisition is the first concern. Often biological data are

records of events as a function of time, or perhaps the number of events during a

sequential series of equal time intervals or ‘‘bins.’’ Alternatively, output may be a

continuous variable, such as the titer of an enzyme or binding protein. Acquisition

technique and constraints upon it may affect the outcomes of later analyses and

must be taken into consideration. As part of this process, the signal must ultimately

be rendered digital for computer analysis. Examples will be considered.

Initial analysis is done in the time domain and may range from something as

simple as a plot of the amplitude of the process to powerful statistical techniques

such as autocorrelation, which can be used for determining if significant periodi-

cities are present. Analysis in the frequency domain, usually spectral analysis,

provides information on the period or frequency of any cycles present. This usually

involves one of several variants of Fourier analysis, and recent advances in that

area have revealed exceptional detail in biological signals (review: Chatfield, 1989).

The mating song of the fruit fly, Drosophila melanogaster, is rich with information,

but the data stream, as is the case with many other biological systems, is irregular

and variable in time. Wavelet analysis is particularly useful in this instance. Digital

signals, like their analog counterparts, may be filtered to remove noise or any

frequencies in other spectral ranges that can be obscuring those in the range of

interest (Hamming, 1983). The strength and regularity of the biological signal are

of paramount importance. Spectral analysis algorithms may be altered appropri-

ately to provide an objective measurement of a signal-to-noise (SNR) ratio (Dowse

and Ringo, 1987). A related but distinct issue is the regularity of the cycles in the

signal. For example, a heart may be beating strongly, but the duration of its

pacemaker duty cycle may vary considerably more than normal from beat to

beat with occasional skipped beats or, conversely, may be more regular than

normal. Either alteration might be a result of pathology (Glass and Mackey,

1988; Lombardi, 2000; Osaka et al., 2003). An index of rhythmic regularity is

useful in this regard.

This chapter reviews modern digital techniques used to address each of these

problems in turn. It uses the Drosophila model cardiac system extensively in this

discourse, but the methods are widely applicable and other examples will be used

as needed.

II. Types of Biological Data and Their Acquisition

One of the most intensively studied biological signals, of the several we shall

consider, is found in the physiological and behavioral records of organisms over-

time. These records are commonly found to be rhythmic with periodicity in the

ballpark of 24 h, the solar day. In unvarying environmental conditions, such as

constant darkness (DD) or low illumination (LL), the periodicity will vary from
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the astronomical day, hence the term ‘‘circadian,’’ or approximately daily rhythms

(review: Palmer, 2002). This periodicity is the output of a biological oscillator (or

oscillators), and study of this living horologue has been intense in the hopes of

finding the mechanism (Dunlap, 1999; Hall, 2003). This field offers the opportunity

to discuss generally applicable concepts.

Biological rhythm data take many forms, as clocks may be studied at levels

ranging from intracellular fluorescence to running wheel activity. This broaches

the topic of sampling. In cases of activity of an enzyme or the fluorescence level of a

tag, for example, the variables are continuous and the sampling interval can be

chosen arbitrarily. A primary concern here is that it be done rapidly enough to

avoid ‘‘aliasing’’ in the periodicity region of interest. Aliasing occurs when the

sampling interval is longer than the period being recorded and can be seen in old

western movies when the spokes of wagon wheels seem to be going backward, a

result of the interaction between the number of still frames/s and the angular

velocity of the wheel (Hamming, 1983). Sampling frequency must be at least

twice the frequency (half the period) of that of the sampled process. This is the

Nyquist or fold-over frequency (Chatfield, 1989). A bit faster is better to be sure

detail is not lost, but this is the theoretical tipping point. The tradeoff is an

increasing number of data points to store and the commensurate wait for analysis

programs to run if the sampling is gratuitously rapid.

The primary event in data acquisition is often an instantaneous reading of an

analog signal. This may be transmembrane voltage or current in a Xenopus oocyte

clamp setup, sound levels picked up by a microphone, light intensity reported out

by a photomultiplier tube, or the output of an O2 electrode; the list is endless. In

general, however, whatever is being measured, the transduction process ultimately

yields a voltage. This continuous analog voltage signal needs to be converted to a

format that the computer can deal with. This process is often now done by analog

to digital (A/D) converters within the instruments themselves, which will have a

digital computer interface capability as a matter of course. Nonetheless, research

equipment must often be built from scratch in-house for a specific purpose, and

here analog signals may need to be dealt with by the user. The A/D converter is a

unit that assigns numbers to a given input voltage. For example, in my laboratory

we monitor fly heartbeat optically (see later; Dowse et al., 1995; Johnson et al.,

1998). The output of the system is a voltage between �5 and þ5 V, which is

monitored on an oscilloscope. The computer has a DAS8, A/D 12-bit interface

(Kiethly/Metrabyte) that employs 4096 0.00244 V steps, assigning proportional

values between �2048 and þ2048. The rate of digitization is programmable up to

1 MHz in this antique but thoroughly serviceable system. We find that for a �2- to

3-Hz heartbeat, 100 Hz is more than sufficient to yield excellent time resolution.

For noncontinuous data, there are other considerations. The Nyquist interval

must still be factored in as a baseline for maximum sampling interval/minimum

frequency (see earlier discussion), but there is a further constraint on how fast

sampling may be done that has nothing to do with optimizing the number of data

points to grab for computing expedience versus resolution. Common examples of
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this sort of data are running wheel activity in mammals (DeCoursey, 1960 and the

breaking of an infrared light beam by Drosophila (Dowse et al., 1987). Here,

individual events are being registered and are summed across arbitrary intervals

or ‘‘bins.’’ The question is how well do these binned time series stand up to the sorts

of analyses developed for discretely sampled continuous functions? It has been

shown that bin size affects the output of time series analysis and that this effect can

be profound when bin size is too small (review: Dowse and Ringo, 1994).

Over an arbitrarily short interval of the day, say a half an hour, the series of

occurrences of events, such as a fly breaking a light beam in a chamber, is described

by a Poisson process. There is no time structure or pattern and events occur

stochastically. The probability, P, of k events occurring during the interval t, t þ 1

is given by

P½Nðtþ 1Þ �NðtÞ ¼ k� ¼ e�l l
k

k!
: ð1Þ

The mean overall rate in events per unit time (EPUT) is given by l (Schefler,

1969).

Over the course of a circadian day, for example, EPUT varies in a pattern,

notably if the fly is behaving rhythmically. This variation can usefully be thought

of as a Poisson process with a time-varying l. In the case of running wheel data, of

course, the events appear regularly spaced with a periodicity dependent on the rate

of running in the apparatus, although bouts of running may be stochastically

spaced throughout the active period. Nonetheless, the ‘‘amplitude’’ of the process

remains EPUT, with the unit of time being the bin length.

On the basis of empirical and practical considerations, bin size much smaller

than 10 min may cause artifact, in that perfectly good periodicities may be

obscured in the presence of a lot of noise. Half-hour bins are generally small

enough for good results in our experience. Longer bin lengths, for example, 1 h

or longer, may act as a poorly defined low-pass digital filter, with a reduction in

power transferred of about 20% at a periodicity of 2 h. Five-min bins have a flat

transfer function (the plot of power transmitted through the filter as a function of

period or frequency—see detailed discussion later; Dowse and Ringo, 1994).

III. Analysis in the Time Domain

Time series data may be analyzed in two domains: time and frequency. They

may be transformed from one to the other as needed. In the time domain, relatively

simple techniques are usually used initially to visualize evolution of the system.

There is also a relatively straightforward statistical analysis available, the auto-

correlogram, which tests for the presence and significance of any rhythmicity.

Frequency or period may be measured crudely from either plots of raw data or

the autocorrelogram, and questions of phase and waveform can be addressed

directly.
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We shall consider the cardiac system of the fly carefully to illustrate the analyses.

The heart of the insect is a simple tube that works as a peristaltic pump within an

open circulatory system, moving hemolymph from the most posterior region of the

abdomen forward to the brain (Curtis et al., 1999; Jones, 1977; Rizki, 1978). As air

is carried to the tissues by a tracheal system, there are no pigments for gas

transport, so even serious decrements in cardiac function may not necessarily be

fatal (e.g., Johnson et al., 1998). Nutrients and wastes are transported by the

hemolymph (Jones, 1977). Heartbeat is myogenic, arising in discrete pacemaker

cells posteriorly (Dowse et al., 1995; Gu and Singh, 1995; Rizki, 1978), but as

heartbeat can be retrograde, there is an alternate pacemaker near the anterior end

as well (Dulcis and Levine, 2005; Wasserthal, 2007). The fly heart model is of

considerable interest of late, as genes encoding heart structure and ion channels

that function in the pacemaker have been shown to have analogous function in the

human heart (Bodmer et al., 2004; Wolf et al., 2006).

Figure 1A shows a 60-s sample time series from this system, depicting the

heartbeat of a wild-type D. melanogaster recorded optically at the P1 pupal

stage. At this point in time, the heart can be monitored optically, as the pupal

case has not yet begun to tan and remains transparent (Ashburner, 1989). The

heart is also transparent, but the nearly opaque fat bodies on either side move as

the heart beats, causing a change in the amount of light passing through the

animal. This is picked up by a phototransistor (FPT100) affixed in the outlet

pupil of one of the eyepieces of a binocular microscope. The signal is preamplified

by a 741C op amp and is further amplified by a Grass polygraph. The output

voltage is digitized as described previously by a DAS8 AD converter (Kiethley/

Metrabyte) at 100 Hz and recorded as a text file in a computer. The temperature of

the preparation is controlled by a Sensortek100 unit and, in this instance, is

maintained at 25� C (cf. Dowse et al., 1995; Johnson et al., 1997, 1998). The

heartbeat is very regular in this animal, although there are several gaps. Recall

that this is the plot of voltage as a function of time.

While it is clear that this heart is rhythmic, it is useful to apply an objective

statistical test, even in this clear example, to determine the significance of any

periodicity. For example, Fig. 1B shows the record of a second wild-type animal’s

heart that is not nearly so clearly rhythmic, and Fig. 1C may depict a totally

arrhythmic organ, also from a wild-type fly. No solid conclusion can be drawn

based just on inspection of this erratic plot. An objective statistical method to

determine whether a significant rhythm is present is by autocorrelation analysis

(Chatfield, 1989; Levine et al., 2002). To conduct this analysis, the time series is

paired with itself in register and a standard correlation analysis is done yielding the

correlation coefficient, r. Since the correspondence is exactly one to one, the

correlation is perfect and the resultant r is 1. The two identical series are then set

out of register or ‘‘lagged’’ by one datum. This will cause a corresponding decre-

ment in the correlation coefficient computed. This lagging continues one datum at

a time up to about one-third of the length of the entire series. The sequential r

values are plotted as a function of the lag, and this is the autocorrelogram or
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autocorrelation function. If the series is rhythmic, the drop in r will continue and

will become negative, reaching a nadir as the peaks and valleys in the values

become p antiphase. A second positive peak will occur when the peaks and valleys

return to phase locking at a full 2p. The general mathematical interpretation of the

coefficients in the autocorrelogram is that they are cosines of the angles between
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two vectors, with the vectors being the original time series and that same series

lagged out of register (Wiener, 1949). The process is well approximated by

rk ¼
XN�k

t¼1

ðxt � xmÞðxt�k � xmÞ
 !,XN

t¼1

ðxt � xmÞ2; ð2Þ

whereN is the number of samples and xm is the mean of the series (Chatfield, 1989).

Note that the output as described earlier is normalized at each step by dividing

by the variance in the entire data set (the denominator in the aforementioned

equation), but need not be. If this is not done, the output is in the form of variance,

and this ‘‘covariance’’ can be reported out instead, if this is desired, as the auto-

covariance function (Chatfield, 1989). Differences between and relative utilities of

these two functions will become apparent when spectral analysis is considered

later. Here, the normalization to get an r is useful, as it allows comparisons among

experiments and the function will yield yet another useful objective statistic for

comparisons, as described later.

Each time the vectors are lagged, the values on the two far ends are no longer

paired and must be discarded; hence the power of the test is gradually diminished.
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Fig. 1 Optically acquired digital records of wild-typeDrosophila melanogaster heartbeat. (A)Extremely

regular heartbeat with few changes in amplitude or period. (B) This heart is substantially more irregular in

function. There are periods during which the beat is fairly erratic interspersed with regular beating. At

times, especially from about 53 s on, it can be seen that the beat is bigeminal, with weak beats alternating

with the much stronger power beats. (C) Here, the heart is almost arrhythmic. It can be seen to be beating

during a few intervals, notably between 45 and 50 s.
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For this reason, the usual limit of the autocorrelation computation is about N/3.

The 95% confidence interval and hence significance of a given peak is given as

2=
ffiffiffiffiffi
N

p
, where N is the number of data points (Chatfield, 1989). Plus and minus

confidence intervals are plotted as flat lines; the decrement in N as values are

discarded is usually ignored. The rule of thumb interpretation of the plot is

normally looking for repeated peaks equaling or exceeding the confidence interval,
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but a long run of peaks not quite reaching this level is usually sufficient if

inspection of the raw data plot yields similar results and if the periodicity turns

up in this range in the spectral analysis. Use of the autocorrelation function to

provide an estimator of regularity in rhythmicity is discussed later. In the examples

shown in Fig. 1, the heart of the third pupa is considered arrhythmic, as will be

shown. Figure 2 depicts the autocorrelograms of data from the hearts in Fig. 1. As

the function is symmetrical and can be lagged in either direction, data from the

reverse lagging are plotted here for symmetry and ease in visual interpretation.

In the case of biological rhythm research, another way of displaying data is

commonly applied. This is by way of producing a ‘‘raster plot’’ or actogram, in

which data are broken up into 24-h segments, which are plotted one below the other

sequentially, that is, ‘‘modulo’’ 24 h. In this way, long records may be viewed easily

and the relationship between the rhythmicity and the 24-h day can be assessed (e.g.,

DeCoursey, 1960). However, we shall not consider this technique here. The reader is
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Fig. 2 Autocorrelograms produced from the data in the previous figure, appearing in the same order.

The correlogram is a time-domain analysis that allows assessment for the presence or absence of any

periodicities in the data as well as their regularity (see text). The autocorrelation values, r, are without

units. The horizontal lines above and below the abscissa are� the 95% confidence interval calculated as

2=
ffiffiffiffiffi
N

p
, in this case � 0.0258. (A) Correlogram from the data in Fig. 1A. This heart is exceptionally

regular in its rhythmicity. The decay envelope of the function is very shallow indicating long range order

and stable frequency. The height of the third peak, counting the peak at lag 0 as #1 is 0.935 and

constitutes the Rhythmicity Index (RI; see section below on signal strength and regularity). (B) In

keeping with the appearance of reduced regularity in Fig. 1B, the decay envelope is steep. The RI is

0.221. (C) The heart of this animal beats occasionally, but it is erratic in the extreme. Owing to an RI <

0.025, it is considered arrhythmic.
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referred to the following source for a full coverage with examples (Palmer et al.,

1994). It is worth noting, however, that such raster plots can be very misleading.

Flies bearing mutations in the period gene (Konopka and Benzer, 1971), considered

central to the biological ‘‘clock’’ (Dunlap, 1999), were reported as arrhythmic based

on such raster plotting and the employment of the badly flawed ‘‘spectral analysis’’

program erroneously called the ‘‘periodogram’’ (see later for a discussion; Dowse

et al., 1987). By choosing a proper value for the length of the raster based on

periodicity revealed by proper spectral analysis, ultradian (faster than 1/day) became

clear. Even the relatively insensitive autocorrelograms showed clear, significant

rhythmicity in these data (review: Dowse, 2008).

A further use of the autocorrelation algorithm can be done when it is desirable to

compare the phase relationship between two time series that have similar frequen-

cies. This may be done by way of ‘‘cross correlation.’’ In this case, instead of

comparing a time series with itself as it is lagged, a second time series is used. If they

are in perfect phase, the peaks in the correlogram will be centered, but insofar as

they are out of phase the central peak will be offset one way or the other. This

analysis has been covered in detail elsewhere (Levine et al., 2002).

One final technique can be applied in the time domain to enhance the interpretabil-

ity of data; this is ‘‘time averaging.’’ This is done commonly in electrophysiology, but

has been used in circadian rhythm research as well (see, e.g., Hamblen-Coyle et al.,

1989). In this process, successive cycles are excised from the data stream modulo the

period calculated and the peaks within are kept in phase. If this is done for a

behavioral rhythm, for example, recorded in a 24-h LD cycle, then the section is

simply 24 h. In electrophysiology, data sections containing individual events are

excised. These data segments become rows in a matrix in register with one another.

The columns produce means, which are plotted to get a composite picture of the

signal (Hille, 2001). Figure 3A depicts an artificially produced time series (produced

by a program we have written) consisting of a square wave with a period of 25 h and

50% stochastic noise added. We shall use this as an example of circadian periodicity.

For comparison, the autocorrelogram of the series is shown in Fig. 3B. Figure 3C

shows the result of time averaging the series to produce a single waveform estimate.

IV. Analysis in the Frequency Domain

In frequency analysis, the goal is to determine either the period or the frequency

of any cycles ongoing in the process. This is done by looking at signal power as a

function of frequency. Power in a signal is the ensemble average of the squared

values in the series (Beauchamp and Yuen, 1979). Note that if the mean is zero, this

is the same as variance. The power in the signals depicted in Fig. 1 are 1A¼ 7.732�
105; 1B ¼ 8.735 � 105; and 1C ¼ 6.813 � 105. It is informative to think of it this

way: the power in data is being partitioned by frequency, and the area under the

curve of a spectrum, constructed as described later, is the power in the original

signal.
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To prepare such a spectrum, the workhorse is Fourier analysis. This begins with

the remarkable observation that most functions can be approximated by a series of

sine and cosine terms in a process called orthogonal decomposition. Start with an

arbitrary function f(t) that conforms to the ‘‘Dirichlet conditions,’’ namely that it

has a finite number of maxima and minima, that it is everywhere defined, and that

there is a finite number of discontinuities (Lanczos, 1956, 1966). Biological time

series will almost certainly conform.
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f ðtÞ ffi a0

2
þ a1 sintþ a2 sin2tþ 	 	 	b1 costþ b2 cos2tþ 	 	 	: ð3Þ

The Fourier series used to approximate the function consists of pairs of sine and

cosine terms that are orthogonal (Hamming, 1983). An acoustic analogy is good

here. Think of the function as a guitar string, with the fundamental vibration first,

followed by successive harmonics. The mathematical interpretation is a series of

vectors of length R rotating in the complex plane with angular velocity o that is in

radians/s (o¼ 2pf or 2p/T, where f is frequency and T is period). Here R2¼ a2þ b2

for each value of a and b for a given harmonic (Beauchamp and Yuen, 1979). The

Fourier transform is a special case of the Fourier series, which in this form can now

be used to map the series from the time domain to the frequency domain as F(o)
with the series of coefficients a and b being extracted from data (Lanczos, 1956):
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Fig. 3 To simulate a circadian behavioral rhythm, a signal generating program was employed to

produce a square wave with a period of 25 h and 50% added white noise. Data acquisition was set at one

half hour intervals and 480 data points were produced with a simulated half hour sampling/binning rate.

(A) The raw unconditioned signal as it was produced by the program. (B) As with the heartbeat data, the

signal was analyzed with the autocorrelogram. Note the strong repeating peaks at lags of 25, 50, and

75 h. Despite the large amount of noise, given the unvarying length of the period, this is to be expected.

The decay envelope is not too steep. RI for this signal is 0.561. (C) The signal was broken up into 25-h

segments (50 data points each) which were inserted as rows into of a 9 X 50 (Row X Column) Matrix.

Extra ‘‘odd’’ points were discarded. The matrix columns were summed and a mean activity was

computed. This is the plot of the output of that operation, a time-averaged estimate of the underlying

wave form in the presence of high frequency noise.
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FðoÞ ¼
ð1
�1

f ðtÞe�iotdt; ð4Þ

where the exponential consolidates the sine and cosine terms. A plot of R2 calcu-

lated from the a and b coefficients extracted form the ‘‘periodogram’’ of the series

and constitute a representation of the spectrum (Schuster, 1898). Peaks in the

periodogram indicate periodicity in data at those given values. The area under

the curve, as noted, is the total power in data, and for each value of R, this can be

interpreted as the power in the signal at that period or frequency.

This process is not to be confused with another ‘‘periodogram’’ concocted some

time later and used extensively in biological rhythm work. Whitaker and Robinson

(1924) proposed producing a ‘‘Buys-Ballot’’ table for data using all possible values

for frequency. This is much like the rasterizing or signal averaging techniques

mentioned earlier. The rows of the series of matrices have varying length, sectioned

off modulo each periodicity. The columns of the matrices are then added and

means produced. For a matrix with a given set of row lengths, the variance of the

column sums becomes the coefficient for the period corresponding to the length of

that row. As the length varies, the variance will peak when the row equals the

length of the period. The peaks and valleys will all be in register at this point as

with the signal-averaged waveform discussed earlier. This method was cham-

pioned for circadian rhythm studies by Enright (1965, 1990). However, it is not a

mathematically sound procedure, as was demonstrated conclusively by Kendall

(1946) when he noted that if there is a peak in the output, it does not mean there is

any periodicity, as the variance of the column sums is independent of their order.

In any event, in practice, this ‘‘periodogram’’ is unable to perform to the standards

demanded of modern spectral analysis techniques. Historically, its widespread

employment obscured important short-period (ultradian) rhythms in what

appeared to be arrhythmic flies for a long time (see earlier discussion; review:

Dowse, 2008). Its use is not recommended by this author. At the very least, because

of Schuster’s (1898) long priority, it cannot legitimately be called a periodogram.

Figure 4 shows theWhitaker/Robinson (1924) ‘‘periodogram’’ for the noisy square

wave depicted in Fig. 3A and compared further with the corresponding MESA

plot in Fig. 6D (full discussion: Dowse and Ringo, 1989, 1991).

Figure 5 shows discrete Fourier analyses of the same three fly heartbeat records

shown in Figs. 1 and 2. The algorithm used here is the long ‘‘brute force’’ computa-

tional method effected by operating on the original data set. In common usage, the

actual transform is done not on original data, but on either autocorrelation or

autocovariance functions. If it is the former, then the output is spectral density; if

it is the latter, it is the true periodogramSS. In the latter case, the area under the curve

is the power in the signal, and this can be useful, whereas the normalization inherent

in spectral density allows comparisons independent of the amplitude of the process

across subjects (Chatfield, 1989). More computationally efficient methods, for

example, the fast Fourier transform, are faster (Cooley et al., 1969).

Compromises must be made in standard Fourier spectral analysis. We will

consider a brief summary of the concerns here and reference more thorough
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coverage. Recall that as the data vector is lagged in the calculation of the auto-

covariance or autocorrelation function, data are lost off the ‘‘ends.’’ As noted, this

means that confidence intervals widen. Also, this imposes a limit on how long the

computed function can be. To achieve the requisite number of samples to do

computation of the coefficients, the function is ‘‘padded out’’ with zeros. Also

the Fourier transform causes artifactual peaks when there are sharp discontinu-

ities, so the step created when the autocorrelation or autocovariance function is

terminated is smoothed out by a ‘‘window’’ function. This is a compromise in its

own right, as what were perfectly good data points are altered by the smoothing

operation. The practical tradeoff is between resolution and what is called side-lobe

suppression (reviews: Ables, 1974; Chatfield, 1989; Kay and Marple, 1981).

In recent years, a new method for producing a spectrum that addresses these

problems has become popular and, wemaintain, is quite a good choice for biological

time series. This technique is called ‘‘maximum entropy spectral analysis’’ (MESA;

Burg, 1967; 1968; Ulrych and Bishop, 1975). In its most basic sense, it is a way of

extending the autocorrelation out to the end in a reasonable manner, which is

consistent with maximizing ignorance of the series, that is, entropy in its information

sense. In choosing zeros to pad out the AC function, one is making an assumption

about the process, creating values arbitrarily. It seems unlikely that if the process had

continued, it would have consisted of only zeros. However, orthogonal decomposi-

tion creates no model of the system and thus cannot predict. Stochastic modeling of

the system is the answer. An autoregressive (AR) function is fitted to data, which

describes the evolutionof the system in time. The assumption is that the systemmoves
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Fig. 4 A Whitaker-Robinson ‘‘periodogram’’ of the data vector shown in Fig. 3A. Note the ragged,

noisy output with the monotonically rising background and the multiple ‘‘harmonics.’’
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forward in time as a function of previous values and a random noise component. The

previous values are weighted by a series of coefficients derived from known data

values (Ulrych and Bishop, 1975):

Xt ¼ aXt�1 þ bXt�2 þ cXt�3 þ . . .Zt; ð5Þ
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Fig. 5 Discrete Fourier analysis of the heartbeat data shown in Fig. 1. (A) The very regular heart

produces a clean spectral output at approximately 2 Hz, which is substantiated by the peaks in the

autocorrelogram (Fig. 2A). (B) The Fourier spectrum becomes less regular with this heartbeat which is

substantially more erratic. Nonetheless, the output shows a peak at just under 2 Hz. (C) The spectrum

appears as just noise in this analysis of a heart that was shown to be arrhythmic by its low RI. Note the

relatively large noise component at very high frequency. (D) This analysis, when applied to the artificial

square wave shown in Fig. 3A, yields a fairly broad peak at the expected 25 h.
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where a, b,. . .are the model’s coefficients and Zt is random noise. These coefficients

constitute the prediction error filter (PEF). It is possible to predict values into the

future, in this case functionally taking the autocorrelation function out to the

needed number of values. Mathematically, it formally maximizes ignorance of

the function, meaning that the values estimated are most likely based on what is

known from data in hand. The spectrum is constructed from the coefficients as

follows:

SðoÞ ¼ P

1�
Xp
k¼1

ake�iok

�����
�����
2
: ð6Þ

MESA has proven itself superior to ordinary Fourier analysis, as it does not

produce artifacts from the various manipulations, which need to be absent in a

model for the function, and both resolution and side-lobe suppression are superior

to standard Fourier analysis (Ables, 1974; Kay and Marple, 1981). We employ a

computationally efficient algorithm described by Andersen (1974).

The number of coefficients in the PEF is crucial to the output of the analysis.

Too few, and resolution and important detail can be lost. If an excessive number is

used, the spectrum will contain spurious peaks. In practice, an objective method

has been described using the methods of Akaike (Ulrych and Bishop, 1975), based

on information theory that chooses a PEF that is consistent with the most amount

of real, useful information that can be extracted. This is employed in the MESA

software application demonstrated here, but we usually set a minimum filter length

of about N/4 for biological rhythm analyses to ensure adequate representation of

any long period cycles in the presence of considerable noise. This is not usually

necessary for the heartbeat analyses.

Figure 6 shows the three heartbeat records shown earlier, subjected here to

MESA. Note the relationship between the sharpness of the peaks and the regulari-

ty of the rhythms. It should be pointed out that the broadness of the peak in the

preceding Fourier spectrum is partially a result of the paucity of coefficients that

can be computed. This number may be increased if necessary (Welch, 1967) for

greater resolution; however, we did not elect to do this here (Please see discussion

in section VIII below). It is substantially easier to increase the number of MESA

coefficients to any degree needed, with a concomitant increase in computation

time, but for comparison’s sake, we left the number at the minimum level. For

comparison, the artificially produced circadian rhythm-like signal created to dem-

onstrate signal averaging in Fig. 3 has been analyzed by Fourier analysis [Fig. 5D,

MESA (Fig. 6D)]. In theWhittaker–Robinson ‘‘periodogram’’ (Fig. 4), the ragged,

weak 25-h peak, along with the multiple subpeaks at resonant harmonics, is

striking, as is the inexorably rising background noise level. MESA produces a

single peak, much sharper than in the Fourier spectrum (Fig. 5D) and there is little

interference by the 50% of the signal that is added noise.
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V. Time/Frequency Analysis and the Wavelet Transform

The primary problem with any Fourier-based system is the fundamental as-

sumption that the process goes on unchanged for all time, the definition of a

stationary series (Chatfield, 1989). Period, phase, and amplitude are invariant.
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Fig. 6 Maximum Entropy Spectral Analysis (MESA) for the four time series shown in Figs. 1 and 3.

(A) The most regular heart once again produces an extremely clean plot with no noise apparent in the

spectrum. The peak, taken directly by inspection of the output of the program is 2.07 Hz. (B) While less

regular, with a hefty peak of noise in the high frequency range, this heart also produces a relatively clean

spectral peak at 1.87 Hz, as taken from the output file as in (A). (C) This is a typical noise spectrum. The

few actual beats are lost in the record. This result is common for arrhythmic hearts. (D) For the

artificially produced circadian rhythm example, theMESA peak is at exactly 25 h, as would be expected.

Compare the sharp, narrow peak here with the Fourier analysis of the same file depicted in Fig. 5D and

the sketchy ‘‘periodogram’’ in Fig. 4. There is no evidence of the large amount of noise that was added to

the signal when it was produced. This is a typical performance for this advanced signal analysis

technique.



The output of the analysis degrades to the extent that the system changes with time.

Biological systems are not known for being stationary. To show the effect of

changing period, a ‘‘chirp’’ was produced. Here, the signal is generated by the

following equation:

Xt ¼ cosðot1:3Þ: ð7Þ
The output series is plotted in Fig. 7, along with a plot of a MESA done on the

data. Even the redoubtable MESA is incapable of dealing with this continually

moving target.

Thus, it would be advantageous to follow a changing system as it evolves in time

rather than looking for some consensus peak for the entire record. For example, if

the heart slows down at some point, either as a result of treatment or because of

alterations in the animal’s internal physiology, it would be useful to be able to

document this objectively and know when the change occurs. This is the role of

‘‘time-frequency analysis’’ and there are several methodologies (Chui, 1992). One

might, for example, do short time fast Fourier transforms, meaning breaking a

longer signal down into shorter segments. The loss in power of the analysis is great,

however, which is unavoidable. The more you decide you want to know about

frequency, the less you know about the time structure and vice versa. This rela-

tionship is rooted in quantum theory, literally the uncertainty principle (Chui,

1992; Ruskai et al., 1992). It is useful to think of a plot with the frequency domain

of a time series as the ordinate and the time domain as the abscissa. If one draws a

rectangular box in that two-dimensional plane delimited along the ordinate by

what is known reliably of frequency and on the abscissa by knowledge of time, the

uncertainty constraint means that the area of the box can never decrease below a

minimum. If you want to know more about time, you contract that interval, but at

the expense of widening the interval on the frequency axis, increasing uncertainty

about that domain (Chui, 1992).

A very useful way to do time-frequency analysis has turned out to be to use

‘‘wavelet decomposition’’ (Chui, 1992; Ruskai et al., 1992). Wavelets are compact-

ly supported curves, meaning that they are nonzero only within a bounded region.

They can be as simple as the Haar wavelet, which is just a single square wave; they

may be derived from cardinal spline functions, or they may even be fractal (Chui,

1992; Ruskai et al., 1992). This wavelet is convolved with the time series, meaning

that each value of the wavelet is multiplied by a corresponding value of the time

series and a sum of the values is computed. The wavelet is then translated (moved

systematically) along the series, producing values from the convolution as it goes,

which are the wavelet coefficients. The wavelet is then dilated, meaning it retains its

form, but is made larger along its x axis. The process of translation is repeated and

a second band of values is computed. This continues over a range of dilations. The

matrix of the output is a representation of original data, but has substantially fewer

points in it; this is one method of data compression. This is the wavelet transform. It

is useful for storing signals, but more has been done than just that. For example, if

you take a large matrix and waveletize it to produce a compressed ‘‘sparse’’ matrix,
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you can invert it much faster than you can invert the original. Taking the inverse

wavelet transform does not restore the original matrix, rather it produces the

inverted matrix, which can be useful in many applications (Chui, 1992; Ruskai

et al., 1992).
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frequency is rising regularly and monotonically as a power of time (see text). (B) Application of MESA

to this signal produces a very erratic output which is virtually uninterpretable.
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The critical consideration for signal analysis is that as the wavelet is dilated, it

has different filtering characteristics. In this so-called ‘‘multiresolution analysis,’’

each wavelet band will have a different range of frequencies that have been allowed

to pass the filter and, crucially, the information about the TIME when these

frequencies occur is retained. Imagine, for example, a trumpet note, which is

anything but constant over the course of its evolution. Fourier analysis might

simply break down (as didMESA, discussed earlier, when presented with a chirp, a

far simpler time series), but when wavelet analysis is done, it would show a useful

breakdown of frequency as a function of time.

The utility of wavelet transform analysis for biological data is proving out in the

investigation of another fly system. D. melanogaster males court females using a

number of stylized behavioral gestures (Spieth and Ringo, 1983). Among these is

the production of a ‘‘mating song.’’ This is produced during courtship by the male

extending a single wing and vibrating it, producing either a ‘‘hum,’’ also known as

a ‘‘sine song,’’ or a ‘‘buzz,’’ which is a series of short wing flicks called a ‘‘pulse

song’’ (Shorey, 1962). Much information of use to the female is inherent in this

signaling (Kyriacou and Hall, 1982). The sine portion is of problematic utility

(Kyriacou and Hall, 1984; Talyn and Dowse, 2004; von Schilcher, 1976), but the

pulse song is species specific and definitely primes the female to mate more rapidly

(Kyriacou and Hall, 1982; Talyn and Dowse, 2004). There is a sinusoidal rhythm

in the peak-to-peak interval, the IPI, which varies regularly with a periodicity of

about a minute. Remarkably, the period of this cyclicity is, to an extent, under the

control of the period gene, which encodes a molecule of importance in the 24-h

clock mechanism (Alt et al., 1998; Kyriacou and Hall, 1980). Given the staccato

nature of the signal, wavelet analysis is a natural choice for time-frequency analysis

and even potential automation of song analysis.

We illustrate wavelet analysis of this signal as follows (data taken by Dr. Becky

Talyn in this laboratory): males and females were housed separately within 10 h

after eclosion to ensure adequate mating activity. Individual males and females

were aspirated into a 1-cm chamber in an ‘‘Insectavox’’ microphone/amplifier

instrument (Gorczyca and Hall, 1987) capable of picking up sounds at this inten-

sity. The amplified signal was collected by a computer with a Sound Blaster card

digitizing at 11,025 Hz. The sound card was controlled by and data were further

viewed and edited using Goldwave software. Figure 8A depicts a section of sine

song from a typical record, while Fig. 8B shows pulses. This section of song was

subjected to cardinal spline wavelet decomposition using a program of our devis-

ing (program written in collaboration with Dr. William Bray, Department of

Mathematics and Statistics and School of Biology and Ecology, University of

Maine). Figure 8C shows a 2-s segment of song with both sine and pulse present,

along with three bands from a wavelet analysis. The central frequency of the

transfer function (see later) increases from top to bottom: 141, 283, and 566 Hz.

The pulses appear as sharp peaks in all bands (even the last—they are just not seen

readily if the scale of the abscissa is kept the same), meaning that the wavelet sees

them as ‘‘singularities,’’ while the sine song appears in only one band, appropriate

500 Harold B. Dowse



to its commonly accepted species-specific frequency of 155 Hz (Burnet et al., 1977).

It is hoped that the differential presence of the two components in these two bands

will allow us to automate the song analyses, a project that is ongoing at this time

(Dowse and Talyn, unpublished).
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VI. Signal Conditioning

Biological data are seldom ‘‘clean.’’ Living systems commonly have noise asso-

ciated with them, which can be a serious detriment to analysis. If the signal being

acquired is analog voltage, electronic filtering can be done to remove at least a

portion of this. Sixty-hertz notch filters to remove this omnipresent ‘‘hum’’ in

electrophysiological preparations are a common example. However, we deal here

with digitized signals in computers and have at hand a satisfying array of digital

signal conditioning techniques for improving our analysis output once data have

been recorded (Hamming, 1983).

The first sort of problem is very common in the study of biological behavioral

rhythms. This is trend. An animal may be consistently rhythmic throughout a
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Fig. 8 (A)MaleDrosophila melanogaster producemating song by vibration of their wings. The output

can come in two forms, either sine song, which sounds like a hum, or pulse song which makes a staccato

buzz. (A) short segment of sine song and (B) pulse song. (C) Top panel: two seconds of song from which

the above segments were excised as examples. Panel 2: Output of a cardinal spline wavelet analysis with

a central frequency pass at 141 Hz, near the commonly reported species norm of
150 Hz (see text). The

ordinates of this panel and those below are power rather than amplitude, so the output can be thought

of as a time-frequency analysis, showing howmuch power is present at a given time rather than a way of

looking at all frequencies present across all time. Note that both the pulses and the sine pass power

through the operation. Panel 3: Here, the pulses continue to pass power, as they are seen by the wavelet

as singularities, while the sine disappears. The central frequency of the band is 283 Hz. Panel 4: There is

nothing in the signal that passes through at this central frequency of 566 Hz with the exception of pulses

that are barely visible at this scale. Bands higher or lower than the ones shown are similar.
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month-long running-wheel experiment, for example, but the level of its total activity

may increase or decrease through that period of time. There may also be long-period

fluctuations as well. This is also commonly seen in experiments where rhythmic

enzymatic activity is being recorded and the substrate is depleted throughout the

time period, leaving a decay envelope superimposed over the fluctuations of interest.

There are numerous examples that could be cited.One exemplary problem is the search

for rhythms as amplitude declinesmonotonically (review: Levine et al., 2002). Theway

to tackle this is to remove any linear trend. In doing this, it is also sound practice to

remove themean from the series. This is equivalent to removing the ‘‘direct current’’ or

DC part of the signal (Chatfield, 1989). There may be a strong oscillation in a parame-

ter superimposed on a largeDC offset, whichwill detract from the analysis. Removing

the mean will leave only the ‘‘alternating current’’ or AC portion. The technique is

extremely straightforward. One fits a regression line to data and subtracts that regres-

sion line from original data point by point (Dowse, 2007).

More problematic is a situation where there are nonlinear trends, for example, if

one is looking for ultradian periodicity, and have a strong circadian period upon

which it is superimposed. There are several ways to combat this. We will consider

two here. First, ‘‘Fourier filtering’’ can be done to remove long-period rhythmicity.

The discrete Fourier transform is first taken, and the Fourier coefficients are

computed. Recall that these coefficients are orthogonal, meaning that they are

totally independent of one another. What one does in one area of the spectrum

does not affect actions taken in another. Hence, one simply zeroes out the coeffi-

cients for periodicities or frequencies one wishes to eliminate and then does the

inverse Fourier transform. The resultant reconstructed time series then no longer

has those frequencies and there is no disturbance of the other periodicities of

interest (Dowse, 2007; Levine et al., 2002; Lindsley et al., 1999).

This is by way of doing a ‘‘high pass filter,’’ meaning that the higher frequencies

pass with a removal of the longer. Other filtering techniques are available, and

digital filters of many sorts can be applied. We shall consider these in the context of

‘‘low pass’’ filters as the techniques are similar. The function of any filter is

characterized by its transfer function, which is a plot of power transmitted as a

function of frequency (Hamming, 1983).

Themore common problemwith biological signals in physiology is high frequency

noise. This can arise within the electronics of the data acquisition systems themselves

or be part of the actual process. Either way, this ‘‘static’’ can be highly detrimental to

analyzing the longer frequency periodicities of interest. The amount and power in the

noise portion of the spectrum can be computed for reasons relating to understanding

the process itself, which is the subject of the next section. Here, we deal with ways of

removing the noise from data to strengthen analysis, for example, to be certain

frequency estimates are as accurate as may be obtained from data in hand.

We have already discussed several techniques for minimizing noise. Signal

averaging is one done in the time domain, yielding more accurate waveform

approximation. Noise is distributed stochastically throughout the spectrum and

hence cancels out when multiple cycles are superimposed. The signal, however,
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reinforces itself continually cycle after cycle. Binning of unary data also removes

substantial noise as this process acts as a low pass filter in and of itself (Dowse and

Ringo, 1994). However, we now begin work with digital filters per se, beyond the

Fourier filtering discussed briefly immediately preceding.

The simplest sort of digital filter is amoving average. Thismaybe nothingmore than

a three-point process: Yt ¼ (Xt�1 þ Xt þ Xtþ1)/3, where Xt ¼ X1, X2,. . ., XN is the

original series, andYt is the filtered version. This is surprisingly effective and can be all

that is needed. However, far more sophisticated filters are available and there are

freeware programs available to compute the coefficients. Chebyshev and Butterworth

recursive filters are well-known examples (review: Hamming, 1983). We consider here

the Butterworth. This is called recursive because not only are original time series data

incorporated into themovingfiltering process, but previously filtered values are used as

well. Butterworth filters are highly accurate in their frequency stopping characteristics,

and the cutoff canbemadequite sharp.The cutoff is usually expressed indecibels and is

a quantification of the decrement in amplitude at a particular frequency. The cutoff

frequency is the value at which the decrement, for example, 3 dB, is specified. In Fig. 9,

the artificially produced square wave depicted first in Fig. 3A is shown after filtering

with a two-pole low pass Butterworth filter with a�3-dB amplitude decrement at the

cutoff period of 4 h (Hamming, 1983). The filter recursion is

Yt ¼ ðXt þ 2Xt�1 þ Xt�2 þ AYt�1 þ BYt�2Þ=C; ð8Þ
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Fig. 9 The signal in Fig. 3A was filtered with a low-pass recursive Butterworth filter (see text) with a

3-dB attenuation at a period of 4 h. The 50% added noise is substantially reduced, and the underlying

signal is far easier to see. There is a slight phase lag introduced compared to the original.
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whereXt is the original data series andYt is the output. A and B are filter coefficients:

A ¼ 9.656 and B ¼ �3.4142. C is the ‘‘gain’’ of the filter, meaning the amplitude

change in the filtered output and C ¼ 10.2426. Note again that both original data

points and points from the output vector are combined. There is a net phase delay in

the series produced by the filter, which should be kept in mind if phase is something

of interest, as is often the case in biological rhythm work. Note also that the mean

has been subtracted out, as was described in an earlier section. One important

warning, it is highly inadvisable to run a filter more than once to achieve further

smoothing as this will result inmultiplication of error in the signal (Hamming, 1983).

VII. Strength and Regularity of a Signal

The amount of noise in a biological signal is more than just an annoyance when

it comes to analysis. Assuming that the noise arises in the system being monitored

and not in the acquisition hardware, it may be part of the process itself and thus

will be of extreme interest. How strong and regular is the signal? Such central

questions can reflect on values of parameters in the oscillating system, for example,

activity of enzymes, or, in the heart pacemaker, conductivity and kinetics of the

component ion channels. Note that strength and regularity are not the same thing.

A wild-type fly heart beating at 2 Hz may have a much greater regularity than a

mutant heart beating at the same rate and amplitude, all else being equal (Johnson

et al., 1998). In the heart, ‘‘noise’’ may be an artifact resulting from interference by

unrelated systems, but might also derive from poorly functioning ion channels

(Ashcroft, 2000; Dowse et al., 1995). Thus quantification of noise and irregularity

can be enlightening and useful (Glass and Mackey, 1988).

One standard way to quantify noise in a system in engineering is by the signal-to-

noise ratio (Beauchamp and Yuen, 1979). As noted earlier, power in digital signals

is the ensemble average of the squared values of the vector. Note that a noiseless,

DC signal would still have power by this definition, while its variance would be

zero. If all the noise in the signal is constrained to one region of the spectrum, while

the signal is in another, SNR computation from the power spectrum would be

simple. This is not usually the case, however, and given the erratic waveforms in

biological signals, it is necessary to use alternate strategies.

To characterize such signals, we developed an algorithm based on MESA that

allows waveform-independent calculation of SNRs (Dowse and Ringo, 1987, 1989).

In thismethod, we fit theAR function to the vector in the usualmanner; however, we

use the coefficients calculated not in the PEF to compute a spectrum, but plug them

into the actual AR model and use this equation, thus fleshed out with numbers

derived from data, to predict upcoming values from past ones. A new series is thus

generated one datum at a time from the previous values of the original. If, say, there

are 30 coefficients, valueYt in a series of predicted values is generated by the previous

30 values ofX (Xt�1,Xt�2, . . .Xt�30), the original series operated on by the filter. This

forms a predicted output vector Y in parallel to the original. This process continues,
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working through the time series one value at a time until the entire predicted series is

developed. The power in this series (as defined earlier) is the ‘‘signal’’ as it reflects the

output of the model underlying the original series. The generated series Y is sub-

tracted point by point from the values of X, and the difference series is the ‘‘noise.’’

The ratio of the power in the generated series to that of the noise series is the SNR.The

SNRs of the three heartbeat records are A ¼ 2134, B¼ 667, and C¼ 488.

Noise in the system obscuring the output is not the only variation. The output of

the oscillator generating the periodicity may also be irregular in another way,

namely its period may vary from cycle to cycle. In the heart pacemaker, this may

be a result of chaos (Glass and Mackey, 1988). The variation is not stochastic, but

rather derives from a deterministic process, which has no perfect repeating orbit in

phase space, and is considered ‘‘pseudoperiodic.’’ This is considered quite normal

and even necessary in a healthy heart, but in excess, chaos can be life-threatening.

Fibrillation is the worst-case scenario, but irregular heartbeat plagues millions of

patients and may often be fatal; analysis of the regularity of heartbeat may prove

to be a useful predictive tool (Lombardi, 2000).

To assess this beat-to-beat variability, onemay go to the length of recording these

intervals from raw data and looking at the variance. Alternatively, difficult algo-

rithms can be used to compute how chaotic a system might be (Glass and Mackey,

1988). We have chosen a simple way to characterize this phenomenon in physiolog-

ical oscillators based on the autocorrelation function (review: Levine et al., 2002).

We measure the height of the third peak in the autocorrelogram, counting the first

peak as the peak at lag zero, which is termed the rhythmicity index (RI). The decay

envelope of the autocorrelogram is a function of the long-range regularity in the

signal (Chatfield, 1989). If there is a lot of variation between beats, plus possible

beat-to-beat decrement in amplitude, the function will decay more rapidly than in a

regular series. With a perfect sinusoid, it will not decay at all. We have a program

employing a sequential bubble sort algorithm that automatically retrieves this value

from the output files of the autocorrelation program. Values of RI for the heights of

the third peaks of the autocorrelograms depicted in Fig. 2 areA¼ 0.935, B¼ 0.221,

and C ¼ arrhythmic (no significant third peak; in fact, no third peak at all). Note

that as in the autocorrelogram itself, from which this statistic is derived, values are

normalized to the unit circle. These values are distributed normally and can be

compared statistically. While this is not sophisticated enough to be used diagnosti-

cally, it is of more than sufficient resolution for us to compare heartbeat among

strains with mutations affecting heart function (see, e.g., Sanyal et al., 2005).

VIII. Some Practical Considerations on Statistical Comparisons of
Analytical Results

Up to this point, we have considered only the techniques for estimating values, in

most cases the period or frequency of a periodic process evolving in time. But once

those results are in hand, theymay then need to be analyzed using standard statistical
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tests, for example, to determine if a genetic lesion results in an altered period. The

nature of the spacing of the spectral data needs consideration. Comparing Fourier

spectral analysis with MESA is instructive. Consider a hypothetical experiment

involving monitoring circadian periodicity in a mouse for a week. The spacing of

frequencies to compute in these two analyses is substantially different. The time series

can be considered a discrete sampling of the process even though the data are likely

collected as events per unit time. InFourier analysis, the frequencies are harmonics of

one full cycle and are discrete samples of a continuous spectrum. Ifweare interested in

comparing circadian periodicity, we take the reciprocal of frequency to show period.

Alarmingly, independent of our sampling frequency (see above), we get the following

periods for which Fourier coefficients can be computed: 18.7, 21.0, 28.0, and 33.6 h.

The sampling of the spectrum is sparse and attempting to compare periods between

two sample populations would be problematic. This is partially compensated in

modern Fourier analysis by padding the data with zeros to get tighter spacing, but

as has been argued above, this has its drawbacks (Ables, 1974; Welch, 1967).

It is easier with MESA and there are no compromises. Since the process is based

on an AR model, one may arbitrarily decrease the sampling interval. Starting at

the base level, the periods (in hours) for which MESA would calculate coefficients

in the range near 24 h (rounded off to two decimals) are 22.7, 24.3, and 26.2, not

much different from the Fourier analysis. However, by a simple change in the

algorithm used to get the periods for which coefficients are calculated, the interval

between estimates can be lowered to just a few minutes: 24.00, 24.10, 24.20, 24.31,

24.42, 24.53, 24.64, 24.75, 24.87, and 24.98 h. The interval can be lowered further

to an arbitrary level, but little is to be gained beyond this point, as the increased

precision of the estimates would be lost in the noise in the system. This is done with

no change in the manner in which coefficients are computed.

A simple technique for analysis of spectral data is also worth considering at this

point. Often, one may be looking at multiple periodicities in a range. This is

common, for example, when ultradian rhythms are of interest (e.g., Dowse, 2008).

Here, the use of the discrete Fourier transform becomes useful, not for estimating

spectra per se, but for modeling the system in the classical sense (Lanczos, 1956). The

resulting Fourier coefficients that result from fitting the sine and cosine series can be

compared with standard statistical tests. Dowse et al. (2010) compared ultradian

rhythms across several genetically distinct strains of mice whose activity was moni-

tored in a 12:12 LD cycle. By doing a standard ANOVA, it was found that there

were systematic variations in the ultradian range among the strains, suggesting

genetic variation underlying the multiple periodicities we observed.

IX. Conclusions

A complete suite of programs for the analysis of biological time series has been

described, capable of dealing with a wide range of signals ranging from behavioral

rhythmicity in the range of 24-h periods to fly sine song in the courtship ritual,
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commonly in the range of 150 Hz in D. melanogaster. Frequencies outside this

range can be dealt with easily and are limited only by data acquisition systems. It

should be possible to pick and choose among the various techniques to assemble a

subset for almost any situation. All the programs demonstrated here, other than

the proprietary MATLAB used extensively for plotting output and the Goldwave

program used in programming the SoundBlaster card, are available from the

author free of charge. They may be requested in executable form or in FORTRAN

source code from which they may be translated into other programming languages.

For the former, a computer capable of running DOS window applications is

required, but we have tested all applications in operating systems up to and

including Windows XP.
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Abstract

Computational models are powerful tools that can enhance the understanding

of scientific phenomena. The enterprise of modeling is most productive when the

reasons underlying the adequacy of a model, and possibly its superiority to other

models, are understood. This chapter begins with an overview of the main criteria

that must be considered in model evaluation and selection, in particular explaining

why generalizability is the preferred criterion for model selection. This is followed

by a review of measures of generalizability. The final section demonstrates the use

of five versatile and easy-to-use selection methods for choosing between two

mathematical models of protein folding.
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I. Update

Advancement in the field of model evaluation tends to be gradual. This chapter

was written sufficiently recently that there have been no developments that would

qualify what was written. In place of such an update, we would like to make

modelers aware of a growing field that could be of interest in their pursuit of

distinguishing computational models. Statistical model selection methods such as

Akaike information criterion (AIC) and Bayesian model selection (BMS) are used

to compare models after data are collected in an experiment. Why not use knowl-

edge of these models and the experimental setting in which they are compared to

design better experiments with which to discriminate them? Design optimization is

a burgeoning field that has the potential to accelerate scientific discovery. Recent

advances in Bayesian statistics now make it possible to design experiments that are

optimized along various dimensions to distinguish competing computational mod-

els. In brief, through a sophisticated search of the design space of the experiment

and the parameter spaces of the models, the method identifies the designs that are

most likely to discriminate the models if the experiment were conducted. Interested

reader should consult the following papers: Muller et al. (2004) and Myung and

Pitt (2009).

Hints and Tips

(1) A good fit is a necessary, but not a sufficient, condition for judging the

adequacy of a model.

(2) When comparing models, one should avoid choosing an unnecessarily

complex model that overfits, and instead, should try to identify a model that is

sufficiently complex, but not too complex, to capture the regularity in the data.

(3) Model comparison should be based not upon goodness of fit (GOF), which

refers to how well a model fits a particular pattern of observed data, but upon

generalizability, which refers to how well a model fits not only the observed data at

hand but also new, as yet unseen, data samples from the same process that

generated the observed data.

(4) If models being compared differ significantly in number of parameters and

also the sample size is relatively large, use AIC, AICc, or Bayesian information

criterion (BIC).

(5) If the conditions in (4) are not met or when the models have the same

number of parameters, start by using CV or accumulative prediction error

(APE). Their ease of application makes them a worthwhile first step. Only if they

do not provide the desired clarity regarding model choice should BMS or stochas-

tic complexity (SC) be used.

(6) Keep the outcomes of model comparison analyses in perspective. They are

only one statistical source of evidence in model evaluation.
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II. Introduction

How does one evaluate the quality of a computational model of enzyme kinet-

ics? The answer to this question is important and complicated. It is important

because mathematics makes it possible to formalize the reaction, providing a

precise description of how the factors affecting it interact. Study of the model

can lead to significant understanding of the reaction, so much so that the model

can serve not merely as a description of the reaction, but can contribute to

explaining its role in metabolism. Model evaluation is complicated because it

involves subjectivity, which can be difficult to quantify.

This chapter begins with a conceptual overview of some of the central issues in

model evaluation and selection, with an emphasis on those pertinent to the

comparison of two or more models. This is followed by a selective survey of

model comparison methods and then an application example that demonstrates

the use of five simple yet informative model comparison methods.

Criteria on which models are evaluated can be grouped into those that are

difficult to quantify and those for which it is easier to do so (Jacobs and Grainger,

1994). Criteria such as explanatory adequacy (whether the theoretical account of

the model helps make sense of observed data) and interpretability (whether the

components of the model, especially its parameters, are understandable and are

linked to known processes) rely on the knowledge, experience, and preferences of

the modeler. Although the use of these criteria may favor one model over another,

they do not lend themselves to quantification because of their complexity and

qualitative properties. Model evaluation criteria for which there are quantitative

measures include descriptive adequacy (whether the model fits the observed data),

complexity or simplicity (whether the model’s description of observed data is

achieved in the simplest possible manner), and generalizability (whether the

model is a good predictor of future observations). Although each criterion identi-

fies a property of a model that can be evaluated on its own, in practice they are

rarely independent of one another. Consideration of all three simultaneously is

necessary to assess fully the adequacy of a model.

III. Conceptual Overview of Model Evaluation and Comparison

Before discussing the three quantitative criteria in more depth, we highlight

some of the key challenges of modeling. Models are mathematical representations

of the phenomenon under study. They are meant to capture patterns or regularities

in empirical data by altering parameters that correspond to variables that are

thought to affect the phenomenon. Model specification is difficult because our

knowledge about the phenomenon being modeled is rarely complete. That is, the

empirical data obtained from studying the phenomenon are limited, providing

only partial information (i.e., snapshots) about its properties and the variables that
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influence it. With limited information, it is next to impossible to construct the

‘‘true’’ model. Furthermore, with only partial information, it is likely that multiple

models are plausible; more than one model can provide a good account of the data.

Given this situation, it is most productive to viewmodels as approximations, which

one seeks to improve through repeated testing.

Another reason models can be only approximations is that data are inherently

noisy. There is always measurement error, however small, and there may also be

other sources of uncontrolled variation introduced during the data collection

process that amplifies this error. Error clouds the regularity in the data, increasing

the difficulty of modeling. Because noise cannot be removed from the data, the

researcher must be careful that the model is capturing the meaningful trends in the

data and not error variation. As explained later, one reason why generalizability

has become the preferred method of model comparison is how it tackles the

problem of noise in data.

The descriptive adequacy of amodel is assessed bymeasuring howwell it fits a set

of empirical data. A number of GOFmeasures are in use, including sum of squared

errors (SSE), percent variance accounted for, and maximum likelihood (ML; e.g.,

Myung, 2003). Although their origins differ, they measure the discrepancy between

the empirical data and the ability of a model to reproduce those data. GOF

measures are popular because they are relatively easy to compute and the measures

are versatile, being applicable to many types of models and types of data. Perhaps

most of all, a good fit is an almost irresistible piece of evidence in favor of the

adequacy of amodel. Themodel appears to do just what one wants it to—mimic the

process that generated the data. This reasoning is often taken a step further by

suggesting that the better the fit, the more accurate the model. When comparing

competing models, then, the one that provides the best fit should be preferred.

GOF would be suitable for model evaluation and comparison if it were not for

the fact that data are noisy. As described earlier, a data set contains the regularity

that is presumed to reflect the phenomenon of interest plus noise. GOF does not

distinguish between the two, providing a single measure of a model’s fit to both

(i.e., GOF ¼ fit to regularity þ fit to noise). As this conceptual equation shows, a

good fit can be achieved for the wrong reasons, by fitting noise well instead of the

regularity. In fact, the better a model is at fitting noise, the more likely it will

provide a superior fit than a competing model, possibly resulting in the selection of

a model that in actuality bears little resemblance to the process being modeled.

GOF alone is a poor criterion for model selection because of the potential to yield

misleading information.

This is not to say that GOF should be abandoned. On the contrary, a model’s fit

to data is a crucial piece of information. Data are the only link to the process being

modeled, and a good fit can indicate that the model mimics the process well.

Rather, what is needed is a means of ensuring that a model does not provide a

good fit for the wrong reason.

What allows a model to fit noisy data better than its competitors is that it is the

most complex. Complexity refers to the inherent flexibility of a model that allows it
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to fit diverse data patterns (Myung and Pitt, 1997). By varying the values of its

parameters, a model will produce different data patterns. What distinguishes a

simple model from a complex one is the sensitivity of the model to parameter

variation. For a simple model, parameter variation will produce small and gradual

changes in model performance. For a complex model, small parameter changes can

result in dramatically different data patterns. It is this flexibility in producing a

wide range of data patterns that makes a model complex. For example, the cubic

model y ¼ ax2 þ bx þ c is more complex than the linear model y ¼ ax þ b. As

shown in the next section, model selection methods such as AIC and BIC include

terms that penalize model complexity, thereby neutralizing complexity differences

among models.

Underlying the introduction of these more sophisticated methods is an impor-

tant conceptual shift in the goal of model selection. Instead of choosing the model

that provides the best fit to a single set of data, choose the model that, with its

parameters held constant, provides the best fit to the data if the experiment were

repeated again and again. That is, choose the model that generalizes best to

replications of the same experiment. Across replications, the noise in the data

will change, but the regularity of interest should not. The more noise that the

model captures when fit to the first data set, the poorer its measure of fit will

be when fitting the data in replications of that experiment because the noise will have

changed. If a model captures mostly the regularity, then its fits will be consistently

good across replications. The problem of distinguishing regularity from noise is

solved by focusing on generalizability. A model is of questionable worth if it does

not have good predictive accuracy in the same experimental setting. Generalizability

evaluates exactly this, and it is why many consider generalizability to be the best

criterion on which models should be compared (Grunwald et al., 2005).

The graphs in Fig. 1 summarize the relationship among the three quantitative

criteria of model evaluation and selection: GOF, complexity, and generalizability.

Model complexity is along the x axis and model fit along the y axis. GOF and

generalizability are represented as curves whose performance can be compared as a

function of complexity. The three smaller graphs contain the same data set (dots) and

the fits to these data by increasingly more complex models (lines). The left-most

model inFig. 1 underfits the data.Data are curvilinear, whereas themodel is linear. In

this case, GOF and generalizability produce similar outcomes because the model is

not complex enough to capture the bowed shape of the data. Themodel in themiddle

graph of Fig. 1 is a bitmore complex and does a good job of fitting only the regularity

in the data. Because of this, the GOF and generalizability measures are higher and

also similar.Where the two functions diverge is when themodel ismore complex than

is necessary to capture the main trend. The model in the right-most graph of Fig. 1

captures the experiment-specific noise, fitting every data point perfectly. GOF

rewards this behavior by yielding an even higher fit score, whereas generalizability

does just the opposite, penalizing the model for its excess complexity.

The problem of overfitting is the scourge of GOF. It is easy to see when over-

fitting occurs in Fig. 1, but in practice it is difficult to know when and by how much
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a model overfits a data set, which is why generalizability is the preferred means of

model evaluation and comparison. By using generalizability, we evaluate a model

based on how well it predicts the statistics of future samples from the same

underlying processes that generated an observed data sample.

IV. Model Comparison Methods

This section reviews measures of generalizability currently in use, touching on

their theoretical foundations and discussing the advantages and disadvantages of

their implementation. Readers interested in more detailed presentations are direct-

ed to Myung et al. (2000) and Wagenmakers and Waldorp (2006).

A. Akaike Information Criterion and Bayesian Information Criterion

As illustrated in Fig. 1, good generalizability is achieved by trading off GOF

with model complexity. This idea can be formalized to derive model comparison

criteria. That is, one way of estimating the generalizability of a model is by

Goodness of fit
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Fig. 1 An illustration of the relationship between GOF and generalizability as a function of model

complexity. The y axis represents any fit index, where a larger value indicates a better fit (e.g., maximum

likelihood). The three smaller graphs provide a concrete example of how fit improves as complexity

increases. In the left graph, the model (line) is not complex enough to match the complexity of data

(dots). The two are well matched in complexity in the middle graph, which is why this occurs at the peak

of the generalizability function. In the right graph, the model is more complex than data, capturing

microvariation due to random error. Reprinted from Pitt and Myung (2002).
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appropriately discounting the model’s GOF relative to its complexity. In so doing,

the aim is to identify the model that is sufficiently complex to capture the underly-

ing regularities in the data but not unnecessarily complex to capitalize on random

noise in the data, thereby formalizing the principle of Occam’s razor.

The AIC (Akaike, 1973; Bozdogan, 2000), its variation called the second-order

AIC (AICc; Burnham and Anderson, 2002; Sugiura, 1978), and the Bayesian

information criterion (BIC; Schwarz, 1978) exemplify this approach and are

defined as

AIC ¼ �2 lnf ðyjw�Þ þ 2k;

AICc ¼ �2 lnf ðyjw�Þ þ 2kþ 2kðkþ 1Þ
n� k� 1

;

BIC ¼ �2 lnf ðyjw�Þ þ k lnðnÞ;
ð1Þ

where y denotes the observed data vector, ln f(y | w*) is the natural logarithm of the

model’s maximized likelihood calculated at the parameter vector w*, k is the

number of parameters of the model, and n is the sample size. The first term of

each comparison criterion represents a model’s lack of fit measure (i.e., inverse

GOF), with the remaining terms representing the model’s complexity measure.

Combined, they estimate the model’s generalizability such that the lower the

criterion value, the better the model is expected to generalize.

The AIC is derived as an asymptotic (i.e., large sample size) approximation to an

information-theoretic distance between two probability distributions, one repre-

senting the model under consideration and the other representing the ‘‘true’’ model

(i.e., data-generating model). As such, the smaller the AIC value, the closer the

model is to the ‘‘truth.’’ AICc represents a small sample size version of AIC and is

recommended for data with relatively small n with respect to k, say n/k < 40

(Burnham and Anderson, 2002). BIC, which is a Bayesian criterion, as the name

implies, is derived as an asymptotic expression of the minus two log marginal

likelihood, which is described later in this chapter.

The three aforementioned criteria differ from one another in the way model

complexity is conceptualized and measured. The complexity term in AIC depends

on only the number of parameters, k, whereas both AICc and BIC consider the

sample size (n) as well, although in different ways. These two dimensions of a

model are not the only ones relevant to complexity, however. Functional form,

which refers to the way the parameters are entered in a model’s equation, is

another dimension of complexity that can also affect the fitting capability of a

model (Myung and Pitt, 1997). For example, two models, y¼ axbþ e and y¼ axþ
b þ e, with a normal error e of constant variance, are likely to differ in complexity,

despite the fact that they both assume the same number of parameters. For models

such as these, the aforementioned criteria are not recommended because they are

insensitive to the functional form dimension of complexity. Instead, we recom-

mend the use of the comparison methods, described next, which are sensitive to all

three dimensions of complexity.
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B. Cross-Validation and Accumulative Prediction Error

Cross-validation (CV; Browne, 2000; Stone, 1974) and the APE (Dawid, 1984;

Wagenmakers et al., 2006) are sampling-based methods for estimating generaliz-

ability from the data, without relying on explicit, complexity-based penalty terms

as in AIC and BIC. This is done by simulating the data collection and prediction

steps artificially using the observed data in the experiment.

CV and APE are applied by following a three-step procedure: (1) divide the

observed data into two subsamples, the calibration sample, ycal, simulating the

‘‘current’’ observations and the validation sample, yval, simulating ‘‘future’’ obser-

vations; (2) fit the model to ycal and obtain the best-fitting parameter values,

denoted by w*(ycal); and (3) with the parameter values fixed, the model is fitted to

yval. The resulting prediction error is taken as the model’s generalizability estimate.

The two comparison methods differ from each other in how the data are divided

into calibration and validation samples. InCV, each set of n�1 observations in a data

set serve as the calibration sample, with the remaining observation treated as the

validation sample on which the prediction error is calculated. Generalizability is

estimated as the average of n such prediction errors, each calculated according to

the aforementioned three-step procedure. This particularmethod of splitting the data

into calibration and validation samples is known as leave-one-out CV in statistics.

Other methods of splitting data into two subsamples can also be used. For example,

the data can be split into two equal halves or into two subsamples of different sizes.

In the remainder of this chapter, CV refers to the leave-one-out CV procedure.

In contrast to CV, in APE the size of the calibration sample increases successively

by one observation at a time for each calculation of prediction error. To illustrate,

consider a model with k parameters. We would use the first kþ 1 observations as the

calibration sample so as to make the model identifiable, and the (k þ 2)-th observa-

tion as the validation sample, with the remaining observations not being used. The

prediction error for the validation sample is then calculated following the three-step

procedure. This process is then repeated by expanding the calibration sample to

include the (kþ 2)-th observation, with the validation sample now being the (kþ 3)-

th observation, and so on. Generalizability is estimated as the average prediction

error over the (n� k� 1) validation samples. Time series data are naturally arranged

in an ordered list, but for data that have no natural order, APE can be estimated as

the mean over all orders (in theory), or over a few randomly selected orders (in

practice). Figure 2 illustrates how CV and APE are estimated.

Formally, CV and APE are defined as

CV ¼ �
Xn
i¼1

lnf ðyijw�ðy 6¼iÞÞ;

APE ¼ �
Xn
i¼kþ2

lnf ðyijw�ðy1;2;...;i�1ÞÞ:
ð2Þ

In the aforementioned equation for CV, –ln f (yi j w* (y 6¼ i)), is the minus log

likelihood for the validation sample yi evaluated at the best-fitting parameter

values w*(y 6¼ i), obtained from the calibration sample y 6¼ i. The subscript signifies
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‘‘all observations except for the ith observation.’’ APE is defined similarly. Both

methods prescribe that the model with the smallest value of the given criterion

should be preferred.

The attractions of CV and APE are the intuitive appeal of the procedures and

the computational ease of their implementation. Further, unlike AIC and BIC,

both methods consider, albeit implicitly, all three factors that affect model com-

plexity: functional form, number of parameters, and sample size. Accordingly, CV

and APE should perform better than AIC and BIC, in particular when comparing

models with the same number of parameters. Interestingly, theoretical connections

exit between AIC and CV, and BIC and APE. Stone (1977) showed that under

certain regularity conditions, model choice under CV is asymptotically equivalent

to that under AIC. Likewise, Barron et al. (1998) showed that APE is asymptoti-

cally equivalent to BIC.

C. Bayesian Model Selection and Stochastic Complexity

BMS (Kass and Raftery, 1995; Wasserman, 2000) and SC (Grunwald et al.,

2005; Myung et al., 2006; Rissanen, 1996, 2001) are the current state-of-the-art

methods of model comparison. Both methods are rooted in firm theoretical foun-

dations; are nonasymptotic in that they can be used for data of all sample sizes,

small or large; and, finally, are sensitive to all dimensions of complexity. The price

to pay for this generality is computational cost. Implementation of the methods

can be nontrivial because they usually involve evaluating high-dimensional inte-

grals numerically.

PE (yk + 2)

yk + 1 yk + 2... ... yn−1 yny1

PE (yk + 3)

PE (yk + 4)

PE (yn)

n

i = k + 2
APE =∑ PE (yi)

PE (y1)

y2 y3 ... yn−1 yn...y1

PE (y2)

PE (y3)

PE (yn)

n

i = 1
CV =∑  PE (yi)

Fig. 2 The difference between the two sampling-based methods of model comparison, cross-valida-

tion (CV) and accumulative prediction error (APE), is illustrated. Each chain of boxes represents a data

set with each data point represented by a box. The slant-lined box is a validation sample, and plain

boxes with the bold outline represent the calibration sample. Plain boxes with the dotted outline in the

right panel are not being used as part of the calibration or validation sample. The symbol PE(yi), i ¼ 1,

2, . . . n, stands for the prediction error for the ith validation data point. k represents the number of

parameters, and n the sample size.
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BMS and SC are defined as

BMS ¼ � ln
Ð
f ðyjwÞpðwÞdw;

SC ¼ � lnf ðyjw�Þ þ ln
Ð
f ðzjw�ðzÞÞdz: ð3Þ

BMS is defined as the minus logarithm of the marginal likelihood, which is

nothing but the mean likelihood of the data averaged across parameters and

weighted by the parameter prior p(w). The first term of SC is the minus log

maximized likelihood of the observed data y. It is a lack-of-fit measure, as in

AIC. The second term is a complexity measure, with the symbol z denoting the

potential data that could be observed in an experiment, not the actually observed

data. Both methods prescribe that the model that minimizes the given criterion

value is to be chosen.

BMS is related to the Bayes factor, the gold standard of model comparison in

Bayesian statistics, such that the Bayes factor is a ratio of two marginal likelihoods

between a pair of models. BMS does not yield an explicit measure of complexity

but complexity is taken into account implicitly through the integral and thus

avoids overfitting. To see this, an asymptotic expansion of BMS under Jeffrey’s

prior for p(w) yields the following large sample approximation (Balasubramanian,

1997)

BMS � � lnf ðyjw�Þ þ k

2
ln

n

2p

� �
þ ln

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðIðwÞÞ

p
dw; ð4Þ

where I(w) is the Fisher information matrix of sample size 1 (e.g., Schervish, 1995).

The second and third terms on the right-hand side of the expression represent a

complexity measure. It is through the Fisher information in the third term that

BMS reflects the functional form dimension of model complexity. For instance,

the two models mentioned earlier, y ¼ axb þ e and y ¼ ax þ b þ e, would

have different values of the Fisher information, although they both have the

same number of parameters. The Fisher information term is independent of

sample size n, with its relative contribution to that of the second term becoming

negligible for large n. Under this condition, the aforementioned expression reduces

to another asymptotic expression, which is essentially one-half of BIC in Eq. (1).

SC is a formal implementation of the principle of minimum description length

that is rooted in algorithmic coding theory in computer science. According to the

principle, a model is viewed as a code with which data can be compressed, and the

best model is the one that provides maximal compression of the data. The idea

behind this principle is that regularities in data necessarily imply the presence of

statistical redundancy. The model that is best designed to capture the redundancy

will compress the data most efficiently. That is, the data are reexpressed, with the

help of the model, in a coded format that provides a shorter description than when

the data are expressed in an uncompressed format. The SC criterion value in

Eq. (3) represents the overall description length in bits of the maximally com-

pressed data and the model itself, derived for parametric model classes under

certain statistical regularity conditions (Rissanen, 2001).
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The second (complexity) termof SCdeserves special attention because it provides a

unique conceptualization of model complexity. In this formulation, complexity is

defined as the logarithm of the sum of maximized likelihoods that the model yields

collectively for all potential data sets that could be observed in an experiment. This

formalization captures nicely our intuitive notion of complexity. A model that fits a

wide range of data patternswell, actual or hypothetical, should bemore complex than

a model that fits only a few data patterns well, but does poorly otherwise. A serious

drawback of this complexitymeasure is that it can be highly nontrivial to compute the

quantity because it entails numerically integrating the maximized likelihood over the

entire data space. This integration in SC is even more difficult than in BMS because

the data space is generally of much higher dimension than the parameter space.

Interestingly, a large-sample approximation of SC yields Eq. (4) (Rissanen,

1996), which itself is an approximation of BMS. More specifically, under Jeffrey’s

prior, SC and BMS become asymptotically equivalent. Obviously, this equivalence

does not extend to other priors and does not hold if the sample size is not large

enough to justify the asymptotic expression.

V. Model Comparison at Work: Choosing Between Protein
Folding Models

This section applies five model comparison methods to discriminating two

protein-folding models.

In the modern theory of protein folding, the biochemical processes responsible

for the unfolding of helical peptides are of interest to researchers. The Zimm–

Bragg theory provides a general framework under which one can quantify the

helix–coil transition behavior of polymer chains (Zimm and Bragg, 1959). Scholtz

and colleagues (1995) applied the theory ‘‘to examine how the a-helix to random

coil transition depends on urea molarity for a homologous series of peptides’’

(p. 185). The theory predicts that the observed mean residue ellipticity q as a

function of the length of a peptide chain and the urea molarity is given by

q ¼ fHðgH � gCÞ þ gC : ð5Þ
In Eq. (5), fH is the fractional helicity and gH and gC are the mean residue

ellipticities for helix and coil, respectively, defined as

fH ¼ rs

ðs� 1Þ3
nsnþ2 � ðnþ 2Þsnþ1 þ ðnþ 2Þs� n

nð1þ ½rs=ðs� 1Þ2�½snþ1 þ n� ðnþ 1Þs�Þ

0
@

1
A;

gH¼ H0 1� 2:5

n

0
@

1
AþHU ½urea�;

gC ¼ C0 þ CU ½urea�;

ð6Þ
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where r is the helix nucleation parameter, s is the propagation parameter, n is the

number of amide groups in the peptide, H0 and C0 are the ellipticities of the helix

and coil, respectively, at 0� in the absence of urea, and finally, HU and CU are the

coefficients that represent the urea dependency of the ellipticities of the helix and

coil (Greenfield, 2004; Scholtz et al., 1995).

We consider two mathematical models for urea-induced protein denaturation

that determine the urea dependency of the propagation parameter s. One is the

linear extrapolation method model (LEM; Pace and Vanderburg, 1979) and

the other is called the binding-site model (BIND; Pace, 1986). Each expresses the

propagation parameter s in the following form

LEM : lns ¼ lns0 �m½urea�
RT

;

BIND : lns ¼ lns0 � d Inð1þ kð0:9815½urea� � 0:02978½urea�2 þ 0:00308½urea�3Þ;
ð7Þ

where s0 is the s value for the homopolymer in the absence of urea, m is the change

in the Gibbs energy of helix propagation per residue, R¼ 1.987 cal mol�1 K�1, T is

the absolute temperature, d is the parameter characterizing the difference in the

number of binding sites between the coil and helix forms of a residue, and k is the

binding constant for urea.

Both models share four parameters: H0, C0, HU, and CU. LEM has two para-

meters of its own (s0,m), yielding a total of six parameters to be estimated from the

data. BIND has three unique parameters (s0, d, and k). Both models are designed

to predict the mean residue ellipticity denoted q in terms of the chain length n and

the urea molarity [urea]. The helix nucleation parameter r is assumed to be fixed to

the previously determined value of 0.0030 (Scholtz et al., 1991).

Figure 3 shows simulated data (symbols) and best-fit curves for the two models,

LEM (in solid lines) and BIND (in dotted lines). Data were generated from LEM

for a set of parameter values with normal random noise of zero mean and 1

standard deviation added to the ellipticity prediction in Eq. (5)(see the figure

legend for details). Note how closely both models fit the data. By visual inspection,

one cannot tell which of the two models generated the data. As a matter of fact,

BIND, with one extra parameter than LEM, provides a better fit to the data than

LEM (SSE¼ 12.59 vs. 14.83), even though LEM generated the data. This outcome

is an example of the overfitting that can emerge with complex models, as depicted

in Fig. 1. To filter out the noise-capturing effect of overly complex models appro-

priately, thereby putting both models on an equal footing, we need the help of

statistical model comparison methods that neutralize complexity differences.

We conducted a model recovery simulation to demonstrate the relative perfor-

mance of five model comparison methods (AIC, AICc, BIC, CV, and APE) in

choosing between the two models. BMS and SC were not included because of the

difficulty in computing them for these models. A thousand data sets of 27 observa-

tions each were generated from each of the two models, using the same nine points
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of urea molarity (0, 1, 2, . . ., 8) for three different chain lengths of n ¼ 13, 20, and

50. The parameter values used to generate the simulated data were taken from

Scholtz et al. (1995) and were as follows:H0¼ –44,000,C0¼ 4400,HU¼ 320,CU¼
340, s0 ¼ 1.34, m ¼ 23.0 and temperature T ¼ 273.15 for LEM and H0 ¼ –42,500,

C0 ¼ 5090,HU ¼ –620, CU ¼ 280, s0 ¼ 1.39, d ¼ 0.52, k ¼ 0.14 for BIND. Normal

random errors of zero mean and standard deviation of 1 were added to the

ellipticity prediction in Eq. (5).

The five model comparison methods were compared on their ability to recover

the model that generated the data. A good method should be able to identify the

true model (i.e., the one that generated the data) 100% of the time. Deviations from

perfect recovery reveal a bias in the selection method. (The MatLab code that

implements the simulations can be obtained from the first author.)

The simulation results are reported in Table I. Values in the cells represent the

percentage of samples in which a particular model (e.g., LEM) fitted best data sets

generated by one of the models (LEM or BIND). A perfect selection method would

yield values of 100% along the diagonal. The top 2 � 2 matrix shows model

recovery performance under ML, a purely GOF measure. It is included as a

reference against which to compare performance when measures of model com-

plexity are included in the selection method. How much does model recovery
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Fig. 3 Best fits of LEM (solid lines) and BIND (dotted lines) models to data generated from LEM

using the nine points of urea molarity (0,1,2, . . ., 8) for three different chain lengths of n¼ 13 (�), 20 (m),

and 50 (■). Data fitting was done first by deriving model predictions using Eqs. (5)–(7) based on the

parameter values ofH0 ¼�44,000, C0 ¼ 4400,HU ¼ 320, CU ¼ 340, s0 ¼ 1.34, andm¼ 23.0 reported in

Scholtz et al. (1995). See text for further details.
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improve when the number of parameters, sample size, and functional form are

taken into account?

With ML, there is a strong bias toward BIND. The result in the first column of

the matrix shows that BIND was chosen more often than the true data-generating

model, LEM (53% vs. 47%). This bias is not surprising given that BIND, with one

more parameter than LEM, can capture random noise better than LEM. Conse-

quently, BIND tends to be selected more often than LEM under a GOF selection

method such asML, which ignores complexity differences. Results from using AIC

show that when the difference in complexity due to the number of parameters is

taken into account, the bias is largely corrected (19% vs. 81%), and even more so

under AICc and BIC, both of which consider sample size as well (7% vs. 93% and

9% vs. 91%, respectively). When CV and APE were used, which are supposed to be

sensitive to all dimensions of complexity, the results show that the bias was also

corrected, although the recovery rates under these criteria were about equal to or

slightly lower than that under AIC. When the data were generated from BIND

(right column of values), the data-generating model was selected more often than

the competing model under all selection methods, including ML.

To summarize, the aforementioned simulation results demonstrate the importance

of considering model complexity in model comparison. All five model selection

methods performed reasonably well by compensating for differences in complexity

between models, thus identifying the data-generating model. It is interesting to note

that Scholtz and colleagues (1995) evaluated the viability of the same twomodels plus

a third, seven-parameter model, using GOF, and found that all three models

Table I
Model Recovery Performance of Five Model Comparison Methods

Data generated from

Model comparison method Model fitted LEM BIND

ML LEM 47 4

BIND 53 96

AIC LEM 81 16

BIND 19 84

AICc LEM 93 32

BIND 7 68

BIC LEM 91 28

BIND 9 72

CV LEM 77 26

BIND 23 74

APE LEM 75 45

BIND 25 55

Note: The two models, LEM and BIND, are defined in Eq. (7). APE was

estimated after randomly ordering the 27 data points of each data set.
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provided nearly identical fits to their empirical data. Had they compared the models

using one of the selection methods discussed in this chapter, it might have been

possible to obtain a more definitive answer.

We conclude this section with the following cautionary note regarding the

performance of the five selection methods in Table I: The better model recovery

performance of AIC, AICc, and BIC over CV and APE should not be taken as

indicative of how the methods will generally perform in other settings (Myung and

Pitt, 2004). There are very likely other model comparison situations in which the

relative performance of the selection methods reverses.

VI. Conclusions

This chapter began by discussing several issues a modeler should be aware of

when evaluating computational models. They include the notion of model com-

plexity, the triangular relationship among GOF, complexity and generalizability,

and generalizability as the ultimate yardstick of model comparison. It then intro-

duced several model comparison methods that can be used to determine the ‘‘best-

generalizing’’ model among a set of competing models, discussing the advantages

and disadvantages of each method. Finally, the chapter demonstrated the applica-

tion of some of the comparison methods using simulated data for the problem of

choosing between biochemical models of protein folding.

Measures of generalizability are not without their own drawbacks, however.

One is that they can be applied only to statistical models defined as a parametric

family of probability distributions. This restriction leaves one with few options

when wanting to compare nonstatistical models, such as verbal models and com-

puter simulation models. Often times, researchers are interested in testing qualita-

tive (e.g., ordinal) relations in data (e.g., condition A < condition B) and

comparing models on their ability to predict qualitative patterns of data, but not

quantitative ones.

Another limitation of measures of generalizability is that they summarize the

potentially intricate relationships between model and data into a single real num-

ber. After applying CV or BMS, the results can sometimes raise more questions

than answers. For example, what aspects of a model’s formulation make it superi-

or to its competitors? How representative is a particular data pattern of a model’s

performance? If it is typical, the model provides a much more satisfying account of

the process than if the pattern is generated by the model using a small range of

unusual parameter settings. Answers to these questions also contribute to the

evaluation of model quality.

We have begun developing methods to address questions such as these. The

most well-developed method thus far is a global qualitative model analysis tech-

nique dubbed parameter space partitioning (PSP; Pitt et al., 2006, 2007). In PSP, a

model’s parameter space is partitioned into disjoint regions, each of which corre-

sponds to a qualitatively different data pattern. Among other things, one can use
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PSP to identify all data patterns a model can generate by varying its parameter

values. With information such as this in hand, one can learn a great deal about the

relationship between the model and its behavior, including understanding the

reason for the ability or inability of the model to account for empirical data.

In closing, statistical techniques, when applied with discretion, can be useful for

identifying sensible models for further consideration, thereby aiding the scientific

inference process (Myung and Pitt, 1997). We cannot overemphasize the impor-

tance of using nonstatistical criteria such as explanatory adequacy, interpretability,

and plausibility of the models under consideration, although they have yet to be

formalized in quantitative terms and subsequently incorporated into the model

evaluation and comparison methods. Blind reliance on statistical means is a mis-

take. On this point we agree with Browne and Cudeck (1992), who said ‘‘Fit indices

[statistical model evaluation criteria] should not be regarded as a measure of

usefulness of a model. . .they should not be used in a mechanical decision process

for selecting a model. Model selection has to be a subjective process involving the

use of judgement’’ (p. 253).
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Abstract

With the rise of systems biology as an important paradigm in the life sciences

and the availability and increasingly good quality of high-throughput molecular

data, the role of mathematical models has become central in the understanding of

the relationship between structure and function of organisms. This chapter focuses

on particular type of models, the so-called algebraic models, which are general-

izations of Boolean networks. It provides examples of such models and discusses

several available methods to construct such models from high-throughput time

course data. One such method, Polynome, is discussed in detail.
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I. Introduction

The advent of functional genomics has enabled the molecular biosciences to come a long way

towards characterizing the molecular constituents of life. Yet, the challenge for biology overall is

to understand how organisms function. By discovering how function arises in dynamic interac-

tions, systems biology addresses the missing links between molecules and physiology.

Bruggemann and Westerhoff (2006)

With the rise of systems biology as an important paradigm in the life sciences and

the availability of increasingly good quality of high-throughput molecular data, the

role of mathematical models has become central in the understanding of the

relationship between structure and function of organisms. It is by now well under-

stood that fundamental intracellular processes such as metabolism, signaling, or

various stress responses, can be conceptualized as complex dynamic networks of

interlinked molecular species that interact in nonlinear ways with each other and

with the extracellular environment. Available data, such as transcriptional data

obtained from DNA microarrays or high-throughput sequencing machines, com-

plemented by single-cell measurements, are approaching a quality and quantity that

makes it feasible to construct detailed mechanistic models of these networks.

There are two fundamental approaches one can take to the construction of

mathematical or statistical network models. For each approach the first step is to

choose an appropriate model type, which might be, for example, a dynamic

Bayesian network (DBN) or a system of ordinary differential equations (ODE).

The traditional bottom-up approach begins with a ‘‘parts list,’’ that is, a list of the

molecular species to be included in the model, together with information from the

literature about how the species interact. For each model type, there will then likely

be some model parameters that are unknown. These will then either be estimated

or, if available, fitted to experimental data. The result is typically a detailed

mechanistic model of the network. That is, the selected parts are assembled to a

larger system.

Systems biology has provided another, so-called top-down approach, which

attempts to obtain an unbiased view of the underlying network from high-through-

put experimental data alone, using statistical or mathematical network inference

tools. The advantage of this approach is that the results are not biased by a

perception or presumed knowledge of which parts are important and how they

work together. The disadvantage is that the resulting model is most likely phe-

nomenological, without a detailed mechanistic structure. It is also the case that at

this time the available data sets for this approach are rather small, compared to the

number of network nodes, so that the resulting network inference problem is

underdetermined. The most beneficial approach, therefore, is to combine both

methods by using the available information about the network as prior informa-

tion for an appropriate network inference method. Thus, network inference

becomes an extreme case of parameter estimation, in which no parameters are

specified. The development of appropriate network inference methods has become

an important research field within computational systems biology.
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The goal of this chapter is to illustrate parameter estimation and network

inference using a particular type of model, which we will call algebraic model.

Boolean networks, which are being used increasingly as models for biological

networks, represent the simplest instance. First, in Section II, we will provide an

introduction to computational systems biology and give some detailed examples of

algebraic models. In the following section, we provide an introduction to network

inference within several different model paradigms and provide details of several

methods. Finally, in the last section, we talk about network inference as it pertains

specifically to algebraic models. Few inference methods provide readily available

software. We describe one of those, Polynome, in enough detail so that the reader

can explore the software via the available Web interface.

II. Computational Systems Biology

To understand how molecular networks function, it is imperative that we

understand the dynamic interactions between their parts. Gene regulatory net-

works give an important example. They are commonly represented mathematically

as so-called directed graphs, whose nodes are genes and sometimes proteins. There

is an arrow from gene A to gene B if A contributes to the regulation of B in some

way. The arrow typically indicates whether this contribution is an activation or an

inhibition. It is important to understand that such a network provides an abstract

representation of gene regulation in the sense that the actual regulation is not direct

but could involve a fairly long chain of biochemical reactions, involving mRNA

from gene A and/or a protein A codes for.

As an example, we consider the lac operon in Escherichia coli, one of the earliest

and best understood examples of gene regulation. We will use this gene network as

a running example for the entire chapter. E. coli prefers glucose as a growth

medium, and the operon genes allow E. coli to metabolize lactose in the absence

of glucose. When glucose is present, it is observed that the enzymes involved in

lactose metabolism have very low activity, even if intracellular lactose is present. In

the absence of glucose, lactose metabolism is induced through expression of the lac

operon genes. Figure 1 shows a representation of the basic biological mechanisms

of the network, commonly referred to as a ‘‘cartoon’’ representation.

While this representation is very intuitive, to understand the biology, a network

representation of the system is a first step toward the construction of a dynamic

mathematical model. Such a representation is given in Fig. 2.

The dynamic properties of this network are determined by two control mechan-

isms, one positive, leading to induction of the operon, and another one is negative,

leading to the repression of the operon mechanism. The negative control is

initiated by glucose, through two modes of action. In the absence of intracellular

glucose, the catabolite activator protein CAP forms a complex with another

protein, cAMP, which binds to a site upstream of the lac promoter region,

enhancing transcription of the lac genes. Intracellular glucose inhibits cAMP
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synthesis and thereby gene transcription. Furthermore, extracellular glucose inhi-

bits the uptake of lactose into the cell via lactose permease, one of the proteins in

the lac operon. The positive control operates via the action of lactose permease,

increasing intracellular lactose, and by disabling of the lac repressor protein via

increased production of allolactose. To understand how these two feedback loops,

one positive and the other negative, work together to determine the dynamic
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Fig. 2 The lac operon network (from Stigler and Veliz-Cuba, 2009).
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Fig. 1 The lac operon (from http://www.uic.edu/classes/bios/bios100/lecturesf04am/lect15.htm).
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properties of this network it is necessary to construct a mathematical model that

captures this synergistic interplay of positive and negative feedback.

Several different mathematical modeling frameworks are available for this

purpose. The most commonly used type of model for molecular networks is a

system of ODE, one equation for each of the nodes in the network. Each equation

describes the rate of change of the concentration of the corresponding molecular

species over time, as a function of other network nodes involved in its regulation.

As an example, we present a very simplified differential equations model of the lac

operon taken from Section 5.2 of deBoer (2008). This is an example of a model

which was referred to in the introduction as ‘‘bottom-up.’’ The model includes only

the repressor R, the lac operon mRNA M, and allolactose A. The three equations

are given below:

R ¼ 1=ð1þ AnÞ;
dM=dt ¼ c0 þ cð1� RÞ � gM;
dA=dt ¼ ML� dA� vMA=ðhþ AÞ:

Here, c0, c, g, v, d, h, and L are certain model parameters, n is a fixed positive

integer, and the concentrations R, M, and A are functions of time t. The model

does not distinguish between intracellular and extracellular lactose, both denoted

by L. It is assumed further that the enzyme b-galactosidase is proportional to the

operon activityM and is not represented explicitly. The repressor concentration R

is represented by a so-called Hill function, which has a sigmoid-shaped graph:

the larger the Hill coefficient n, the steeper the shape of the sigmoid function.

The constant c0 represents the baseline activity of the operon transcriptM, and the

term gM represents degradation. The concentration of allolactoseA grows withM,

assuming that lactose L is present. Its degradation term is represented by a

Michaelis–Menten type enzyme substrate reaction composed of two terms.

The various model parameters can be estimated to fit experimental data, using

parameter estimation algorithms.

This model is not detailed enough to incorporate the two different feedback

loops discussed earlier, but will serve as an illustration of the kind of information a

dynamic model can provide. The most important information typically obtained

from a model is about the steady states of the network, that is, network states at

which all derivatives are equal to 0, so that the system remains in the steady state,

once it reaches it. A detailed analysis of this model can be found in deBoer (2008)

and also in Laubenbacher and Sturmfels (2009). Such an analysis shows that the

model has three steady states, two stable and one unstable. This is what one would

expect from the biology. Depending on the lactose concentration, the operon is

either ‘‘on’’ or ‘‘off,’’ resulting in two stable steady states. For bacteria growing in

an environment with an intermediate lactose concentration, it has been shown that

the operon can be in either one of these two states, and which one is attained

depends on the environmental history a particular bacterium has experienced, a

form of hysteresis. This behavior corresponds to the unstable steady state. Thus,

the model dynamics agrees with experimental observations.
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Another modeling framework that has gained increasing prominence is that of

Boolean networks, initially introduced to biology by Kauffman (1969) as a model

for genetic control of cell differentiation. Since then, a wide array of such models

has been published, as discussed in more detail below. They represent the simplest

examples of what is referred to in the title of this chapter as algebraic models. They

are particularly useful in cases when the quantity or quality of available experi-

mental data is not sufficient to build a meaningful differential equations model.

Furthermore, algebraic models are just one step removed from the way a biologist

would describe the mechanisms of a molecular network, so that they are quite

intuitive and accessible to researchers without mathematical background. In par-

ticular, this makes them a useful teaching tool for students in the life sciences

(Robeva and Laubenbacher, 2009). To illustrate the concept, we present here a

Boolean model of the lac operon, taken from Stigler and Veliz-Cuba (2009).

A Boolean network consists of a collection of nodes or variables, each of which

can take on two states, commonly represented as ON/OFF or 1/0. Each node has

attached to it a Boolean function that describes how the node depends on some

or all of the other nodes. Time progresses in discrete steps. For a given state of the

network at time t ¼ 0, the state at time t ¼ 1 is determined by evaluating all the

Boolean functions at this state.

Example 1

We provide a simple example to illustrate the concept. Consider a network with

four nodes, x1, . . ., x4. Let the corresponding Boolean functions be

f1 ¼ x1 AND x3; f2 ¼ x2 ORðNOT x4Þ; f3 ¼ x1; f4 ¼ x1 OR x2:

Then this Boolean network can be described by the function

f ¼ ð f1; . . . ; f4Þ : f0; 1g4 ! f0; 1g4;
where

f ðx1; . . . ; x4Þ ¼ ðx1 AND x3; x2 OR ðNOT x4Þ; x1; x1 OR x2Þ: ð1Þ
As a concrete example, f(0, 1, 1, 0) ¼ (0, 1, 0, 1). Here, {0, 1}4 represents the set

of all binary 4-tuples, of which there are 16. The dependencies among the variables

can be represented by the directed graph in Fig. 3, representing the wiring diagram

of the network.

The dynamics of the network is represented by another directed graph, the

discrete analog of the phase space of a system of differential equations, given in

Fig. 4.

The nodes of the graph represent the 16 possible states of the network. There is a

directed arrow from state a to state b if f(a) ¼ b. The network has three steady

states, (0, 1, 0, 1), (1, 1, 1, 1), and (1, 0, 1, 1). (In general, there might be periodic

points as well.)
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A Boolean model of the lac operon: the following model is presented in Stigler and

Veliz-Cuba (2009). In addition to the three variables M (mRNA for the 3 lac

genes), R (the repressor protein), and A (allolactose) in the previous ODE model,

we need to include these additional variables:

� Lac permease (P)

� b-Galactosidase (B)
� Catabolite activator protein CAP (C)

� Lactose (L)

� Low concentrations of lactose (Llow) and allolactose (Alow)
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Fig. 4 Dynamics of the Boolean network in Example 1 (constructed using the software tool DVD;

http://dvd.vbi.vt.edu).

x1

x3 x4

x2

Fig. 3 Wiring diagram for Boolean network in Example 1 (constructed using the software tool DVD;

http://dvd.vbi.vt.edu).
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The last two variables are needed for the model to be accurate because we need

to allow for three, rather than two, possible concentration levels of lactose and

allolactose: absent, low, and high. Introducing additional binary variables to

account for the three states avoids the introduction of variables with more than

two possible states. (Models with multistate variables will be discussed below.)

The model depends on two external parameters: a, representing the concentration

of external lactose and g, representing the concentration of external glucose. They

can both be set to the values 0 and 1, providing four different choices. The

interactions between these different molecular species are described in Stigler and

Veliz-Cuba (2009) by the following Boolean functions:

4fM ¼ ðNOT RÞ AND C;
fP ¼ M;
fB ¼ M;
fC ¼ NOT g;
fR ¼ ðNOT AÞ AND ðNOT AlowÞ;
fA ¼ L AND B;

fA low ¼ A OR L OR Llow;
fL ¼ ðNOT gÞ AND P AND a;

fLlow ¼ ðNOT gÞ AND ðL OR aÞ:

ð2Þ

Tounderstand these Boolean statements and how they assemble to amathematical

network model, consider the first one. It represents a rule that describes how the

concentration of lacmRNAevolves over time. Tomake the time dependence explicit,

one could write fM(tþ 1)¼ (NOTR(t)) ANDC(t) (similarly for the other functions).

This is to be interpreted as saying that the lac genes are transcribed at time tþ 1 if the

repressor proteinR is absent at time t and the catabolite activator proteinC is present

at time t. The interpretation of the other functions is similar. One of the model

assumptions is that transcription and translation of a gene happens in one time

step, and so does degradation of mRNA and proteins.

Thus, choosing the above ordering of these nine variables, a state of the lac

operon network is given by a binary 9-tuple, such as (0, 1, 1, 0, 0, 1, 0, 1, 1). The

above Boolean functions can be used as the coordinate functions of a time-discrete

dynamical system on {0, 1}9, that is, a function

f ¼ ð fM ; fP; fB; fC ; fR; fA; fAlow; fL; fLlowÞ : f0; 1g9 ! f0; 1g9:
For a given network state a in {0, 1}9, the function f is evaluated as

f ðaÞ ¼ ð fMðaÞ; fPðaÞ; fBðaÞ; fCðaÞ; fRðaÞ; fAðaÞ; fAlowðaÞ; fLðaÞ; fLlowðaÞÞ
to give the next network state. For the exemplary network state above, and the

parameter setting a ¼ 1, g ¼ 0, we obtain

f ð0; 1; 1; 0; 0; 1; 0; 1; 1Þ ¼ ð0; 0; 0; 1; 0; 1; 1; 1; 1Þ:
It is shown in Stigler and Veliz-Cuba (2009) that this model captures all essential

features of the lac operon, demonstrated through several other published ODE

models. One of these is its bistability, which has already been discussed in the
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simple model above. It is shown that for each of the four possible parameter

settings, the models attain a steady state, corresponding to the switch-like nature

of the network. It is in principle possible to compute the entire phase space of the

model, using a software package such as DVD (http://dvd.vbi.vt.edu).

We have discussed this particular model in some detail, for three reasons.

It represents a model of an interesting network that continues to be the object of

ongoing research, yet is simple enough to fit the space constraints of this chapter.

For the reader unfamiliar with algebraic models of this type, it provides a detailed

realistic example to explore. Finally, we will use this particular model subsequently

to demonstrate a particular network inference method.

Boolean network models of biological systems are the most common type of

discrete model used, including gene regulatory networks such as the cell cycle in

mammalian cells (Faure et al., 2006), in budding yeast (Li et al., 2004) and fusion

yeast (Davidich and Bornholdt, 2007), and the metabolic networks in E. coli

(Samal and Jain, 2008) and in Saccharomyces cerevisiae (Herrgard et al., 2006).

Also, Boolean network models of signaling networks have recently been used to

provide insights into different mechanisms such as the molecular neurotransmitter

signaling pathway (Gupta et al., 2007), the T cell receptor signaling pathways

(Saez-Rodriguez et al., 2007), the signaling network for the long-term survival of

cytotoxic T lymphocytes in humans (Zhang et al., 2008), and the abscisic acid

signaling pathway (Li et al., 2006a).

Amoregeneral typeofdiscretemodel, the so-called logicalmodel,was introducedby

the geneticist (Renee Thomas and D’Ari, 1989) for the study of gene regulatory

networks. Since then they have been developed further, with published models of the

cell-fate determination in Arabidopsis thaliana (Espinosa-Soto et al., 2004), the root

hair regulatory network (Mendoza and Alvarez-Buylla, 2000), the Hh signaling path-

way (Gonzalez et al., 2008), the gapgenenetwork inDrosophila (SanchezandThieffry,

2001), and the differentiation process in T helper cells (Mendoza, 2006), to name a few.

A logical model consists of a collection of variables x1, . . ., xn, representing
molecular species such as mRNA, where variable xj takes values in a finite set Sj.

The number of elements in Sj corresponds to the number of different concentra-

tions of xj that trigger different modes of action. For instance, when transcribed at

a low level, a gene might perform a different role than when it is expressed at a high

level, resulting in three states: absent, low, and high. The variables are linked in a

graph, the dependency graph or wiring diagram of the model, as in the Boolean case,

by directed edges, indicating a regulatory action of the source of the edge on the

target. Each edge is equipped with a sign þ/� (indicating activation or inhibition)

and a weight. The weight indicates the level of transcription of the source node

required to activate the regulatory action. The state transitions of each node are

given by a table involving a list of so-called logical parameters. The dynamics of

the system is encoded by the state space graph, again as in the Boolean case, whose

edges indicate state transitions of the system. An additional structural feature of

this model type is that the variables can be updated sequentially, rather than in

parallel, as in the previously discussed Boolean model. This feature allows the

inclusion of different time scales and stochastic features that lead to asynchronous
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updating of variables. The choice of different update orders at any given update

step can result in a different transition. To illustrate the logical model framework,

we briefly describe the T cell differentiation model in Mendoza (2006).

As they differentiated from a common precursor called T0, two distinct func-

tional subsets T1 and T2 of T helper cells were identified in the late 1980s. T1 cells

secrete IFNg, which promotes more T1 differentiation while inhibiting that of T2.

On the other hand, T2 cells secret IL-4, a cytokine which promotes T2 differentia-

tion and inhibits that of T1. The most general logical model is presented in

Mendoza (2006), where the gene regulatory network of T1/T2 differentiation is

synthesized from published experimental data. The multilevel network includes 19

genes and four stimuli and interactions at the inter- and intracellular levels.

Some of the nodes are assumed to be Boolean while a few others are multistates

(Low, Medium, or High). Based on the value at the source of an edge being above

or below some threshold, that edge is considered active or not, in the sense, that it

will contribute to changing the value at the sink of that edge. When there is more

than one incoming edge, the combinations of different active incoming edges and

their thresholds are assembled into a logical function.

It is worth mentioning briefly that the algebraic model framework is well suited

for the study of the important relationship between the structure and the dynamics

of a biological network. In systems biology, the work of Uri Alon has drawn a lot

of attention to this topic, summarized in his book (Alon, 2006). An important

focus of Alon’s work has been the effect of so-called network motifs, such as feed-

forward loops, on dynamics. Another topic of study in systems biology has been

the logical structure of gene regulatory and other networks. In the context of

Boolean networks, significant work has been devoted to identifying features of

Boolean functions that make them particularly suitable for the modeling of gene

regulation and metabolism. As an example, we present here a summary of the work

on so-called nested canalyzing functions (NCFs), a particular class of Boolean

functions that appear frequently in systems biology models.

Biological systems in general and biochemical networks in particular are robust

against noise and perturbations and, at the same time, can evolve and adapt to

different environments (Balleza et al., 2008). Therefore, a realistic model of any

such system must possess these properties, and hence the update functions for the

network nodes cannot be arbitrary. Different classes of Boolean functions have

been suggested as biologically relevant models of regulatory mechanisms: biologi-

cally meaningful functions (Raeymaekers, 2002), postfunctions (Shmulevich et al.,

2003b), and chain functions (Gat-Viks and Shamir, 2003). However, the class that

has received the most attention is that of NCFs, introduced by Kauffman et al.

(2004) for gene regulatory networks. We first give some precise definitions.

Definition 1

A Boolean function g(x1, . . ., xn): {0, 1}
n ! {0, 1}n is called canalyzing in the

variable xi with the input value ai and output value bi if xi appears in g and
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gðx1; . . . ; xi�1; ai; xiþ1; . . . ; xnÞ ¼ bi

for all inputs of all variables xj and j 6¼ i.

The definition is reminiscent of the concept of ‘‘canalization’’ introduced by the

geneticist (Waddington, 1942) to represent the ability of a genotype to produce the

same phenotype regardless of environmental variability.

Definition 2

Let f be a Boolean function in n variables.

Let s be a permutation of the set {1, . . ., n}. The function f is a NCF in the

variable order xs(1), . . ., xs(n) with canalyzing input values a1, . . ., an and canalyzed

output values b1, . . ., bn, if

f ðx1; . . . ; xnÞ ¼ b1 if xsð1Þ ¼ a1;
¼ b2 if xsð1Þ 6¼ a1 and xsð2Þ ¼ a2;

. . .
¼ bn�1 if xsð1Þ 6¼ a1; . . . ; xsðn�1Þ 6¼ an�1 and xsðnÞ ¼ an;
¼ bn if xsð1Þ 6¼ a1; . . . ; xsðn�1Þ 6¼ an�1 and xsðnÞ 6¼ an:

The function f is nested canalyzing if it is nested canalyzing for some variable

ordering s.
As an example, the function f(x,y,z) ¼ x AND (NOT y) AND z is nested

canalyzing in the variable order x,y,z with canalyzing values 0,1,0 and canalyzed

values 0,0,0, respectively. However, the function f(x,y,z,w) ¼ x AND y AND

(z OR w) is not nested canalyzing because, if x ¼ 1 and y ¼ 1, then the value of

the function is not constant for any input values for either z or w.

One important characteristic of NCFs is that they exhibit a stabilizing effect on

the dynamics of a system. That is, small perturbations of an initial state should not

grow in time and must eventually end up in the same attractor of the initial state.

The stability is typically measured using so-called Derrida plots which monitor the

Hamming distance between a random initial state and its perturbed state as both

evolve over time. If the Hamming distance decreases over time, the system is

considered stable. The slope of the Derrida curve is used as a numerical measure

of stability. Roughly speaking, the phase space of a stable system has few compo-

nents and the limit cycle of each component is short.

Example 2

Consider the Boolean networks.

f ¼ ðx4; x3 XOR x4; x2 XOR x4; x1 XOR x2 XOR x3Þ : f0; 1g4 ! f0; 1g4;
g ¼ ðx4; x3 AND x4; x2 AND x4; x1 AND x2 AND x3Þ : f0; 1g4 ! f0; 1g4:
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Notice that f and g have the same dependency graph and that g is a Boolean

network constructed with NCFs while f is not. It is clear that the phase space of g in

Fig. 5 has fewer components and much shorter limit cycles compared to the phase

space of f in Fig. 6, and therefore g should be considered more stable than f.

In Kauffman et al. (2004), the authors studied the dynamics of nested canalyzing

Boolean networks over a variety of dependency graphs. That is, for a given

random graph on n nodes, where the in-degree of each node is chosen at random
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Fig. 5 Phase space of the network f in Example 2.
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Fig. 6 Phase space of network g in Example 2.
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between 0 and k, where k < n þ 1, a NCF is assigned to each node in terms of the

in-degree variables of that node. The dynamics of these networks were then

analyzed and the stability measured using Derrida plots. It is shown that nested

canalyzing networks are remarkably stable regardless of the in-degree distribution

and that the stability increases as the average number of inputs of each node

increases.

An extensive analysis of available biological data on gene regulations (about 150

genes) showed that 139 of them are regulated by canalyzing functions (Harris et al.,

2002; Nikolayewaa et al., 2007). In Kauffman et al. (2004) and Nikolayewaa et al.

(2007) it was shown that 133 of the 139 are, in fact, nested canalyzing.

Most published molecular networks are given in the form of a wiring diagram,

or dependency graph, constructed from experiments and prior published knowl-

edge. However, for most of the molecular species in the network, little knowledge,

if any, could be deduced about their regulatory mechanisms, for instance in the

gene transcription networks in yeast (Herrgard et al., 2006) and E. coli (Barrett

et al., 2005). Each one of these networks contains more than 1000 genes. Kauffman

et al. (2003) investigated the effect of the topology of a subnetwork of the yeast

transcriptional network where many of the transcriptional rules are not known.

They generated ensembles of different models where all models have the same

dependency graph. Their heuristic results imply that the dynamics of those models

that used only NCFs were far more stable than the randomly generated models.

Since it is already established that the yeast transcriptional network is stable, this

suggests that the unknown interaction rules are very likely NCFs.

In Balleza et al. (2008), the whole transcriptional network of yeast, which has 3459

genes as well as the transcriptional networks of E. coli (1481 genes) and B. subtillis

(840 genes) have been analyzed in a similar fashion, with similar findings. These

heuristic and statistical results show that the class of NCFs is very important in

systems biology.We showed in Jarrah et al. (2007a,b) that this class is identical to the

class of so-called unate cascade Boolean functions, which has been studied extensive-

ly in engineering and computer science. It was shown in Butler et al. (2005) that this

class produces the binary decision diagrams with shortest average path length.

In this section, we have shown that algebraic models, in particular Boolean

network models, play an important role in systems biology, as models for a variety

of molecular networks. They also are very useful in studying more theoretical

questions, such as design principles for molecular networks. In Section III, we will

show how to construct such models from experimental data, in the top-down

fashion discussed earlier.

III. Network Inference

In 2006 the first ‘‘Dialogue on Reverse-Engineering Assessment and Methods

(DREAM)’’ workshop was held, supported in part by the NIH Roadmap Initia-

tive. The rationale for this workshop is captured in the words of the organizers:
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‘‘The endless complexities of biological systems are orchestrated by intricate net-

works comprising thousands of interacting molecular species, including DNA,

RNA, proteins, and smaller molecules. The goal of systems biology is to map

these networks in ways that provide both fundamental understanding and new

possibilities for therapy. However, although modern tools can provide rich data

sets by simultaneously monitoring thousands of different types of molecules,

discerning the nature of the underlying network from these observations—reverse

engineering—remains a daunting challenge.’’

Traditionally, models of molecular regulatory systems in cells have been created

bottom-up, where the model is constructed piece by piece by adding new compo-

nents and characterizing their interactions with other molecules in the model. This

process requires that the molecular interactions have been well characterized,

usually through quantitative numerical values for kinetic parameters. Note that

the construction of such models is biased toward molecular components that have

already been associated with the phenomenon. Still, modeling can be of great help

in this bottom-up process, by revealing whether the current knowledge about the

system is able to replicate its in vivo behavior. This modeling approach is well

suited to complement experimental approaches in biochemistry and molecular

biology, since models thus created can serve to validate the mechanisms deter-

mined in vitro by attempting to simulate the behaviors of intact cells. While this

approach has been dominant in cellular modeling, it does not scale very well to

genome-wide studies, since it requires that proteins be purified and studied in

isolation. This is not a practical endeavor due to its large scale, but especially

because a large number of proteins act on small molecules that are not available in

purified form, as would be required for in vitro studies.

With the completion of the human genome sequence and the accumulation of

other fully sequenced genomes, research is moving away from the molecular

biology paradigm to an approach characterized by large-scale molecular profiling

and in vivo experiments (or, if not truly in vivo, at least, in situ, where experiments

are carried out with intact cells). Technologies such as transcript profiling with

microarrays, protein profiling with 2D gels and mass spectrometry, and metabolite

profiling with chromatography and mass spectrometry, produce measurements

that are large-scale characterizations of the state of the biological material probed.

Other new large-scale technologies are also able to uncover groups of interacting

molecules, delineating interaction networks. All these experimental methods are

data rich, and it has been recognized (e.g., Brenner, 1997; Kell, 2004; Loomis and

Sternberg, 1995) that modeling is necessary to transform such data into knowl-

edge. A new modeling approach is needed for large-scale profiling experiments.

Such a top-down approach starts with little knowledge about the system, capturing

at first only a coarse-grained image of the system with only a few variables. Then,

through iterations of simulation and experiment, the number of variables in the

model is increased. At each iteration, novel experiments will be suggested by

simulations of the model that provide data to improve it further, leading to a

higher resolution in terms of mechanisms. While the processes of bottom-up and
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top-down modeling are distinct, both have as an objective the identification of

molecular mechanisms responsible for cell behavior. Their main difference is that

the construction of top-down models is biased by the data of the large-scale

profiles, while bottom-up models are biased by the preexisting knowledge of

particular molecules and mechanisms.

While top-down modeling makes use of genome-wide profiling data, it is con-

ceptually very different from other genome-wide data analysis approaches. Top-

down modeling needs data produced by experiments suitable for the approach.

One should not expect that a random combination of arbitrary molecular snap-

shots would be of much use for the top-down modeling process. Sometimes they

may serve some purpose (e.g., variable selection) but overall, top-down modeling

requires perturbation experiments carried out with appropriate controls. In the

face of modern experimental methods, the development of an effective top-down

modeling strategy is crucial. Furthermore, we believe that a combination of top-

down and bottom-up approaches will eventually have to be used. An example of a

first step in this direction is the apoptosis model in Bentele et al. (2004).

A variety of different network inference methods have been proposed in recent

years, using different modeling frameworks, requiring different types and quanti-

ties of input data, and providing varying amounts of information about the system

to be modeled. There are fundamentally three pieces of information one wants to

know about a molecular network: (i) its wiring diagram, that is, the causal

dependencies among the network nodes, for example, gene activation or repres-

sion; (ii) the ‘‘logical’’ structure of the interactions between the nodes, for example,

multiplicative or additive interaction of transcription factors; and (iii) the dynam-

ics of the network, for example, the number of steady states. At one end of the

model spectrum are statistical models that capture correlations among network

variables. These models might be called high level (Ideker and Lauffenburger,

2003). The output of methods at the other end of the spectrum is a system of

ODE which models network dynamics, provides a wiring diagram of variable

dependencies as well as a mechanistic description of node interactions. In-between

is a range of model types such as information-theory-based models, difference

equations, Boolean networks, and multistate discrete models.

The literature on top-down modeling, or network inference, has grown consid-

erably in the last few years, and we provide here a brief, but essentially incomplete

review. The majority of newmethods that have appeared utilize statistical tools. At

the high-level end of the spectrum recent work has focused on the inference of

relevance networks, first introduced in Butte et al. (2000). Using pairwise correla-

tions of gene expression profiles and appropriate threshold choices, an undirected

network of connections is inferred. Partial correlations are considered in de la

Fuente et al. (2004) for the same purpose. In Rice et al., (2005) conditional

correlations using gene perturbations are used to assign directionality and func-

tionality to the edges in the network and to reduce the number of indirect connec-

tions. Another modification is the use of time-delayed correlations in Li et al.

(2006b) to improve inference. Using mutual information instead of correlation,
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together with information-theoretic tools, the ARACNE algorithm in Margolin

et al. (2006) reports an improvement in eliminating indirect edges in the network.

Probably the largest part of the recent literature on statistical models is focused

on the use of DBNs, a type of statistical model that gives as output a directed graph

depicting causal dependency relations between the variables. These dependency

relations are computed in terms of a time evolution of joint probability distribu-

tions on the variables, viewed as discrete random variables for reverse-engineering.

Originally proposed in Friedman et al. (2000), the use of causal Bayesian network

methods has evolved to focus on DBNs, to avoid the limitation of not capturing

feedback loops in the network. These can be thought of as a sequence in time of

Bayesian networks that can represent feedback loops over time, despite the fact that

each of the Bayesian networks is an acyclic directed graph. A variety of DBN

algorithms and software packages have been published, see, for example,

Beal et al. (2005), Dojer et al. (2006), Friedman, (2004), Nariai et al. (2005),

Pournara and Wernisch (2004), Yu et al. (2004), and Zou and Conzen (2005).

Probably the largest challenge to DBN methods, as to all other methods, is the

typically small sample sizes available for microarray data. One proposed way to

meet this challenge is by bootstrapping, that is, the generation of synthetic datawith

a similar distribution as the experimental data; see, for example, Pe’er et al. (2001).

These methods all provide as output a wiring diagram, in which each edge

represents a statistically significant relationship between the two network nodes it

connects. Other approaches that result in a wiring diagram includes (Tringe et al.,

2004), building on prior work by Wagner (2001, 2004). If time course data are

available it is useful to obtain a dynamic model of the network. There have been

some recent results in this direction using Boolean network models, first introduced

in Kauffman (1969). Each of the methods in Mehra et al. (2004), Kim et al. (2007),

and Martin et al. (2007) either modifies or provides an alternative to the original

Boolean inference methods in Liang et al. (1998), Akutsu et al. (1999, 2000a,b), and

Ideker et al. (2000). Moving farther toward mechanistic models, an interesting

network inference method resulting in a Markov chain model can be found in

Ernst et al. (2007). Finally, methods using systems of differential equations include

(Andrec et al., 2005; Bansal et al., 2006, 2007; Chang et al., 2005; Deng et al., 2005;

Gadkar et al., 2005; Gardner et al., 2003; Kim et al., 2007; Yeung et al., 2002).

Reverse-engineering methods have also been developed for the S-system formalism

of Savageau (1991), which is a special case of ODE-based modeling, such as Kimura

et al. (2005), Marino and Voit, (2006), and Thomas et al., (2004).

Validating reverse-engineering methods and comparing their performance is very

difficult at this time. Typically, each method is validated using data from simulated

networks of different sizes andmore or less realistic architecture. This is a crucial first

step for any method, since it is important to measure its accuracy against a known

network. The most common organism used for validation is yeast, with a wide

collection of published data sets (very few of which are time course data). One of

the key problems in comparing different methods is that they typically have different

data requirements, ranging from time course data to steady-state measurements.
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Some methods require very specific perturbation experiments, whereas others need

only a collection of singlemeasurements. Somemethods use continuous data, others,

for instance most Bayesian network methods, require discretized data. Some meth-

ods take into account information such as binding site motifs. At present, there is no

agreed-upon suite of test networks that might provide a more objective comparison.

Nonetheless, comparisons are beginning to be made (Bansal et al., 2007; Kremling

et al., 2004; Werhli et al., 2006), but even there it is hard to interpret the results

correctly. Most methods show some success with specialized data sets and particular

organisms, but in all the casesmany theoretical aswell as practical challenges remain.

The stated goal of the DREAM effort mentioned in the beginning is to develop

precisely such a set of benchmark data sets that can be used as a guide for method

developers and a way to carry out more systematic comparisons.

We briefly describe two such methods here, one using parameter estimation for

systems of differential equations as the principal tool, the other using statistical

methods. A comparison of different methods, including these two, was done in

Camacho et al. (2007). In the Section IV, we describe in detail a method that has as

output either a wiring diagram or a Boolean network, using the interpolation of

data by a Boolean network as the main tool. First, we describe a reverse-engineer-

ing method that uses multiple regression, proposed by Gardner et al. (2003), which

is similar to de la Fuente and Mendes (2002) and Yeung et al. (2002). The method

uses linear regression and requires data that are obtained by perturbing the vari-

ables of the network around a reference steady state. A crucial assumption of the

method is that molecular networks are sparse, that is, each variable is regulated

only by a few others. This method assumes no more than three regulatory inputs

per node. The network is then recovered using multiple regressions of the data. It

estimates the coefficients in the Jacobian matrix of a generic system of linear

differential equations representing the rates of change of the different variables.

(Recall that the Jacobian matrix of a linear system of differential equations has as

entry in position (i, j) the coefficient of the variable xi in the equation for variable

xj.) The assumption that the wiring diagram of the network is sparse translates into

the assumption that only a few of the entries of this matrix are different from 0.

The second method, originally published in Hartemink et al. (2002), uses the

framework of DBNs. The data required for this reverse-engineering method are

time courses representing temporal responses to perturbations of the system from a

steady state. The method has been implemented in the software package BANJO,

described in Bernard and Hartemink (2005).

IV. Reverse-Engineering of Discrete Models: An Example

A. Boolean Networks: Deterministic and Stochastic

Asmentioned in the introduction, Boolean networkswere first proposed asmodels

for gene regulatory networks by Kauffman (1969), where a gene is considered either

expressed (1) or not expressed (0), and the state of a gene is determined by the states of
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its immediate neighbors in the network. One interpretation of the different attractors

(steady states, in particular) could be as the different phenotypes intowhich a cell will

differentiate, starting from an arbitrary initialization. As there is evidence that gene

regulation as well as metabolism could be stochastic, Boolean networks, which are

deterministic, have been generalized to account for stochasticity. Boolean networks

with perturbations (BNps) and Probabilistic Boolean networks (PBNs) have been

developed for modeling noisy gene regulatory networks, see, for example, Akutsu

et al. (2000a,b), Shmulevich et al. (2002, p. 225), and Yu et al. (2004).

Definition 3

A Boolean network with perturbations (BNp) is a Boolean network where, at each

time step, the state of a randomly chosen node is flipped with some probability p.

That is, if the current state of the network is x ¼ (x1, . . ., xn), the next state y is

determined as follows. A unit vector e¼ (e1, . . ., en) is chosen at random where ei is

zero for all but one coordinate j for which ej¼ 1. Then y¼ f(x)þ ewith probability

p and y ¼ f(x) with probability 1 � p. In particular, in a BNp, one and only one

node could be perturbed with probability p at each time step. That is, the phase

space of a BNp is a label-directed graph, where the vertices are all possible states of

the network, and the label of an edge (x,y) is the probability that y ¼ f(x) þ e for

some unit vector e. It is clear that the out-degree of each node x is n, where the edge

(x,y) is labeled with 1 � p if y ¼ f(x), and p if y ¼ f(x) þ e for some unit vector e.

Definition 4

A PBN is a Boolean network in which each node in the network could possibly

have more than one update function, in the form of a family of Boolean functions,

together with a probability distribution. When it is time to update the state of a

node, a function is chosen at random from the family of that node and is used to

decide its new state; namely, for each node xi in the network, let {f, g, . . .} be the set
of local functions, where the probability of choosing f is p, that of choosing g is q,

etc. and p þ q þ . . . ¼ 1. Then the phase space of the network is a labeled directed

graph with a directed edge (x,y), if for all i, we have yi¼ f(x), for some local update

function f for node i. The label on the edge is the product of the probabilities of

each of the coordinates, where the probability of a coordinate is the sum of all

probabilities p such that yi ¼ f(x).

Example 3

Consider the network on three nodes in Fig. 7 below, and, let f11 ¼ x1 OR x2,

f12 ¼ x2 AND x3, with probabilities 0.7, and 0.3, respectively. Suppose node

2 has only one local function, f2¼ x2 OR x3, and suppose node 3 has two functions,
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f31 ¼ x1 AND x2 with probability 0.4, and f32 ¼ x2 with probability 0.6. The phase

space of this network is depicted in Fig. 8.

Another way to introduce stochasticity into a deterministic model is by updating

the network nodes asynchronously, and, at each time step, the order at which they

x1

x2

x3

Fig. 7 The wiring diagram of the probabilistic Boolean network in Example 3.
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Fig. 8 The phase space of the probabilistic Boolean network in Example 3. Notice that there are three

fixed points: 000 and 111 with probability 1, while the state 010 is a fixed point with probability 0.12.

Furthermore, the two states 011 and 110 form a limit cycle with probability 0.12.
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are updated is chosen at random. These networks are clearly biologically relevant

as they capture the order at which different events and processes take place and

hence could change the outcome. In Chaves et al. (2005), the authors present a

stochastic update-order model of the segment polarity network in Drosophila. The

model captures aspects of this biological process that the original model in Albert

and Othmer (2003) did not account for. One way to accomplish update-stochastic

simulation of deterministic Boolean networks is to represent them as PBNs, where

each node has two local update functions; the original one and the identity

function, with appropriate choice of probabilities. This approach is implemented

in the parameter estimation package Polynome, which we discuss below. Next, we

briefly review some of the known network inference methods for BNp and PBNs.

It goes without saying that, to infer a Boolean network from experimental data

sets, one has to start by assuming that each node in the network can only be in one

of two states at any given time. In particular, the data used for inferring the

network must also be binary, and hence the experimental data first have to be

discretized into two qualitative states. There are several different methods for

discretizing continuous data, see, for example, Dimitrova et al. (2010). However,

for the Boolean case, all methods come down to deciding the proper threshold that

should be used to decide if a given molecular species is present (1) or absent (0). For

DNA microarray data, this may be done by, for example, choosing a fold change

above which a gene is considered upregulated compared to a control value. Or it

may be done by inspection of a time course.

B. Inferring Boolean Networks

As we described above, Boolean networks have emerged as a powerful frame-

work for modeling and simulating gene regulatory networks. Therefore, it is

natural to infer these networks from experimental data, and different methods

have been proposed. Liang et al. (1998) pioneered this approach with the algorithm

REVEAL, where information-theoretic principles are applied to reduce the search

space. In Akutsu et al. (1999), the authors proposed a simple algorithm for

identifying a Boolean network from a data set assuming that the in-degree of

each node is relatively small. They discussed requirement on the data for such

networks to exist. Recently, Martin et al. (2007) presented an algorithm for

identifying all activation–inhibition Boolean networks (here each edge is either

an activator or a strong inhibitor) from a given data set. Here, too, a small upper

bound for the in-degree of each node is assumed. The dynamics of the identified

Boolean networks are then used to shed light on the biological system.

Using the Boolean framework, Ideker et al. (2002) presented a method that

identifies a minimal wiring diagram of the network from time course data. The

network is minimal in the sense that each edge in the network is essential to

reproduce the time course data.
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C. Inferring Stochastic Boolean Networks

Deterministic Boolean network models seem inadequate for modeling some

biological systems, as uncertainty is a prominent feature of many known systems.

This is due either to hidden variables, intrinsic or extrinsic noise, or measurement

noise. Different algorithms have been proposed for inferring stochastic Boolean

networks within the framework of PBNs (Ching et al., 2005; Shmulevich et al.,

2002, 2003a) or BNps (Akutsu et al., 2000a,b; Yu et al., 2004).

Shmulevich and his collaborators developed an inference method that identifies

a set of local functions of a given node using either time course data or a set of

steady states (Shmulevich et al., 2002). For each node xi in the network, a set of

local Boolean functionsXi¼ {f, g, . . .} is assigned with probabilitiesPi¼ {p, q, . . .}.
The set Xi and Pi correspond to the highest coefficients of determination (CoD) of

the node xi relative to randomly chosen subsets of variables that could be possible

input sets for node xi. On the other hand, Yu et al. (2004) presented an algorithm for

inferring a Boolean network with perturbations from steady-state data. Based on

certain assumptions about the size of the basin of attraction for each observed state

and lengths of transients, a matrix describing the transition between different

attractors is computed.

Some of the algorithms mentioned above have been implemented as either Cþþ
code, such as the algorithm of Akutsu et al., or within other software packages,

such as the algorithms of Shmulevich et al. (2002), which require the commercial

software package Matlab. Furthermore, experimental data need to be booleanized

ahead of time before applying these algorithms. In Section IV.D, we describe the

software package Polynome (Dimitrova et al., 2009) that incorporates several

different algorithms using tools from computational algebra and algebraic geome-

try. The software is capable of inferring wiring diagrams as well as deterministic

ones and PBNs. Furthermore, the software can be used to simulate and explore the

dynamics of the inferred network.

D. Polynome: Parameter Estimation for Boolean Models of Biological Networks

As described earlier, the goal of parameter estimation is to use experimental time

course data to determine missing information in the description of a Boolean

network model for the biological system from which the data were generated.

This can be done with either partial or no prior information about the wiring

diagram and dynamics of the system. Polynome will infer either a static wiring

diagram alone or a dynamical model, with both deterministic and stochastic model

choices. The software is available via a Web interface at http://polymath.vbi.vt.

edu/polynome. Figure 9 shows a screenshot of the interface of Polynome.

The main idea behind the algebraic approach underlying Polynome is that any

Boolean function can be written uniquely as a polynomial where the exponent of

any variable is either 0 or 1 (hence the name). The dictionary is constructed from

the basic correspondence:

22. Algebraic Models of Biochemical Networks 549



x AND y ¼ xy; x OR y ¼ xþ yþ xy; NOT x ¼ xþ 1:

Therefore, any Boolean network f can be written as a polynomial dynamical

system

f ðx1; . . . ; xnÞ ¼ f ðxÞ ¼ ðf1ðxÞ; . . . ; fnðxÞÞ : f0; 1gn ! f0; 1gn;
where the polynomial function fi is used to compute the next state of node i in the

network. For example, the Boolean network in Eq. (1) has the following polyno-

mial form:

f ðx1; . . . ;x4Þ ¼ ðx1x3; 1þ x4 þ x2x4; x1; x1 þ x2 þ x1x2Þ:
The Boolean network from Eq. (2) has the polynomial form:

f ðx1; . . . ; x9Þ ¼ ðð1þ x4Þx5; x1; x1; 1; ð1þ x6Þð1þ x7Þ; x3x8; x6 þ x8 þ x9 þ x6x8

þ x6x9 þ x8x9; x2ðx8 þ 1ÞÞ;
where g ¼ 1 and a ¼ 1, and (x1, . . ., x9) ¼ (M, P, B, C, R, A, Alow, L, Llow).

Studying Boolean networks as polynomial, dynamical systems has many advan-

tages, primarily that within the polynomial framework, a wide variety of algorith-

mic and theoretical tools from computer algebra and algebraic geometry can be

applied. The remainder of the section will describe the parameter estimation

algorithms implemented in Polynome and illustrate the software using the lac

operon example described in detail above. This example is also used in Dimitrova

et al. (2009) to validate the software.

Fig. 9 A screenshot of POLYNOME at http://polymath.vbi.vt.edu/polynome.
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Input: The user can input two kinds of information. The first kind consists of one

or more time courses of experimental data. While several different data types are

possible, we will focus here on DNA microarray data, for the sake of simplicity. If

the network model to be estimated has nodes x1, . . ., xn, then a data point consists

of a vector (a1, . . ., an) of measurements, one for each gene in the network. Since the

model is Boolean, the first step is to discretize the input data into two states, 0 and

1. The user can provide a threshold to discriminate between the two states. As

default algorithm, Polynome uses the algorithm in Dimitrova et al. (2010), which

incorporates an information-theoretic criterion and is designed to preserve

dynamic features of the continuous time series and to be robust to noise in the data.

The second type of input consists of biological information. This can take the

form of known edges in the wiring diagram or known Boolean functions for some

of the network nodes. Recall that an edge from node xi to node xj in the wiring

diagram indicates that node xi exerts causal influence on the regulation of node xj.

In other words, the variable xi appears in the local update function fj for xj. In the

absence of this type of information, the problem is equal to what is often called

reverse-engineering of the network, that is, network inference using exclusively

system-level data for the network.

To understand the algorithms, it is necessary to clarify the relationship between

the input data and the networks produced by the software. The software produces

networks that fit the given experimental data in the following sense. Suppose that

the input consists of a time course s1, . . ., st, which each si E {0, 1}
n. Then, we say

that a Boolean network f fits the given time course if f(si) ¼ si þ 1 for all i.

Software output:There are five types of output the user can request. We briefly

describe these and the algorithms used to obtain them.

A static wiring diagram of the networ:It, is a directed graph with vertices in the

nodes of the network and edges indicating causal regulatory relationships. Since

there is generally more than one such diagram for the given information (unless a

complete wiring diagram is already provided as input), the user can request either a

diagram with weights on the edges, indicating the probability of a particular edge

being present, or a collection of topscoring diagrams. The algorithm used for this

purpose has been published in Jarrah et al. (2007b). It computes all possible wiring

diagrams of Boolean networks that fit the given data. The algorithm outputs only

minimal wiring diagrams. Here, a wiring diagram is minimal if it is not possible to

remove an edge and still obtain a wiring diagram of a model that fits the given data.

In this sense, the output is similar to that in Ideker et al. (2002). However, the

approach in Jarrah et al. (2009) is to encode the family of all wiring diagrams as an

algebraic object, a certain monomial ideal, which has the advantage that ALL

minimal wiring diagrams can be calculated, in contrast to a diagram produced by a

heuristic search.

A deterministic dynamic model in the form of a Boolean network: This model fits

the given data exactly and satisfies the constraints imposed by the input on the

wiring diagram and the Boolean functions, using the algorithm described in

Laubenbacher and Stigler (2004). This is done by first computing the set of all
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Boolean networks that fit the given data and the constraints. Using tools from

computational algebra, this can be done by describing the entire set of models, that

is, the entire parameter space, in a way similar to the description of the set of all

solutions to a system of nonhomogeneous linear equations. As in the case of

nonhomogeneous linear equations, if f and g are two Boolean networks that fit

the given data set, that is, f(st) ¼ stþ1 ¼ g(st), then (f–g)(st) ¼ 0 for all t. Hence, all

networks that fit the data can be found by finding one particular model f and

adding to it any Boolean network g such g(st) ¼ 0 for all t. The space of all such g

can be described by a type of basis that is similar to a vector space basis for the null

space of a homogeneous system of linear equations.

A PBN that fits the given data: That is, the network has a family of update

functions for each node, together with a probability distribution on the functions,

as described earlier. This network has the property that for any choice of function

at any update the network fits exactly the given data. The network is constructed

using an algorithm that builds on the one described in Dimitrova et al. (2007).

A Boolean network that optimizes data fit and model complexity. In contrast to

the previous two choices of output, this network does not necessarily fit the given

data exactly but gives a network that is optimized with respect to both data fit and

model complexity. This is a good model choice if the data are assumed to contain

significant noise, since it reduces the tendency to overfit the data with a complex

model. This option uses an evolutionary algorithm (Vera-Licona et al., 2009) that

is computationally intensive and is only feasible for small networks at this time.

A deterministic model that is simulated stochastically: This model is constructed

by estimating Boolean functions that fit the data exactly, when simulated with

synchronous update. But the network is then simulated using a stochastic update

order. That is, the simulated network may not fit the given data exactly, but will

have the same steady states as the synchronous model. The stochastic update order

is obtained by representing the deterministic system as a PBN by adding the

identify function to each node. At a given update, if the identity function is chosen,

this represents a delay of the corresponding variable. Choosing an appropriate

probability distribution, one can in this way simulate a stochastic sequential

update order. The resulting phase space is a complete graph, with transition

probabilities on the edges. This approach is also computationally very intensive,

so this option is only feasible for small networks.

E. Example: Inferring the lac Operon

In this section, we demonstrate some of the features of Polynome by applying it

to data generated from the Boolean lac operon model in Eq. (1) above. That is, we

take the approach that this model represents the biological system we want to

construct a model of, based on ‘‘experimental’’ data generated directly from the

model. This approach has the advantage that it is straightforward to evaluate the

performance of the estimation algorithm in this case.
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The data in Table I include four time courses: all molecules are high, only R is

high, only M is high, and only L and Llow are high.

Table II shows a PBN (in polynomial form) inferred from the data in Table I,

using Polynome. Here, for each node, a list of update functions and their prob-

abilities is given. The bold functions are the ones with probability higher than 0.1.

(This threshold is provided by the user.) Notice that the true function (1þ x4)x5 for

x1 is in the list of inferred functions for x1 with the second highest probability, the

same as for the true function x3x8 for x6. The inferred functions with highest

probability for nodes 2–4 are the correct ones. In the case of node 7, the only

inferred polynomial x9 is clearly not the ‘‘true’’ function, which is x6 þ x8 þ x9.

However, it is important to remember that we are using four time courses involving

only 26 states from the phase space of 512 states. Parameter estimation methods

cannot recover information about the network that is missing from the data.

The phase space of this system has 512 states andmany edges connecting them and

so a visual inspection of the phase space graph is not possible. Polynome in this case

provides a summary of the dynamics that includes the number of components, the

number of limit cycles of each possible length as well as the stability of these cycles.

Here, the stability of a cycle is the probability of its remaining in that cycle. Table III

shows that our inferred system in Table II has only one component which has the

steady state (111101111), and its stability is 0.33. Note that the original Boolean lac

operon model in Eq. (2) has only one component and the same steady state as the

inferred model. The wiring diagram of the inferred network is shown in Fig. 10.

V. Discussion

Mathematical models have become important tools in the repertoire of systems

biologists who want to understand the structure and dynamics of complex

biological networks. Our focus has been on algebraic models and methods for

constructing them from experimental time course data. For differential equations-

based models, the standard approach to dealing with unknown model parameters

Table I
A Set of Time Courses from the lac Operon Model, Generated Using Eq. (2)

All are high R is high M is high L and Llow are high

1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 1 1 1 0 1 1 1 1 0 0 0 1 1 0 0 0 1 0 1 1 1 1 0 0 0 1 0 0 0 1 1 0 1 0 1

1 0 0 1 0 1 1 1 1 0 0 0 1 1 0 1 0 1 0 0 0 1 1 0 1 1 1 0 0 0 1 0 0 1 0 1

1 1 1 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 1 0 0 1 0 0 1 0 1

1 1 1 1 0 0 1 1 1 1 0 0 1 0 0 1 0 1 1 0 0 1 0 0 1 0 1 1 1 1 1 0 0 1 0 1

1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 0 0 1 0 1 1 1 1 1 0 0 1 1 1

1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1

1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1

1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1
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Table II
A Probabilistic Boolean Model Inferred from the Data in Table I Using Polynome

f1 ¼ {

x5*x8þx1*x5þx5þx2*x6þx2*x8þx6þx1*x7þx8þx1þ1 #.0222222

x5þx7*x8þx1*x9þx8þx1þ1 #.0222222

x5þx4þx1*x9þx9þx1þ1 #.133333

x5þx1*x4þx4þx9þx1þ1 #.0666667

x4*x5þx4 #.2

x5þx7*x8þx1*x7þx8þx1þ1 #.0666667

x5*x7þx7 #.244444

x5*x9þx4 #.0444444

x2*x5þx5*x8þx5þx1*x4þx1*x2þx2þx1*x8þx8þx1þ1 #.0222222

x5þx4*x8þx1*x4þx8þx1þ1 #.0666667

x5*x9þx7*x8þx8þx9 #.0222222

x5þx4þx1*x7þx9þx1þ1 #.0444444

x5*x6þx5*x8þx5*x9þx2*x6þx2*x8þx6þx8þx9 #.0222222

x5*x6þx5*x8þx5þx1*x4þx1*x6þx6þx1*x8þx8þx1þ1 #.0222222

}

f2 ¼ x1

f3 ¼ x1

f4 ¼ 1

f5 ¼ x7 þ 1

f6 ¼ {

x2*x5þx1*x5þx2*x6þx1*x2þx6þx2þx1*x8 #.0222222

x5*x6þx5*x8þx3*x6þx4þx6þx8þx9 #.0222222

x3*x6þx1*x6þx1*x8 #.0444444

x5*x8þx5*x7þx1*x5þx5þx3*x6þx6þx1*x7þx8þx7þx1þ1 #.0444444

x2*x8 #.377778

x3*x8 #.355556

x2*x6þx1*x6þx1*x8 #.0888889

x3*x6þx6þx1*x8þx3*x7þx1*x3 #.0222222

x5*x6þx5*x8þx5*x7þx5þx2*x6þx6þx1*x7þx8þx7þx1þ1 #.0222222

}

f7 ¼ {

x5*x8þx1*x5þx2*x6þx2*x8þx4þx6þx8 #.0222222

x5*x6þx5*x8þx4þx1*x6þx6þx1*x8þx8 #.0222222

x4*x8þx4þx8 #.111111

x5*x7þx5þx4þx1*x7þx7þx1þ1 #.0444444

x9 #.666667

x4*x5þx5þx1*x4þx1þ1 #.0666667

x4þx7*x8þx8 #.0444444

x2*x5þx5*x8þx4þx1*x2þx2þx1*x8þx8 #.0222222

}

f8 ¼ {

x2 #.511111

x3 #.488889

}

f9 ¼ 1
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is to estimate them by fitting the model to experimental data. The same approach is

taken here to the estimate of unknown model parameters in an algebraic model.

We have described several approaches to this problem in the literature. For one of

these approaches, implemented in the software package Polynome, we have

provided a detailed guide to how the software can be used with experimental

data via a Web interface.

Table III
The Analysis of the Phase Space of the Probabilistic Boolean Network Using Local
Functions with Probability More than 0.1 (The Bold Functions in Table II)

Analysis of the phase space [m ¼ 2, n ¼ 9]

Number of components 1

Number of fixed points 1

Fixed point, component size, stability

(1 1 1 1 0 1 1 1 1), 512, 0.33

x4 x9

x1

x8

x3 x2

x7 x6

x5

Fig. 10 The wiring diagram of the inferred network in Table II.
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The extreme case of parameter estimation is the lack of any prior biological

information, so the network is to be inferred from experimental data alone. This is

typically referred to as reverse-engineering or network inference. Many different

approaches to this ‘‘top-down’’ approach to modeling have been published. There

are still significant challenges ahead, arising primarily due to the lack of sufficiently

large, appropriately collected time course data sets. Nonetheless, the field has

advanced to the point where there are some first successes. It is our hope that

this chapter will encourage the reader to try this approach to data modeling, using

algebraic models, or others based on differential equations or statistics.
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Abstract

Introduction. Patient outcomes, such as morbidity and mortality, depend on

accurate laboratory test results. Computer simulation of the effects of alterations

in the test performance parameters, on outcome measures, may represent a valu-

able approach to define the quality of assay performance required to provide

optimal outcomes.
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Methods. We carried out computer simulations using data from patients on

intensive insulin treatment to determine the effects of glucose meter imprecision

and bias on (1) the frequencies of glucose concentrations >160 mg/dL; (2)

the frequencies of hypoglycemia (<60 mg/dL); (3) the mean glucose; and (4)

glucose variability. For each patient, starting with a randomly selected initial

glucose concentration and individualized responsiveness to insulin, hourly glucose

concentrations were simulated to reflect the effects of (1) IV glucose administra-

tion, (2) gluconeogenesis, (3) insulin doses as determined using regimens from the

University of Washington and Yale University, and (4) errors in glucose measure-

ments by the meter. For each of the 45 sets of glucose meter bias and imprecision

conditions, 100 patients were simulated, and each patient was followed for 100 h.

Results. For both insulin regimens, mean glucose was inversely related to assay

bias, glucose variability increased with negative assay bias and assay imprecision,

the frequency of glucose concentrations>160 mg/dL increased with negative assay

bias and assay imprecision, and the frequency of hypoglycemia increased with

positive assay bias and assay imprecision. Nevertheless, each regimen displayed

unique sensitivity to variations in meter imprecision and bias.

Conclusions. Errors in glucose measurement exert important regimen-dependent

effects on glucose control during intensive IV insulin administration. The results of

this proof-of-principle study suggest that such simulation of the clinical effects of

measurement error is an attractive approach to assess assay performance and

formulate performance requirements.

I. Update

In the time since we prepared our article for Methods in Enzymology, there has

been an increasing interest in the area of simulation modeling of medical outcomes

associated with use of clinical laboratory testing, and there has been particularly

intense interest in medical outcomes associated with use of glucose meters.

From the time our paper appeared, the leading journal in clinical chemistry and

laboratory medicine, Clinical Chemistry, has published a major Review (Klee,

2010) on the broad topic of how to determine the requisite analytical performance

of medical tests. In the same journal, we published a critique of the devices used for

measurement of hemoglobin A1c at the point of care, and pointed out that few of

the devices had analytical characteristics of sufficient quality to meet clinical needs

(Bruns and Boyd, 2010).

With regard to glucose meters, specifically, there still is virtually no direct clinical

data on which to base decisions about the requirements for the analytical quality of

meters. Simulation modeling, thus, is playing an important role. Since the publi-

cation of our paper in Methods in Enzymology, a variety of related activities have

taken place, three of which we summarize here:

InMarch 2010, the FDA convened a conference to address the analytical quality

that will be required prior to the clearance of such devices for sale in the U.S.
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One of us (DEB) was invited to discuss our work presented in the Methods in

Enzymology paper, but could not attend because of illness. At that conference,

Marc Breton presented new simulation modeling work that described the impact

of meter error on medical decision making, where the simulated outcomes were

determined using the well-validated physiological model of glucose metabolism

developed by Kovachev and Breton and cited in ourMethods paper. A manuscript

describing that work is in preparation.

In April 2010, the Clinical Laboratory Standards Institute Subcommittee on

Point-of-Care Blood Glucose Testing in Acute and Chronic Care Facilities

completed a draft of the new recommendations on glucose meters. The simula-

tion modeling studies in the Methods in Enzymology paper and the results

of another simulation modeling study that used the actual distribution of glucose

results derived from a tight glucose control program at Mayo Clinic (Karon

et al., 2010) were the key pieces of information considered by the subcommittee.

Finally, in the same time period, a committee of the International Standards

Organization also addressed the topic of the requirements for analytical quality of

glucose meters. They too carefully considered the simulation modeling studies.

Although pressures of time prevented us from serving on the committee, we were

consulted by the chair of the committee and provided input.

It is hoped that these efforts will do two things: (1) Lead to tighter standards

of performance requirements for glucose meters to better meet the clinical needs of

patients and (2) serve as models of how simulation modeling can be used for

assessing the analytical quality requirments of medical tests, to better ensure that

clinical needs will be met.

We offer the following suggestions, based on our experience with simulation

modeling:

� Work with others who understand the relevant physiology, pathophysiology,

relevant treatments and relationship of outcomes to type and timing of

therapy.

� Compare your results with the results of others in the field doing similar work:

Each model has strengths and potential weaknesses.

� Communicate the findings to clinicians and others (even the FDA), who may

have vested interest: They will raise valuable points that need to be considered.

II. Introduction

Quantitative laboratory measurements are now playing an increasingly impor-

tant role in medicine. Well-known examples include (a) quantitative assays

for cardiac troponins for diagnosing acute coronary syndromes (heart attacks)

(Morrow et al., 2007) and (b) measurements of LDL cholesterol to guide

decisions on use of statin drugs (Expert Panel on Detection, Evaluation, and

Treatment of High Blood Cholesterol in Adults, 2001). Errors in these assays
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have been recognized to lead to misdiagnoses and to inappropriate treatment or

lack of appropriate treatment.

A growing problem is to define the degree of accuracy of laboratory measure-

ments. Various approaches have been used to define quality specifications (or

analytical goals) for clinical assays. A hierarchy of these approaches has been

proposed (Fraser and Petersen, 1999; Petersen, 1999). At the low end of the

hierarchy lies the approach of comparing the performance of an assay with the

‘‘state of the art’’ or with the performance criteria set by regulatory agencies or

with the opinions of practicing clinicians or patients. A step higher, biology can be

used as a guide to analytical quality by considering the average inherent biological

variation within people; for substances whose concentration in plasma varies

dramatically from day to day, there is less pressure to have assays that are highly

precise because the analytical variation constitutes a small portion of the total

variation. However, none of these approaches directly examine the relationship

between the quality of test performance and the clinical outcomes. The collected

opinions of physicians are likely to be anecdotal and reflect wide variation in

opinion, whereas criteria based on biological variation or the analytical state of

the art, or even the criteria of regulatory agencies, may have no relation to clinical

outcomes.

Few studies have examined instrument analytical quality requirements based

on the highest criterion, that is, patient outcomes. Clinical trials to determine the

effects of analytical error on patient outcomes (such as mortality) are extremely

difficult to devise and are expensive (Price et al., 2006). Unlike trials of new

drugs, the costs of such studies are large in relation to their potential for profit.

For ethical reasons, it may be impossible to conduct prospective randomized

clinical trials in which patients are randomized to different groups defined by the

use of high- or low-quality analytical testing methods. The lack of common

standardization of methods used in different studies usually undermines the

efforts to draw useful general conclusions on this question, based on systematic

reviews of published and unpublished clinical studies. In contrast to these

approaches, computer simulation studies allow a systematic examination of

many levels of assay performance.

There are many common clinical situations in which patient outcomes are

almost certainly connected with the analytical performance of a laboratory test.

These situations represent ideal models for the use of simulation studies. One

such situation occurs when a laboratory test result is used to guide the adminis-

tration of a drug: a measured concentration of drug or of a drug target deter-

mines the dose of drug. Errors in measurement lead to the selection of an

inappropriate dose of the drug. A common example is the use of measured

concentrations of glucose to guide the administration of insulin. In this situation,

higher glucose concentrations are a signal that indicate the need for a higher dose

of insulin, whereas, a low glucose concentration is a signal to decrease or omit

the next dose of insulin.
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Several years ago, we carried out a simulation modeling of the use of home

glucose meters by patients to adjust their insulin doses (Boyd and Bruns, 2001).

In clinical practice, the insulin dose is determined from a table that relates the

measured glucose concentration and the necessary dose of insulin. We examined

the relationships between errors in glucose measurement and the resulting errors in

selection of the insulin dose that is appropriate for the true glucose concentration.

The simulation model addressed glucose meters with a specified bias (average

error) and imprecision (variability of repeated measurements of a sample,

expressed as coefficient of variation—CV). We found that to select the intended

insulin dosage, 95% of the time, required that both the bias and the CV of the

glucose meter be <2%, which is considerably less than the error seen in commonly

used meters (Boyd and Bruns, 2001). Based on these results, we concluded that

simulation modeling studies could be used to provide a clinically relevant basis for

setting quality specifications for home glucose meters which are used to adjust

insulin doses.

Recently, several randomized controlled trials have found that tight control of

patients’ glucose in surgical, medical, and neonatal intensive care units improved

clinical outcomes, including rates of mortality and morbidity (see, e.g., Van den

Berghe et al., 2001, 2006; Vlasselaers et al., 2009). Although some subsequent

studies also showed improved patient outcomes with tight glucose control (TGC)

and others did not, such that meta-analyses of all available studies showed no

improvement in rates of mortality or morbidity (Griesdale et al., 2009; Wiener

et al., 2008). The three studies cited above measured glucose with devices known to

have good accuracy and precision, but most other studies, many of which have

reported disappointing results, used devices with lower accuracy and precision

(Scott et al., 2009). Apart from this suggestive observation, however, little is

known regarding the quality parameters of glucose assays that are required to

achieve optimum results in TGC programs.

We set out to use simulation modeling, as an alternative to clinical trials in

patients, to address the quality requirements for measurements of glucose in TGC

programs. Any simulation model used for evaluating the clinical success of TGC

regimens requires the selection of clinical measures of success. The currently used,

popular measure for assessing the success of TGC regimens is mean blood glucose.

Additional measures for assessing the tightness of blood glucose control include

the frequencies of hypo- or hyperglycemia, the percent of time during which

the patients’ blood glucose concentrations are within the target interval, and the

relative variability in blood glucose concentrations over time.

We have developed a modeling approach to assess the impact of analytical

imprecision and inaccuracy in glucose testing on clinical measures of outcome in

TGC regimens. Although the data we present are preliminary and have some

weaknesses that we will point out, we believe that such a modeling approach

may represent a generally useful method to help answer the question of the degree

of analytical testing quality required in a variety of clinical circumstances to meet

medical needs.
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III. Modeling Approach

A. Simulation of Assay Imprecision and Inaccuracy

Laboratory tests generally display both inaccuracy and imprecision. Systematic

assay inaccuracy is reflected in assay bias—the mean deviation of test results from

the true concentrations. Assay bias is assessed by comparing test measurements on

samples with measurements made by a reference measurement system that is

known to have very low bias.

Assay imprecision is assessed by repetitive measurements of quality control

materials that simulate patient samples. The data are used to determine the assay

imprecision (standard deviation) at several concentrations of the analyte. The

average assay imprecision is a reasonably good estimate of the imprecision that

might be seen in the analysis of patient samples. Assay imprecision is usually

expressed as a relative imprecision, or CV, in percent, and is obtained by dividing

the observed assay S.D. by the mean and multiplying the result by 100.

Quality control data, obtained upon repeated analyses of the same samples over

months or years, are statistically well behaved and follow a Gaussian distribution.

Thus, assuming that the imprecision of a laboratory test for patient samples is

similar to that observed on quality control samples, the simulation of assay

imprecision can easily be accomplished using a random number generator that

yields normally distributed values with mean ¼ 0 and S.D. ¼ 1, such as the

RANNOR function in SAS.

To generate a series of simulated test results that has a bias of B% and a relative

imprecision of S%, the following equation is used:

TestðsimulatedÞ ¼ ConcðtrueÞ þ ðB=100Þ � ConcðtrueÞ þRANNORðseedÞ
�ðS=100Þ � ConcðtrueÞ

ð1Þ

where Test(simulated) is the test result with B% bias and S% relative imprecision,

Conc(true) is the true concentration of analyte in the sample, and RANNOR(seed)

is the RANNOR function output at a given ‘‘seed’’ value.

Alternative equations can also be easily generated to simulate a constant, rather

than a proportional, bias or standard deviations expressed in concentration units

rather than relative standard deviations (CVs) can be used. Combinations of these

approaches allow simulation of test results that, for instance, have a constant

concentration-based S.D. at low assay values, but above a threshold concentration,

have a constant relative S.D.

B. Modeling Physiologic Response to Changing Conditions

Where laboratory measurements are used to guide patient treatment, simulation

modeling requires a good simulation model of the physiological response to drug

administration. For the example shown in this chapter, we have modeled the

physiological response of glucose to insulin administration. Although the model
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we have developed is very simplistic (and, therefore, may not reflect the true

physiological response very accurately), it is sufficient for the purpose of demon-

stration. Sophisticated models that give highly accurate representations of the true

physiological response of glucose to insulin have been developed for both Type 1

and Type 2 diabetes, and have received FDA approval for their use in preclinical

trials of closed-loop control of glucose (Kovatchev et al., 2009). These models

would be the ideal models to apply in the simulation studies we present below, but

due to their complexity and cost, we have used our simple physiological model to

demonstrate the concept being presented here.

IV. Methods for Simulation Study

We utilized simulation modeling studies to evaluate the effect of analytical

errors in glucose measurements on the relevant outcomes in simulated intensive

care unit patients on TCG regimens. Our simulation models of the TCG regimens

were designed to determine the effects of assay imprecision and bias on four

measures of success: (1) the frequency of plasma glucose concentrations above

goal range (>160 mg/dL); (2) the frequency of plasma glucose concentrations in

the hypoglycemic range (defined as <60 mg/dL for this study, but easily redefined

if desired); (3) the mean blood glucose; and (4) the variability of plasma glucose

(expressed as the standard deviation of repeated measurements of glucose in the

same individual).

We modeled two published TGC regimens—the Yale University protocol

(referred to herein as Yale) and the University of Washington (UW) protocol.

The authors of the Yale protocol describe it as a ‘‘safe and effective insulin infusion

protocol in a medical intensive care unit’’ (Goldberg et al., 2004). The UW

protocol was developed in the context of diabetic patients undergoing surgery,

but also can be applied to patients without diabetes (Trence et al., 2003).

These protocols differ in their underlying approach, and each has a different

goal for the range of glucose concentrations in patients. We evaluated the effects

of glucose assay imprecision and bias on the four measures of clinical success

(mentioned above) and whether the two regimens differed in their sensitivity to

errors in glucose measurement.

The physiological release of insulin from the pancreatic beta cell is known to be

linearly related to the prevailing glucose concentration (Toffolo et al., 1980), and

this relationship forms the basis for selection of the pharmacological dose of

insulin to be given to patients who lack adequate endogenous insulin. In our

computer model, true glucose concentrations, after administration of insulin,

were generated based on this model of the relationship between glucose and

insulin. For each patient modeled, the initial glucose concentration and the

patient’s individual responsiveness to insulin were randomly selected: the starting

glucose was selected from a range of 40 to 600 mg/dL and the responsiveness to

insulin was selected from a range of 10 to 54 mg/dL decrease in glucose per unit of
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insulin per hour. To simplify calculations, the insulin responsiveness in a given

patient was assumed to remain constant, but it can be programmed to change

predictably or randomly. The glucose concentration was modified each hour to

reflect IV glucose administration and normal physiological glucose generation via

gluconeogenesis. We chose a mean increment (�S.D.) from IV and from endoge-

nous sources to be 50 (�10) mg/dL. Each hour, the glucose concentration was

decremented according to the patient’s underlying insulin responsiveness and the

insulin dose determined by the regimen. Combinations of analytical bias ranging

from �20% to þ20% in 5% increments, and analytical imprecision (expressed as

percent coefficients of variation) ranging from 0% to þ20% in 5% increments were

modeled. For each set of analytical error conditions (paired values of % bias and %

relative imprecision expressed as CV), 100 patients were simulated, and each

patient was followed for 100 h. This gave 10,000 glucose measurements for each

of the 45 sets of analytical error conditions simulated, and a total of 450,000

glucose measurements for each simulation.

We performed a side-by-side comparison of the simulated glucose concentration,

as measured by a perfect glucose assay, and an assay with inherent analytical error.

These glucose concentrations were used to determine the rate of insulin adminis-

tration, according to the regimens outlined earlier. Based on the insulin responsive-

ness for a given patient, the decrement in true glucose concentration resulting from

an insulin dose can be calculated. An iterative application of this approach, on

consecutive glucose measurements, will generate a series of true glucose values

in each patient, from which the frequencies of hypoglycemia and above-target

glucose concentrations can be determined, along with the variability in plasma

glucose concentrations.

All of the computer modeling was performed using SAS software (SAS Institute,

Cary, NC). The SAS code used for modeling the Yale and the UW regimens is

included in Appendices 1 and 2, respectively.

V. Results

A. Yale Regimen

Figures 1–4 show examples of the true and measured glucose concentrations in

simulated patients and the related insulin infusion rates during the 100 h of

simulation. The left panel in each figure shows representative simulated patients

in whom the Yale regimen was used to determine insulin infusion rates. The right

panels show similar patients treated using the UW regimen. We will first describe

the key features of these example patients treated according to the Yale regimen

(left panels).

The upper and lower left panels of Fig. 1 show a comparison of glucose control

achieved by the Yale regimen using a perfect glucose assay (top panel) versus the

glucose control achieved in the same patient using an imperfect glucose assay
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(lower panel) with a positive 20% bias and a 5% CV. With the perfect assay, in the

top panel, periodic oscillation of glucose concentrations and insulin administration

rates occur due to insulin dosage adjustments specified by the Yale regimen. In the

lower panel, with a positively biased glucose assay, similar oscillations can be seen,

but now, as expected, the true glucose concentration is displaced downward,

compared to the perfect assay in the top panel which oscillates between approxi-

mately 70 and 120 mg/dL rather than between 100 and 150 mg/dL. The biased

assay gives measured glucose concentrations that are higher than the true glucose

concentrations, and thus higher rates of insulin infusion are selected to hold

measured glucose near the target range, all measurements as measured by the

meter. True glucose is displaced downwards.

Figure 2, left shows a different simulated patient (with moderate insulin respon-

siveness) on the Yale regimen, in the bottom panel is a less-severely biased glucose

assay (5%) but one with an imprecision that is higher (CV ¼ 10%); these are well

within the range of bias and impression reported for glucose meters. It is immedi-

ately apparent that the control of the glucose concentrations and insulin rates in

the bottom panel is ‘‘noisier’’ than in the top panel. Thus, an increase in the

imprecision of the glucose assay results in an increase in the variability of the

simulated patient’s glucose control.

Figure 3, left shows another simulated patient, on the Yale regimen, with low

insulin resistance, as can be judged by the relatively low hourly insulin administra-

tion rates. In the bottom panel, a highly imprecise glucose assay (as judged by the

assay CV which is 20%) that has a zero bias has been used to make the glucose

measurements. It is easy to appreciate a serious degradation in the precision of

glucose control in this simulated patient when a more-imprecise assay is used. The

true glucose concentrations range from approximately 70 to 280 mg/dL in this

panel. A major motivation in TGC protocols is to avoid such high concentrations

of glucose. Note that these high concentrations are seen despite the absence of a

bias in the measurements, there is only an increase in variability (imprecision) of

measurement.

Figure 4, left, presents a simulated patient who is insulin resistant (i.e., requires

higher doses of insulin to control glucose). With the perfect assay, the patient’s

glucose is well controlled, although much higher insulin doses are required to

control it. In the bottom panel, with a highly imprecise (CV ¼ 20%) and strongly

negatively biased (bias ¼ �15%) assay, we again see wide fluctuations in glucose

control, and the eventual loss of glucose control. The imprecise assay results

appear to have totally fooled the insulin regimen, such that it is giving inappropri-

ately low doses of insulin even in the face of ever-increasing glucose concentrations

that eventually reach 1000 mg/dL. Although such escape from control can be

detected by caregivers who could intervene, the example points out that it is

possible to fool an insulin regimen when using glucose measurements of very

poor quality.

Each of the contour plots in Figs. 5–8 shows a summary of the 450,000 glucose

measurements made in 4500 simulated patients (100 patients for each combination
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of measurement bias and imprecision), as described in Section 3. The input for

each patient is based on simulated measurements of glucose, adjustments of insulin

infusion rate based on the measured glucose, and a calculation of the change in

glucose concentration; this is repeated for 100 h, as shown for the example patients

in Figs. 1–4. The upper panels in Figs. 5–8 show results for the Yale regimen and

the lower panels for the UW regimen. As before, we will first describe the findings

in the Yale regimen (upper panels).
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the Yale regimen (top panel) or the University of Washington regimen (bottom panel).
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Figure 5, top panel, shows the relationship between assay quality measures and

the frequency of hypoglycemia observed with the Yale insulin regimen. To use this

plot, a particular set of bias and imprecision conditions that match a given glucose

assay were chosen. Suppose that an assay has a bias of þ7% and an imprecision

(CV) of 5%. Reading from the isocontours that represent the rate of hypoglycemia

(in percent of readings), an assay with these performance characteristics would

lead to a rate of hypoglycemia between 0.0% and 0.2%. Thus, for bias and
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that have the indicated bias and imprecision (CV). Insulin infusion rates were determined according to

the Yale regimen (top panel) or the University of Washington regimen (bottom panel).
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imprecision conditions that fall below the 0.2% isocontour, hypoglycemia would

be predicted, by the simulation, to occur no more frequently than 0.2% of the time.

The frequency of hypoglycemia is increased by positive assay bias and by an

increase in imprecision. As the assay bias increases toward þ20% and the impreci-

sion increases toward a CV of 20%, the simulation results suggest that the observed

rates of hypoglycemia could exceed 2% of observations.
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bias and imprecision (CV). Insulin infusion rates were determined according to the Yale regimen (top
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Figure 6 shows similar plots for the percentage of true glucose measurements

that exceed 160 mg/dL—a rough measure of the control of hyperglycemia. As the

assay becomes more negatively biased (toward �20%), and assay imprecision (as

CV) increases toward 20%, the simulation suggests that more than 60% of true

glucose concentrations could exceed 160 mg/dL.
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Fig. 8 Contour plots showing imprecision of glucose control (expressed as S.D.) when using meters

that have the indicated bias and imprecision (CV). Insulin infusion rates were determined according to

the Yale regimen (top panel) or the University of Washington regimen (bottom panel).
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The mean glucose concentration was inversely related to assay bias (Fig. 7)—the

higher the bias in the positive direction, the lower the mean true glucose (Fig. 7).

Variability in glucose control (as measured by the average standard deviation of

glucose results in a patient, Fig. 8) increased rapidly when the assay imprecision

exceeded 10%.

B. University of Washington Regimen

We will now turn to the UW regimens, which require some additional descrip-

tion. Table I shows the four regimens that dictate the insulin infusion rate (in

units per hour) for a given glucose concentration. The regimens have been

designed for patients with differing insulin resistance. Thus, regimen 1 is for

insulin-sensitive patients (respond readily to low doses of insulin), whereas regi-

mens 2, 3, and 4 are used in increasingly insulin-resistant patients. Higher insulin

doses are administered for a given glucose concentration as the regimens pro-

gress from regimen 1 to regimen 4. To apply the UW approach, the correct insulin

regimen has to be selected for each patient. Most patients start on regimen 1, and

are moved from one regimen to another. Separate criteria are defined for moving

up one regimen and moving down a regimen. For deciding to move up to the next

higher regimen the current regimen should be deemed a failure; this occurs when

the measured blood glucose is above the target range (80–180 mg/dL) and does not

change by at least 60 mg/dL within 1 h after administration of insulin on the

current regimen. When this happens, the decision is made to move to the next

Table I
The University of Washington Standardized Insulin Administration Regimena

Regimen 1 Regimen 2 Regimen 3 Regimen 4

Glucose (mg/dL) Units/h Glucose (mg/dL) Units/h Glucose (mg/dL) Units/h Glucose (mg/dL) Units/h

<60 ¼ Hypoglycemia (admin 50 mL D50W. Notify MD if unresolved in 20 min)

<70 Off <70 Off <70 Off <70 Off

70–109 0.2 70–109 0.5 70–109 1 70–109 1.5

110–119 0.5 110–119 1 110–119 2 110–119 3

120–149 1 120–149 1.5 120–149 3 120–149 5

150–179 1.5 150–179 2 150–179 4 150–179 7

180–209 2 180–209 3 180–209 5 180–209 9

210–239 2 210–239 4 210–239 6 210–239 12

240–269 3 240–269 5 240–269 8 240–269 16

270–299 3 270–299 6 270–299 10 270–299 20

300–329 4 300–329 7 300–329 12 300–329 24

330–359 4 330–359 8 330–359 14 330–359 29

>360 6 >360 12 >360 16

aModified from Clement et al. (2004), as adapted from Trence et al. (2003).
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higher regimen. The next lower regimen is used when the measured blood glucose

is <70 mg/dL for two consecutive measurements.

Returning to Fig. 1, we can compare results in the example patients for the UW

regimen in the right two panels with the Yale University regimen in the left two

panels. The upper panel on each side presents the results when glucose is measured

using a perfect assay, and the lower panel presents results when an imperfect

method is used for glucose measurement. With a perfect glucose assay (top),

each insulin regimen adequately controls blood glucose concentrations (although

with a different pattern of oscillation of the values). When glucose is measured

using an assay that is strongly positively biased and has a 5% imprecision (CV),

which is shown in the lower panels, both regimens appear to control glucose,

eventhough true glucose has been displaced to lower values. Note that an episode

of hypoglycemia in the lower right panel at about 3 h is obscured by the high bias

of the meter and would have gone unrecognized.

Figure 2 shows, for the example patients, that the UW and Yale regimens appear

to control glucose within similar bounds when the glucose assay has a bias of 5%

and an imprecision of 10%. The UW regimen appears, for this example patient, to

show much more variability in glucose and requires more-frequent changes of

insulin infusion rate compared to the Yale algorithm.

Figure 3 shows a comparison of the regimens in the bottom panels for a glucose

assay with no bias, but with an imprecision of 20%. With such a highly imprecise

glucose assay, both insulin regimens allow extreme variability in glucose measure-

ments, including, for the UW regimen, an episode of marked hypoglycemia

(at about 94 h, lower right panel). Here, it should be noted that the particular

patient chosen for the UW simulation on the right is much more highly insulin

resistant than the patient chosen for the Yale simulation on the left. Nevertheless,

the effects of high assay imprecision seem to be similar.

Figure 4 shows the representative results of a highly inaccurate and imprecise

glucose assay. Whereas the Yale regimen allows extreme hyperglycemia and

appears to have totally lost control of glucose (lower left), the UW regimen

shows extreme fluctuations of glucose and again allows at least one episode of

hypoglycemia. In common between the two regimens is the fact that worsening

assay performance has detrimental effects on glucose control.

Returning to the contour plots that show the results of 4500 simulated patients

(Figs. 5–8), the lower panel of Fig. 5, shows the effect of simulated assay bias and

imprecision on the percentage of glucose measurements <60 mg/dL, with the UW

regimen. Compared to the Yale regimen, the UW regimen appeared to give a

higher frequency of hypoglycemia with an increase in glucose assay imprecision.

This effect suggests that it is particularly important to maintain glucose assay

imprecision at low levels when using the UW regimen.

Figure 6, bottom panel, shows the effect of simulated assay bias and impreci-

sion on the percentage of glucose measurements >160 mg/dL, with the UW

regimen. The rate of above-target glucose concentrations appears to increase
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more slowly with an increase in negative assay bias while using the UW regimen

compared to the Yale regimen.

As with the Yale regimen, the mean glucose concentration obtained using the

UW regimen was inversely related to assay bias—the higher the bias in the positive

direction, the lower the mean glucose (Fig. 7, bottom panel). Interestingly, an

increase in assay imprecision is associated with an increase in mean glucose when

using the Yale regimen, but this effect is not seen with the UW regimen.

Variability in glucose control (as measured by the mean standard deviation of

glucose results in a patient) also rapidly increased when glucose assay imprecision

exceeded 10% (Fig. 8, bottom panel). As noted earlier, the frequency of glucose

concentrations >160 mg/dL was directly related to negative assay bias and an

increase in imprecision.

VI. Discussion

In this study, we have modeled the effect of errors in glucose measurement on

the ability to achieve TGC in patients. The model predicts that measurement error

degrades glucose control, and that the effects of measurement error on glucose

control depend on the regimen chosen for selecting the rate of intravenous infusion

of insulin.

Current approaches to the measurement of glucose in TGC programs vary

widely in accuracy (freedom from bias) and imprecision. An early, large study

that showed a decrease in mortality due to TGC used a precise and accurate

analyzer (Radiometer ABL Blood Gas Analyzer) with an imprecision (expressed

as CV) of <2.8% and <3.5% at concentrations of 92 and 220 mg/dL, respectively,

including all results such as rare outliers (personal communication to DEB, Roger

Bouillon, 16 March 2002). By contrast, many subsequent studies used ‘‘glucose

meters,’’ often from unspecified manufacturers. Numerous studies have demon-

strated that glucose meters have greater imprecision and biases than central

laboratories or blood gas analyzers . One study from the CDC (Kimberly et al.,

2006) of five common glucose meters showed mean differences versus a central

laboratory method to be as high as 32% and an imprecision (CVs) of 6–11% when

performed by a single trained medical technologist. Several studies have documen-

ted that glucose results produced from glucose meters by healthcare workers and

patients have worse imprecision (higher CVs) than those generated by laboratory

technologists. The College of American Pathologists proficiency testing shows that

the CVs of 17 glucose meter methods (19,597 sites) is 12–14% and that bias

between any two methods as high as 41%. Our results suggest that use of such

meters will severely degrade the control of blood glucose with either the Yale

regimen or the UW regimen. We do not envision a protocol that can overcome

these limitations, short of using very frequent sampling.

We emphasize that the simulation model implemented in these studies does not

account for the variations in test results, which can be due to patient factors (drugs,
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interferents, matrix effects), sample collection artifacts (such as drawing blood

from IV lines, or collecting skin-puncture blood in the presence of hypoperfusion

of skin capillaries as is often seen in critically ill patients), or the occurrence of

random spurious test results. All of these factors are important considerations and

will serve to only inflate the observed estimates of assay bias and imprecision.

Thus, merely establishing that an assay operates in an apparently acceptable range

of imprecision and bias does not mean that these other factors cannot degrade the

ability of any regimen to achieve glucose concentrations in the target range.

Finally, it appears from these studies that the effects of measurement inaccuracy

and imprecision should be carefully weighed while making decisions to implement

intensive IV insulin regimens.

Our study has several limitations. Any simulation model, applied to the evalua-

tion of analytical quality required for TGC regimens, would need to be adaptable

to the wide variety of regimens that have been proposed. Each regimen may

have been designed to meet the needs of differing patient populations, may require

different levels of nursing attention, and may have a different goal range for

glucose and a greater or lesser emphasis on avoiding hypoglycemia. It is left to

future studies to investigate the effects of assay errors on other regimens beyond

the two modeled here.

As mentioned, earlier our model of physiological control of plasma glucose

accounts for only some of the many characteristics of the patient and does not

address sample collection, matrix effects, variations in patient activity, variations

in nutritional intake, and many other potentially relevant variables. Thus, this

work represents a proof-of-concept approach to the use of simulation modeling.

Despite these limitations, the work described here points to the performance

quality of glucose measurements as a critical but overlooked factor in the success

of TGC programs. The landmark, large study of Van den Berghe et al. (2001) used

a precise and accurate glucose method (mentioned earlier) and demonstrated a

marked decrease in mortality with TGC. Subsequent reports have, most often,

used relatively imprecise and inaccurate glucose meters, and a meta-analysis of the

studies on TGC found no decrease in overall mortality with TGC when data from

all studies (including Van den Berghe et al., 2001) were analyzed. Moreover, a

recent multinational study showed an increase in mortality with TGC (The NICE-

SUGAR Study Investigators, 2009). This latter finding is not surprising given that

meters from various manufacturers were used with a single regimen for adjusting

the insulin infusion rates. A single regimen cannot be appropriate for the variety of

available glucose meters, some of which have positive biases and others have

negative biases. The single regimen will lead to administration of too much insulin

to patients monitored by glucose meters that give false high results and too little

insulin to patients monitored with meters that report false low results. Finally, it is

simply unrealistic to aim to keep glucose within an interval that represents a range

of plus or minus a few percent when the glucose measuring device has a CV of more

than 10%. Future studies of TGC must concentrate on use of the better methods

for the measurement of glucose or risk losing the benefits of TGC or even risk harm
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to patients. It is anticipated that simulation modeling can be a valuable tool in

design of future studies and in understanding the effect of measurement accuracy

and precision on desired outcomes for patients being treated using TGC protocols.
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Abstract

Glucagon counterregulation (GCR) is a key mechanism of protection against

hypoglycemia, which is compromised in insulinopenic diabetes by an unknown

mechanism. In this work, we present an interdisciplinary approach to the analysis

of GCR control mechanisms. Our results indicate that a pancreatic network, which

unifies a few explicit interactions between the major islet peptides and blood

glucose (BG), can replicate the normal GCR axis and explain its impairment in

diabetes. A key and novel component of this network is an a-cell autofeedback
mechanism, which drives glucagon pulsatility and mediates the triggering of a

pulsatile GCR due to hypoglycemia by switching off b-cell suppression of the a-
cells. We have performed simulations, based on our models of the endocrine

pancreas, which explain the GCR response, in vivo, to hypoglycemia of the normal

pancreas and the enhancement of the defective pulsatile GCR during b-cell defi-
ciency; the mechanism involves switching off the intrapancreatic a-cell suppressing
signals. The models also predicted that reduced insulin secretion would decrease

and delay the GCR. In conclusion, based on experimental data, we have developed

and validated a model of the normal GCR, its control mechanisms and their

dysregulation in insulin-deficient diabetes. One advantage of this construct is

that all model components are clinically measurable, thereby permitting its trans-

fer, validation, and application to the study of the GCR abnormalities of the

human endocrine pancreas in vivo.

I. Update

Largely overshadowed by insulin in the past, the importance of glucagon in

maintaining glucose homeostasis is now being increasingly recognized, perhaps

because therapies for diabetes that work partly through a-cell inhibition have been

developed . This chapter presents amodel-based, dynamic, network approach for the

analysis of the glucagon counterregulation (GCR). We have proposed control net-

works that unify a few explicit interactions between the major pancreatic peptides

and blood glucose (BG) to mathematically approximate the GCR control axis and

explain its impairment in diabetes. Since its publication, there have been several

experimental findings that may require future extension or modification of the

postulated pancreatic models. First, the importance of somatostatin in the regulation

of glucagon secretion, suggested by our model-based predictions (Section V.B), has

been supported by a recent publication which showed that d-cell somatostatin likely

exerts a tonic inhibition on a-cell glucagon and also on b-cell insulin (Hauge-Evans

et al., 2009). Our reconstruction of the GCR control mechanisms outlined in this

chapter assumes that somatostatin suppresses a-cell glucagon release (see Fig. 1); this
is based both on experimental data and model-based predictions. However, the

impact of somatostatin on b-cells was not considered, which will be of little
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consequence if the goal is to approximate the GCR control mechanisms and their

dysregulation in insulinopenic diabetes. However, future efforts to extend the GCR

control network to approximate the normal pancreas may need to take this new

pathway into account. For example, in Fig. 3, which shows the proposed interactions

between BG and the a- and b-cells that are assumed to regulate the GCR in the

normal pancreas, capabilities of thea-cells to amplify their own secretionmay have to

be included. Such self-modulation could occur as follows: a-cell glucagon stimulates

d-cell somatostatin, which in turn suppresses b-cell insulin, thereby repressing one of
the inhibitory inputs to the a-cells. Second, various central nervous system influences

continue to be identified and these may modulate glucagon secretion and GCR

(Fioramonti et al., 2010; Haywood et al., 2009; Leu et al., 2009). We have briefly

noted their importance in SectionVIII of this chapter.However, the growing support

for their importance in GCR regulation may require these influences to be either

separately studied or be incorporated into the model.

Finally, we would like to warn against certain applications of our methodology

which may lead to misleading interpretations. As briefly mentioned in Section VII.

B, the approximation of the GCR control mechanisms reconstructs portal, rather

than circulating, pancreatic hormone concentrations. Therefore, they are suited

for the analysis of experimental data in which the pancreatic hormones are sam-

pled in the portal vein. However, collecting blood samples from the portal vein

may be unfeasible or unethical. In such cases, a modification of the model (e.g.,

following Dalla Man et al., 2005) will be required to relate the concentration of a

hormone in one compartment (portal vein) to the concentration of the same

hormone in another compartment (general circulation), assuming that the hor-

mone is transported (transferred) from one of the compartments to the other. Such

a model should take into account the delay, spread, and the partial clearance of

glucagon and insulin by the liver and circulation.

Switch-off
signals 

Alpha
cells

Delta
cells

(+)
(−)

(−)

(+)

Blood
glucose

Fig. 1 Schematic presentation of a network model of the GCR control mechanisms in

STZ-treated rats.
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II. Introduction

BG homeostasis is maintained by a complex, ensemble control system which is

characterized by a highly coordinated interplay between and among various

hormone and metabolite signals. One of its key components, the endocrine pan-

creas, responds dynamically to changes in BG, nutrients, neural, and other signals

by releasing insulin and glucagon, in a pulsatile manner, to regulate glucose

production and metabolism. Abnormalities in the secretion and interaction of

these two hormones mark the progression of many diseases, including diabetes,

the metabolic syndrome, the polycystic ovary syndrome, and others. Diminished

or complete loss of endogenous insulin secretion in diabetes is closely associated

with the failure of the pancreas to respond by appropriate changes in glucagon

under not only to hyperglycemia, but also to hypoglycemia. The latter is not

caused by loss of glucagon secreting a-cells, but is instead, due to defects in

GCR signaling through an unknown mechanism; this is generally recognized as

a major barrier to safe treatment of diabetes (Cryer and Gerich, 1983; Gerich,

1988) since unopposed hypoglycemia can cause coma, seizures, or even death

(Cryer, 1999, 2002; Cryer et al., 2003).

Our recent experimental (Farhy et al., 2009) and mathematical modeling

(Farhy and McCall, 2009; Farhy et al., 2009) results show that a better under-

standing of the defects in the GCR control mechanisms can be gained if these are

viewed as abnormalities of a network of intrapancreatic interactions that control

glucagon secretion, rather than as defects in an isolated molecular interaction or

pathway.

In particular, we have demonstrated that, in a b-cell-deficient rat model, the

GCR control mechanisms can be approximated by a simple, feedback network

(construct) of dose–response interactions between BG and the islet peptides.

Within the framework of this construct, the defects in GCR response to hypogly-

cemia can be explained by the loss of rapid switching off of b-cell signaling during

hypoglycemia, which results in failure to trigger an immediate GCR response.

These results support the ‘‘switch-off’’ hypothesis which posits that a-cell activa-
tion during hypoglycemia requires both the availability and rapid decline of

intraislet insulin (Banarer et al., 2002). Our findings also support an extension of

this hypothesis by refocusing from the lack of endogenous insulin signaling to the

a-cells as the sole mechanistic explanation to the possible abnormalities in the

general manner in which the b-cells regulate the a-cells. In addition, the experi-

mental and theoretical modeling data collected so far indicate that the GCR

control network must have two key features: a (direct or indirect) feedback of

glucagon secreting a-cells on themselves (autofeedback) and a (direct or indirect)

negative regulation of glucagon by BG. In our published model, these two proper-

ties are mediated by d-cell somatostatin and we have shown that such connectivity

adequately explains our [and that of others (Zhou et al., 2004)] experimental data

(Farhy and McCall, 2009; Farhy et al., 2009).
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The construct that we have recently proposed (Farhy and McCall, 2009; Farhy

et al., 2009) is suitable for the study and analysis of rodent physiology, but the

explicit involvement of somatostatin limits its applicability to clinical studies

since, in humans, pancreatic somatostatin cannot be reliably measured and

therefore, the ability of the model to adequately describe human physiology,

and its potential differences from rodent physiology, cannot be verified. In this

work, we review our existing models and show that a control network in which

somatostatin is not explicitly involved (but implicitly incorporated) can also

adequately approximate GCR control mechanisms. We confirm that the (new)

construct can substitute the older, more complex construct by verifying that it

adequately explains the same experimental observations previously shown to be

reconstructed by the older network (Farhy and McCall, 2009; Farhy et al., 2009).

We also demonstrate that the new network can explain the regulation of the

normal pancreas by BG and the gradual reduction in the GCR response to

hypoglycemia during the transition from a normal to an insulin-deficient state.

As a result, a more precise description of the components that are the most

critical for the system is provided by a model of GCR regulation. This model can

be used to study abnormalities in glucagon secretion and counterregulation and

to identify hypothetical ways to repair these abnormalities, not only in rodents

but also in humans.

III. Mechanisms of Glucagon Counterregulation (GCR)
Dysregulation in Diabetes

Studies of tight BG control in type 1 and type 2 diabetes, to prevent chronic

hyperglycemia-related complications, have found a threefold excess of severe

hypoglycemia (The Action to Control Cardiovascular Risk in Diabetes Study

Group, 2008; The Diabetes Control and Complications Trial Research Group,

1993; The UK Prospective Diabetes Study Group, 1998). Hypoglycemia impairs

quality of life and increases the risk of coma, seizures, accidents, brain injury,

and death. Severe hypoglycemia is usually due to overtreatment against a back-

ground of delayed and deficient hormonal counterregulation. In health, GCR

curbs dangerously low BG nadirs and stimulates quick recovery from hypogly-

cemia (Cryer and Gerich, 1983; Gerich, 1988). However, in type 1 (Fukuda et al.,

1988; Gerich et al., 1973; Hoffman et al., 1994) and type 2 diabetes (Segel et al.,

2002), the GCR is impaired by unknown mechanisms, and if it is accompanied

by a loss of epinephrine counterregulation, it leads to severe hypoglycemia and

thus presents a major barrier to safe treatment of diabetes (Cryer, 1999, 2002).

Understanding the mechanisms that mediate GCR, its dysregulation and how it

can be repaired, are therefore major challenges in the struggle for safer treatment

of diabetes.
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Despite more than 30 years of research, the mechanism by which hypoglycemia

stimulates GCR and how it is impaired in diabetes have yet to be elucidated

(Gromada et al., 2007). First described by Gerich et al. (1973), defective GCR is

common after about 10 years of T1DM. The loss of GCR appears to be more rapid

with younger ages of onset and may occur within a few years after onset of T1DM.

Although unproven, the appearance of defective GCR seems to parallel secretory

loss of insulin in these patients. The defect appears to be stimulus specific, since a-
cells retain their ability to secrete glucagon in response to other stimuli, such as

arginine (Gerich et al., 1973). Three mechanisms have been proposed, as potential

sources that impaire the GCR. Those that account for the stimulus specificity of

the defect include impaired BG-sensing in a-cells (Gerich et al., 1973) and/or

autonomic dysfunction (Hirsch and Shamoon, 1987; Taborsky et al., 1998). The

‘‘switch-off’’ hypothesis envisions that a-cell activation by hypoglycemia requires

both the availability and rapid decline of intraislet insulin and it attributes the

defect in the GCR, in insulin deficiency, to the loss of a (insulin) ‘‘switch-off’’ signal

from the b-cells (Banarer et al., 2002).
These theories are not mutually exclusive, but they all could be challenged. For

example, a-cells do not express GLUT2 transporters (Heimberg et al., 1996) and it

is unclear whether the a-cell GLUT1 transporters can account for the rapid a-cell
response to variations in BG (Heimberg et al., 1995). In addition, proglucagon

mRNA levels are not altered by BG (Dumonteil et al., 2000) and whether BG

variations in the physiological range can affect the a-cells is debatable (Pipeleers

et al., 1985). The switch-off hypothesis can also be disputed, since in a-cell-specific
insulin receptor knockout mice, the GCR response to hypoglycemia is preserved

(Kawamori et al., 2009). Finally, the hypothesis for autonomic control contradicts

the evidence which shows that a blockade of the actions of both epinephrine and

acetylcholine did not reduce the GCR in humans (Hilsted et al., 1991), and that a

denervated human pancreas could still release glucagon in response to hypoglyce-

mia (Diem et al., 1990).

Recent in vivo experiments by Zhou et al. support the ‘‘switch-off’’ hypothesis.

They have shown that, in STZ-treated rats GCR is impaired, but that it can be

restored if their deficiency in intraislet insulin is reestablished and decreased (switched

off) during hypoglycemia (Zhou et al., 2004). Additional in vitro and in vivo evidence

to support the switch-off hypothesis has also been reported (Hope et al., 2004; Zhou

et al., 2007a).The supposition that insulin is the trigger ofGCR in the studies byZhou

et al. (2004, 2007a) has been challenged by the results of the experiments conductedby

the samegroup, inwhich zinc ions, not the insulinmolecule itself, provided the switch-

off signal to initiate glucagon secretion during hypoglycemia (Zhou et al., 2007b).

In view of the above background, it is clear that the mechanisms that control the

secretion of glucagon, and its dysregulation in diabetes, are not well understood.

This lack of understanding prevents the restoration of GCR in patients with

diabetes and the development of treatments that can effectively repair the defective

GCR, which in turn will allow a safer control of hyperglycemia. No such treatment

currently exists.
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IV. Interdisciplinary Approach to Investigating the Defects
in the GCR

The network that underlies the GCR response to hypoglycemia includes

hundreds of components from numerous pathways and targets in various pools

and compartments. It would, therefore, not be feasible to collect and relate

experimental data pertaining to all components of this network. Nevertheless,

understanding the glucagon secretion control network is vital for furthering

knowledge concerning the control of GCR and its compromise in diabetes, and

for developing treatment strategies. To address this problem, we have used a

minimal model approach in which the system is simplified by clustering all

known and unknown factors into a small number of explicit components. Initially,

these components were chosen with the goal of testing whether the recognized

physiological relationships can explain the key experimental findings. In our case,

the initial reports that described the in vivo enhancement of GCR by a ‘‘switch-off’’

of insulin (Zhou et al., 2004) prompted us to propose a parsimonious model of the

complex GCR control mechanisms, and this included relationships between the a-
and d-cells, BG and the switch-off signals (below). According to these initial efforts

(Farhy et al., 2009), the postulated network explains the switch-off phenomenon

by interpreting the GCR as a rebound. This model further predicts that: (i) in b-cell
deficiency, multiple a-cell suppressing signals should enhance GCR if they are

terminated during hypoglycemia, and (ii) that the ‘‘switch-off’’-triggered GCR

must be pulsatile. The model-based predictions motivated a series of in vivo experi-

ments, which showed that, indeed, in STZ-treated male Wistar rats, an intrapan-

creatic infusion of insulin and somatostatin, followed by their switch-off during

hypoglycemia, enhanced the pulsatile GCR response (Farhy et al., 2009). These

experimental results confirmed that the proposed network could be a good candi-

date for a model of the GCR control axis.

In addition to confirming the initial model predictions, our experiments also

suggested some new features of the GCR control network, including indications

that different a-cell suppressing switch-off signals can not only enhance the GCR

during b-cell deficiency but can also do so via different mechanisms. For example,

the results suggest a higher response to insulin switch-off and a more substantial

suppression of glucagon by somatostatin (Farhy et al., 2009). To show that these

observations are consistent with our network model, we had to extend it to reflect

the assumption that the a-cell activity can be regulated differently by different

a-cell suppressing signals. We have shown that this assumption can explain the

differences in the GCR-enhancing action of two a-cell-suppressing signals (Farhy

and McCall, 2009).

These simulations have suggested strategies to repair defective GCR by manip-

ulating the system using a-cell inhibitors. However, they also indicate that not all

a-cell inhibitors may be suitable for this purpose, and that the infusion rate, of the

ones that are, should be carefully selected. In this regard, a clinically verified and
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tested model of the GCR control axis can greatly enhance our ability to precisely

and credibly simulate changes that result from certain interventions, which

ultimately will assist us in defining the best strategy to manipulate the system in

humans, in vivo. However, the explicit involvement of somatostatin and the d-cells
in our initial network and model limits the potential for clinical applications, as

pancreatic somatostatin cannot be reliably measured in humans in vivo, and

therefore the ability of the model to describe the human glucagon axis cannot be

verified. To address this limitation, we have recently reduced our initial network

into a Minimal Control Network (MCN) of the GCR control axis, in which

somatostatin and the d-cells are no longer explicitly involved, but their effects

are implicitly incorporated into the model. Our analysis (presented below) shows

that the new MCN is an excellent model of the GCR axis and that it can substitute

the older, more complex structure. Thus, we have developed a model that can be

verified clinically and also be used to assist in the analysis of the GCR axis, in vivo,

in humans. Importantly, the new model is not limited to b-cell deficiency and

hypoglycemia only. In fact, it describes the transition of the pancreas from a

normal state to a b-cell-deficient state, and can explain the failure of suppression

of basal glucagon secretion in response to the increase in BG observed in this

state. If it is experimentally confirmed that this MCN model can successfully

describe both the normal and b-cell-deficient pancreas, future studies can focus

on the defects of the pancreatic network not only in type 1 but also in type

2 diabetes, or more generally, in any pathophysiological condition that is

accompanied by metabolic abnormalities in the endocrine pancreas.

V. Initial Qualitative Analysis of the GCR Control Axis

To understand the mechanisms of GCR and its dysregulation, pancreatic pep-

tides have been extensively studied and much of the evidence suggests that a

complex network of interacting pathways modulates glucagon secretion and the

GCR. Some of the well-documented relationships between the different types of

islet cell signals are summarized in the following subsections.

A. b-Cell Inhibition of a-Cells

Pancreatic perfusions with antibodies to insulin, somatostatin, and glucagon

have suggested that the blood within the islets flows from b- to a- to d-cells in dogs,

rats, and humans (Samols and Stagner, 1988, 1990; Stagner et al., 1988, 1989). It

was then proposed that insulin regulates glucagon, which in turn regulates somato-

statin. Various b-cell signals provide an inhibitory stimulus to the a-cells and thus

suppress glucagon secretion. These include cosecreted insulin, zinc, GABA, and

amylin (Gedulin et al., 1997; Gromada et al., 2007; Ishihara et al., 2003; Ito et al.,

1995; Maruyama et al., 1984; Rorsman and Hellman, 1988; Rorsman et al., 1989;

Samols and Stagner, 1988; Wendt et al., 2004; Xu et al., 2006). In particular, b-cells
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store and secrete GABA, which can diffuse to neighboring cells and bind to

receptors, localized within the islets, on only the a-cells (Rorsman and Hellman,

1988; Wendt et al., 2004). Insulin can directly suppress glucagon by binding to its

own receptors (Kawamori et al., 2009) or to IGF-1 receptors on the a-cells (Van
Schravendijk et al., 1987). Insulin also translocates to and activates GABAA

receptors on the a-cells, which leads to membrane hyperpolarization and, ulti-

mately, the suppression of glucagon. Hence, insulin may directly inhibit the a-cells,
and indirectly potentiate the effects of GABA (Xu et al., 2006). Infusion of amylin,

in rats, inhibits arginine-stimulated glucagon (Gedulin et al., 1997), but not the

hypoglycemia stimulated GCR (Silvestre et al., 2001). Similar results were

obtained with the synthetic amylin analog, pramlintide (Heise et al., 2004), even

though in some studies the degree of hypoglycemia was increased; but it is unclear

if this is a GCR effect or if it is related to the failure in reducing meal insulin

adequately (McCall et al., 2006). Finally, a negative effect of zinc on glucagon has

been proposed (Ishihara et al., 2003), including a role in the control of GCR (Zhou

et al., 2007b). The role of zinc is unclear as zinc ions do not suppress glucagon in

the mouse (Ravier and Rutter, 2005).

B. d-Cell Inhibition of a-Cells

Exogenous somatostatin inhibits insulin and glucagon; however, the role of the

endogenous hormone is controversial (Brunicardi et al., 2001, 2003; Cejvan et al.,

2003; Gopel et al., 2000a; Klaff and Taborsky, 1987; Kleinman et al., 1994;

Ludvigsen et al., 2004; Portela-Gomes et al., 2000; Schuit et al., 1989; Strowski

et al., 2000; Sumida et al., 1994; Tirone et al., 2003). The concept that d-cells are
downstream of a- and d-cells favors the perception that, in vivo, intraislet somato-

statin cannot directly suppress the a- or the b-cell through the islet microcircula-

tion (Samols and Stagner, 1988, 1990; Stagner et al., 1988, 1989). On the other

hand, the pancreatic a- and b-cells express at least one of the somatostatin

receptors (SSTR1–5) (Ludvigsen et al., 2004; Portela-Gomes et al., 2000; Strowski

et al., 2000), and recent in vitro studies involving somatostatin immunoneutraliza-

tion (Brunicardi et al., 2001) or the application of selective antagonists to different

somatostatin receptors have suggested that D-cell somatostatin inhibits the release

of glucagon (Cejvan et al., 2003; Strowski et al., 2000). In addition, d-cells are in
close proximity to a-cells in both rat and human islets, and d-cell processes were
observed to extend into a-cell clusters in rat islets (Kleinman et al., 1994, 1995).

Therefore, somatostatin may act via existing common gap junctions or by diffusion

through the islet interstitium.

C. a-Cell Stimulation of d-Cells

The ability of endogenous glucagon to stimulate d-cell somatostatin is supported

by a study in which the administration of glucagon antibodies into a perfused

human pancreas resulted in the inhibition of somatostatin release (Brunicardi
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et al., 2001). Earlier studies on immunoneutralization, by perfusion of the rat or

dog pancreas, also showed that glucagon stimulates somatostatin (Stagner et al.,

1988, 1989). These studies showed that the glucagon receptor colocalized with 11%

of the immunoreactive somatostatin cells (Kieffer et al., 1996), suggesting that the

a-cells may directly regulate some of the d-cells. Exogenous glucagon can also

stimulate somatostatin (Brunicardi et al., 2001; Epstein et al., 1980; Kleinman

et al., 1995; Utsumi et al., 1979). Finally, glutamate, which is cosecreted with

glucagon under low-glucose conditions, stimulates somatostatin release from

diencephalic neurons in primary culture (Tapia-Arancibia and Astier, 1988), and

it is possible that a similar relation exists in the islets of the pancreas.

D. Glucose Stimulation of b- and d-Cells

It is well established that hyperglycemia directly stimulates b-cells, which react

instantaneously to changes in BG (Ashcroft et al., 1994; Bell et al., 1996; Dunne

et al., 1994; Schuit et al., 2001). Additionally, it has been proposed that d-cells have
a glucose-sensing mechanism similar to that in b-cells (Fujitani et al., 1996; Gopel

et al., 2000a) and consequently, that somatostatin release is increased in response

to glucose stimulation (Efendic et al., 1978; Hermansen et al., 1979), possibly via a

Ca2þ-dependent mechanism (Hermansen et al., 1979).

E. Glucose Inhibition of a-Cells

Hyperglycemia has been proposed to inhibit glucagon even though hypoglyce-

mia alone appears insufficient to stimulate a high amplitude GCR (Gopel et al.,

2000b; Heimberg et al., 1995, 1996; Reaven et al., 1987; Rorsman and Hellman,

1988; Schuit et al., 1997; Unger, 1985).

In addition to the above, mostly consensus, findings which show that a-cell
activity is controlled by multiple intervening pathways, there are other indirect

evidences that suggest that the dynamic relationship between the islet signals are

important for the regulation of glucagon secretion and the GCR. For example, this

concept is supported by the pulsatility of the pancreatic hormones (Genter et al.,

1998; Grapengiesser et al., 2006; Grimmichova et al., 2008), which implies feedback

control (Farhy, 2004), and by results which suggest that insulin and somatostatin

pulses are in phase (Jaspan et al., 1986; Matthews et al., 1987), pulses of insulin and

glucagon recur with a phase shift (Grapengiesser et al., 2006), pulses of somatostat-

in and glucagon appear in antisynchronous fashion (Grapengiesser et al., 2006),

and that insulin pulses entrain a- and d-cell oscillations (Salehi et al., 2007).
A pancreatic network consistent with these findings is shown in Fig. 1. It

summarizes interactions (mostly consensus) between BG, b-, a-, and d-cells: so-
matostatin (or more generally the d-cells) is stimulated by glucagon (a-cells) and
BG, glucagon (a-cells) is inhibited by the d-cells (by somatostatin) and by b-cell
signals, and BG stimulates the b-cells. This network could easily explain the GCR
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response to hypoglycemia. Indeed, hypoglycemia would decrease both b-and d-cell
activity, which would entail an increase in the release of glucagon from a-cells,
after the suppressive signals from the neighboring b- and d-cells are removed.

However, it is not apparent whether this network can explain the defect in GCR

observed in b-cell deficiency or the above mentioned restoration of the defective

GCR by a ‘‘switch-off.’’ This dampens the appeal of the network as a simple

unifying hypothesis for the regulation of GCR, and for the compromise of this

regulation in diabetes. The difficulties encountered during the intuitive reconstruc-

tion of the properties of the network emerge from the surprisingly complex

behavior of this system due to the a–d-cell feedback loop.

Shortly after the first reports that described the in vivo repair of GCR by

intrapancreatic infusion and a ‘‘switch-off’’ of insulin (Zhou et al., 2004) were

published, we used mathematical modeling to analyze and reconstruct the GCR

control network. These considerations demonstrated that the network in Fig. 1

could explain the switch-off effect (Farhy and McCall, 2009; Farhy et al., 2009).

We have also presented experimental evidence to support the predictions of this

model (Farhy et al., 2009). These efforts are described in the following section.

VI. Mathematical Models of the GCR Control Mechanisms
in STZ-Treated Rats

We have developed and validated (Farhy and McCall, 2009; Farhy et al., 2009)

a mathematical model of the GCR control mechanisms in the b-cell-deficient
rat pancreas which explains two key experimental observations: (a) that in STZ-

treated rats, rebound GCR, which is triggered by a switch-off signal (a signal that

is intrapancreatically infused and terminated during hypoglycemia), is pulsatile;

and (b) that the switch-off of either somatostatin or insulin enhances the pulsatile

GCR. The basis of this mathematical model is the network outlined in Fig. 1,

which summarizes the major interactive mechanisms of glucagon secretion during

b-cell deficiency, by selected consensus interactions between plasma glucose,

a-cell suppressing switch-off signals, a-cells, and d-cells. We should note that

the b-cells were part of the network proposed in Farhy et al. (2009), but are

not part of the corresponding mathematical model, which was designed to

approximate the insulin-deficient pancreas. In addition to explaining glucagon

pulsatility during hypoglycemia and the switch-off responses mentioned above,

this construct predicts each of the following experimental findings in diabetic

STZ-treated rats:

(i) Glucagon pulsatility during hypoglycemia after a switch-off, with pulses

recurring at 15–20 min as suggested by the results of the pulsatility deconvolu-

tion analysis we have previously performed (Farhy et al., 2009);
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(ii) Pronounced (almost fourfold increase over baseline) pulsatile glucagon

response following a switch-off of either insulin or somatosatin during

hypoglycemia (Farhy et al., 2009);

(iii) Restriction of the GCR enhancement by insulin switch-off under high BG

conditions (Zhou et al., 2004);

(iv) Lack of a GCR response to hypoglycemia when there is no switch-off signal

(Farhy et al., 2009);

(v) Suppression of GCR when insulin is infused into the pancreas but is not

switched off during hypoglycemia (Zhou et al., 2004);

(vi) More than 30% higher GCR response to insulin, compared to somatostatin,

switch-off (Farhy et al., 2009);

(vii) Better glucagon suppression by somatostatin than by insulin before a

switch-off (Farhy et al., 2009).

We note that, in our prior study (Farhy et al., 2009), the comparisons between

insulin and somatostatin switch-off in (vi) and (vii) were not significant. However,

the difference in (vii) was close to being significant at p ¼ 0.07. Therefore, one

of the goals of the latter study (Farhy and McCall, 2009) was to test, in silico,

whether the differences (vi) between a higher GCR response to insulin switch-off

and (vii) a better glucagon suppression by somatostatin switch-off were likely and

whether these could be predicted by the proposed model of the insulin-deficient

pancreas (Fig. 1).

To demonstrate the above predictions, we used dynamic network modeling and

formalized the relationships shown in Fig. 1 using a system of nonlinear, ordinary

differential equations. Thereby, we approximate to approximate the rates of

change of glucagon and somatostatin concentration assuming that the secretion

of these hormones is; under the control of switch-off signals and BG. Then, we

were able to adjust the model parameters to reconstruct the experimental findings

listed above in (i)–(vii), which validates the model based on the network shown in

Fig. 1.

The model equations are:

GL
0 ¼ �kGLGLþ rbasal

1

1þ I1ðtÞ þ rGL

1

1þ ½SSðt�DSSÞ=tSS�nSS
1

1þ I2ðtÞ ð1Þ

SS
0 ¼ �kSSSSþ rSS

½GLðt�DGLÞ=tGL�nGL

1þ ½GLðt�DGLÞ=tGL�nGL
þ bSS

½BGðtÞ=tBG�nBG
1þ ½BGðtÞ=tBG�nBG ð2Þ

Here, GL(t), SS(t), BG(t), I1(t), and I2(t) denote the concentrations of glucagon,

somatostatin, BG, and exogenous switch-off signal(s) [acting on the pulsatile or/and

the basal glucagon secretion], respectively; the derivative is with respect to time, t.

The meaning of the remaining parameters is explained in the following section (see

also Farhy and McCall, 2009). We note that the presence of two terms, I1(t) and

I2(t), which represent the switch-off signal in Eq. (1), reflects the assumption that
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different switch-off signals may have a different impact on glucagon secretion and

may differently suppress the basal and/or d-cell-regulated glucagon release.

We have used the above model (Farhy and McCall, 2009) to show that the

glucagon control axis, postulated in Fig. 1, is consistent with the experimental

findings listed in (i)–(vii) [above] and that insulin and somatostatin differently

affect the basal and the system-regulated a-cell activity. After the model was

validated, we used it to predict the outcome of different switch-off strategies and

explored its potential to improve the GCR during b-cell deficiency, as shown in

Fig. 2 (Farhy and McCall, 2009). The figure summarizes results from the in silico

experiments, tracking the dynamics of glucagon from time t ¼ 0 h (start) to t ¼ 4 h

(end). In some simulations, intrapancreatic infusion of insulin or somatostatin

started at t ¼ 0.5 h and was either continued to the end or was switched off at t ¼
2.5 h. When hypoglycemia was simulated, BG¼ 110 mg/dL from t¼ 0 h to t¼ 2 h,

glucose decline started at t¼ 2 h, BG ¼ 60 mg/dL at t¼ 2.5 h (switch-off point), at

the end of the simulations (t¼ 4 h) BG¼ 43 mg/dL. At the top of the bar graph (a),

we show baseline results, without the switch-off signals. The black bar illustrates

the glucagon level before t ¼ 2 h, which is the time when BG ¼ 110 mg/dL and

0

Glucagon concentration [pg/ml]

Glucagon supressed by the intrapancreatic signal(s)
GCR response to switch-off without hypoglycemia
GCR response to switch-off with hypoglycemia

1.4

3.8

3.9

10.2

1.6

2.4

3.2

8.6

2.9

(a) no SO

(b) SS (SO) 

(c) INS (SO)

(d) SS (SO) + INS(SO)

(e) SS (no SO)

(f) INS (no SO)

(g) SS (no SO) + INS (SO)

(h) SS (SO) + INS (no SO)

(i) SS (no SO) + INS (no SO)

100 200 300 400 500 600

Fig. 2 Summary of the model-predicted GCR responses to different switch-off signals with or without

simulated hypoglycemia (see text for more detail). SO, switch-off; no SO, the signal was not switched

off; SS, somatostatin; INS, insulin. Modified from Farhy and McCall (2009).

24. Network Control of Glucagon Counterregulation 597



glucagon would be maximally suppressed if a switch-off signal were present. The

white and the gray bars illustrate the maximal glucagon response in a 1-h interval

from t ¼ 2.5 h to t ¼ 3.5 h without (white) and with (gray) a hypoglycemia

stimulus. This interval corresponds to the 1-h interval after a switch-off in all

other simulations. The black and white bars are the same since glucagon levels will

remain unchanged if there is no hypoglycemia. Each subsequent set of three bars

indicates the effects with single switch-off [(b) and (c)], combined switch-off (d),

and no switch-off of a single signal [(e) and (f)], a mixture of switch-off and no

switch-off for the two signals [(g) and (h)], and no switch-off for a combination of

the two signals (i). Thus, the bar graph gives the following results: glucagon

suppression by the intrapancreatic signal (black bars: the glucagon concentration

immediately before the onset of BG decline at t ¼ 2 h: at that time glucagon is

maximally suppressed by the intrapancreatic infusion and is not affected by the

decline in glucose); GCR response to a switch-off if hypoglycemia was not induced

(white bars: the maximal glucagon concentrations achieved within a 1-h interval

after the switch-off); and GCR response if hypoglycemia was induced (gray bars:

the maximal glucagon concentrations achieved within a 1-h interval after the

switch-off). The graph also includes (at the right of the grey bars) the maximal

fold increase in glucagon in response to a switch-off during hypoglycemia which is

relative to the glucagon levels before the onset of a decline in BG.

Thus, we concluded that the impact of an a-cell inhibitor on the GCR depends

on the nature of the signal and the mode of its delivery. These comparisons

between the strategies used for manipulating the network, to enhance the GCR

by a switch-off, revealed a good potential for the combined switch-off to amplify

the benefits provided by each of the individual signals (Farhy and McCall, 2009),

and even a potential to explore certain scenarios in which the a-cell suppressing
signal is not terminated.

VII. Approximation of the Normal Endocrine Pancreas by a
Minimal Control Network (MCN) and Analysis of the GCR
Abnormalities in the Insulin-Deficient Pancreas

The explicit involvement of somatostatin in the model described above limits

its potential clinical application, as pancreatic somatostatin cannot be reliably

measured in humans in vivo, and therefore, the ability of the model to describe

the human glucagon axis cannot be verified. It is, however, possible to simplify

the network in such a way that somatostatin is no longer explicitly involved, but

is incorporated implicitly. In the original model shown in Fig. 1, somatostatin

appears in the following two compound pathways, the ‘‘a-cell ! d-cell ! a-cell’’
feedback loop and in the ‘‘BG ! d-cell ! a-cell’’ pathway. By virtue of its

interactions in the ‘‘a-cell ! d-cell ! a-cell’’ pathway, the a-cells effectively

control their own activity and therefore this pathway can be replaced by a

delayed ‘‘a-cell ! a-cell’’ autofeedback loop. Such regulation is also consistent
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with reports, which suggest that glucagon may directly suppress its own release

(Kawai and Unger, 1982), possibly by binding to glucagon receptors located on a

subpopulation of the a-cells (Kieffer et al., 1996) or by other autocrine mechan-

isms. Through the ‘‘BG ! d-cell ! a-cell’’ pathway, BG downregulates the

release of glucagon and this action is mediated by somatostatin. Therefore, this

pathway can be simplified and substituted by a BG ! a-cell interaction. The
outcome of the described procedure of network reduction is a new MCN of

GCR control, in which somatostatin and the d-cells are no longer explicitly

involved (Fig. 3). As was originally proposed in our prior work (Farhy et al.,

2009), the b-cells of the normal pancreas are now part of the MCN (and thus, of

the mathematical model). This feature also extends the physiological relevance of

the model. The b-cells are assumed to be stimulated by hyperglycemia and

assumed to suppress the activity of the a-cells. The latter action is based on

extensive data which show that the b-cells (co)release a variety of signals,

including insulin, GABA, zinc, and amylin; all of which are known to suppress

a-cell activity (Gedulin et al., 1997; Ishihara et al., 2003; Ito et al., 1995; Reaven

et al., 1987; Rorsman and Hellman, 1988; Samols and Stagner, 1988; Van

Schravendijk et al., 1987; Wendt et al., 2004; Xu et al., 2006). In addition, it

has been reported that the pulses of insulin and glucagon recur with a phase shift

(Grapengiesser et al., 2006); this is consistent with the postulated negative

regulation of the a-cells by the b-cells. An extensive background that justifies

all the postulated MCN relationships has been presented in Section V.

Beta
cells

Blood
glucose

Alpha
cells

(−)

(−)
(−)

(+)

Fig. 3 A Minimal Control Network (MCN) of the interactions between BG and the a- and b-cells
postulated to regulate the GCR in the normal pancreas. In this network the d-cells are not represented
explicitly.
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A. Dynamic Network Approximation of the MCN

Similar to the analysis presented with the old network, dynamic network mod-

eling methods were used to study the properties of the MCN, as shown in Fig. 3.

In particular, two differential equations approximate the rate of change of

glucagon and insulin concentration:

GL
0 ¼ �kGLGLþ rGL;basal

tINS

tINS þ INS
þ rGL

1

1þ ðBG=tBGÞnBG

� 1

1þ ½GLðt�DGLÞ=tGL�nGL

tINS

tINS þ INS

ð3Þ

INS
0 ¼ �kINSINSþ rINS

ðBG=tBG;2ÞnBG;2

1þ ðBG=tBG;2ÞnBG;2
þ rINS;basal

� �
� Pulse ð4Þ

Here, GL(t), BG(t), and INS(t) denote time-dependent concentrations of gluca-

gon, BG, and insulin (or the exogenous switch-off signal in the b-cell-deficient
model) respectively; the derivative is the rate of change with respect to the time t.

The term Pulse in Eq. (4) denotes a pulse generator specific to the b-cells, super-
imposed to guarantee the physiological relevance of the simulations. The meaning

of the parameters is defined as follows:

kGL and kINS are rates of elimination for glucagon and insulin, respectively;

rGL is the BG- and autofeedback-regulated rate of release of glucagon;

rGL,basal is glucagon basal rate of release;

rINS is BG-regulated rate of release of insulin;

rINS,basal is insulin basal rate of release;

tINS is half-maximal inhibitory dose for the negative action of insulin on

glucagon(ID50);

tBG and tBG,2 are half-maximal inhibitory doses for BG (ID50);

tGL is half-maximal inhibitory dose for glucagon (ID50);

nBG, nBG,2, and nGL are Hill coefficients describing the slope of the

corresponding dose–response interactions;

DGL is delay in the autofeedback.

B. Determination of the Model Parameters

The half-life (t1/2) of glucagon was assumed to be�2 min, to match the results of

our pulsatility analysis (Farhy et al., 2009) and other published data. Therefore, we

fixed the parameter kGL ¼ 22 h�1. The half-life of insulin was assumed to be

�3 min, as suggested in the literature (Grimmichova et al., 2008). Therefore, to

approximate the insulin t1/2, we fixed the parameter kINS ¼ 14 h�1. The remaining

parameters used in the simulations were determined functionally and some of the

600 Leon S. Farhy and Anthony L. McCall



concentrations presented below are in arbitrary units (specifically, those related to

insulin). These units, however, can be easily rescaled to match real concentrations.

The delay in the autofeedback, DGL ¼ 7.2 min, was functionally determined,

together with the potencies, tBG ¼ 50 mg/dL, tGL ¼ 85 pg/mL and sensitivities

nBG ¼ 5, nGL ¼ 5 in the autofeedback control function, to ensure that glucagon

pulses during GCR recur at intervals of 15–20 min, so as to correspond to the

number of pulses after a switch-off point which was detected in the pulsatility

analysis (Farhy et al., 2009). The parameters rINS ¼ 80,000 and rINS,basal ¼ 270,

together with the amplitude of the pulses of the pulse generator and the parameters

tBG,2¼ 400 mg/dL and nBG,2¼ 3 were functionally determined to ensure that BG is

capable of stimulating more than a ninefold increase in insulin over baseline in

response to a glucose bolus. The ID50, tINS ¼ 20, was functionally determined

based on the insulin concentrations, to guarantee that insulin withdrawal, during

hypoglycemia, will trigger the GCR. The glucagon release rate (rGL ¼ 42,570 pg/

mL/h) and basal secretion rate (rGL,basal ¼ 2128 pg/mL/h) were functionally

determined, so that a strong hypoglycemic stimulus can trigger a more than 10-

fold increase in glucagon from the normal pancreas. The parameters of the pulse

generator, Pulse, were chosen to generate, every 6 min, a square wave of height ¼
10 over a period of 36 s, based on published reports on insulin pulsatility, which

report that insulin pulses recur every 4–12 min (P�rksen, 2002). We note that

insulin pulsatility was modeled to mimic the variation of insulin in the portal

vein, rather than in systemic circulation. This explains the deep nadirs between

the pulses, which is evident in the simulations. The parameter values of the model

are summarized in Table I.

C. In Silico Experiments

The simulations were performed as follows:

Simulation of glucose input to the system. We performed two different simula-

tions to mimic hypoglycemia: (a) BG decline from 110 to 60 mg/dL in 1 h and (b) a

Table I
Summary of Core Interactive Constants in the Autofeedback MCN

Rate constant Dose–response control functions

Elimination (1 h�1) Release (concentration/h) ID50 (concentration) Slope Delay (min)

Glucagon kGL ¼ 22 h�1 rGL ¼ 42,570 pg/mL/h tGL ¼ 85 pg/mL nGL ¼ 5 DGL ¼ 7.2 min

rGL,basal ¼ 2128 pg/mL/h

BG tBG ¼ 50 mg/dL nBG ¼ 5

tBG,2 ¼ 400 mg/dL nBG,2 ¼ 3

Insulin kINS ¼ 14 h�1 rINS ¼ 80,000 tINS ¼ 20

rINS,basal ¼ 270

Pulse Periodic function: a square wave of height ¼ 10 over a period of 36 s recurring every 6 min

24. Network Control of Glucagon Counterregulation 601



stepwise (1 h steps) decline in BG from 110 to �60 (same as in (a)), then to �45,

and then to �42 mg/dL. This stepwise decline into hypoglycemia was used to

investigate a possible distinction between the responses of the model to 60 mg/dL

(a) and to a stronger hypoglycemic stimulus (b); it also mimics a commonly

employed human experimental condition (staircase hypoglycemic clamp). To gen-

erate glucose profiles that satisfy (a) and (b), we used the equation BG0 ¼ �3BG þ
3 � step þ 330, where the function step changes from 110 to 60, 45, and 42 mg/dL

at 1-h steps. Then, we used the solution to the above equation in Eqs. (3) and (4).

Similarly, an increase of glucose was simulated by using the above equation and a

step function which increased the BG levels from 110 to 240 mg/dL, to mimic an

acute hyperglycemia.

Transition from a normal state to an insulin-deficient state. This simulation was

performed by gradually reducing, to zero, the amplitude of the pulses generated by

the pulse generator, Pulse.

Simulation of an intrapancreatic infusion of different a-cell suppressing signals.

These simulations were performed in an insulin-deficient model. Equation (4) is

replaced by an equation which describes the dynamics of the infused signal:

SO
0 ¼ �kSOSOþ InfusionðtÞ

Here, SO represents the concentration of the switch-off signal, and is an abrupt

termination of ana-cell suppressing signal. The function Infusion describes the rate of
its intrapancreatic infusion (equal to Height if the signal is infused or is 0, otherwise)

and kSO is its (functional) rate of elimination. Then, the terms (1þm1� SO) and (1þ
m2� SO) are used inEq. (3) to divide the parameters rGLand rGL,basal, respectively, to

simulate suppression of the a-cell activity by the signal. Differences in the parameters

m1 and m2, model the unequal action of the infused signal on the basal and BG/

autofeedback-regulated glucagon secretion. In particular, to simulate an insulin

switch-off, we used parameters kSO ¼ 3, Height ¼ 55, m1 ¼ 0.08, and m2 ¼ 0.5; to

simulate somatostatin switch-off, we used kSO¼ 3.5, Height¼ 10,m1 ¼ 1, andm2 ¼
1.4. These parameters were functionally determined to explain our experimental

observations (below) and the possible differences in the glucagon response to the

two types of switch-offs (Farhy et al., 2009). In particular, the effect of exogenous

insulin onBG/autofeedback-regulated and basal glucagon secretion resembles a 1:6.3

ratio. Similar to our previous work (Farhy and McCall, 2009), exogenous insulin

suppressed the basal, more than the pulsatile, glucagon release; for somatostatin, the

suppressive effect was more uniform, with a 1:1.4 ratio.

D. Validation of the MCN

To validate the new network we performed an in silico study in three steps:

� Demonstrate that the (new)MCN (Fig. 3) is compatible with the mechanism of

GCR and its response to ‘‘switch-off’’ signals during insulin deficiency. We have

already shown that our original network, which includes somatostatin as an
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explicit node, is consistent with key experimental data. To confirm that the new

MCN can substitute the older, more complex, construct, we tested the hypothesis

that it can approximate the same key experimental observations [(i)–(vii) listed in

the beginning of Section VI], which were predicted by the old network (Fig. 1).

� Show that the mechanisms underlying the dysregulation of GCR in insulin

deficiency can be explained by the MCN. To this end, we demonstrated that the

BG-regulated MCN can explain (i) a high GCR response if the b-cells are intact

and can provide a potent switch-off signal to the a-cells; and (ii) a reduction in

GCR following a simulated gradual decrease in insulin secretion to mimic the

transition from normal physiology to an insulinopenic state.

� Verify that the proposed MCN approximates the basic properties of the normal

endocrine pancreas. Even though our primary goal is to explain GCR control

mechanisms and their dysregulation, we have demonstrated that the postulated

MCN can explain the increase in insulin secretion and the decrease in glucagon

release in response to BG stimulation.

The goal of this in silico study was to validate the MCN by demonstrating that

the parameters of the mathematical model (Eqs. (3) and (4)), that approximate the

MCN (Fig. 3), can be determined in such a way that the output of the model can

predict certain general features of the in vivo system. Therefore, the simulated

profiles are expected to reproduce the overall behavior of the system, rather than

exactly match the experimentally observed, individual hormone, dynamics.

To integrate the equations, we used a Runge–Kutta 4 algorithm and its specific

implementation within the software package, Berkeley-Madonna.

E. In Silico Experiments with Simulated Complete Insulin Deficiency

We demonstrate that the proposed MCN model, which has changed significant-

ly since it was initially introduced (Farhy and McCall, 2009; Farhy et al., 2009), is

consistent with the experimental observations, reported by us and others, in STZ-

treated rats (Farhy et al., 2009; Zhou et al., 2004).

1. Defective GCR Response to Hypoglycemia with the Absence of a Switch-Off Signal in the
Insulin-Deficient Model

The plot in Fig. 4 (bottom left panel) shows the predicted lack of a glucagon

response to hypoglycemia if a switch-off signal is missing—a key observation

reported in our experimental study (Farhy et al., 2009) and by others (Zhou

et al., 2004, 2007a,b). The system responds with only about 30% increase in the

pulse amplitude of glucagon in the 45-min interval after BG reaches 60 mg/dL; this

agrees with our experimental observations (Fig. 4, top panels) and shows that the

model satisfies condition (iv) from Section VI (no GCR response to hypoglycemia

without a switch-off signal).
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2. GCR Response to Switch-Off Signals in Insulin Deficiency

The response of the model to a 1.5-h intrapancreatic infusion of insulin or

somatostatin, switched off at hypoglycemia (BG ¼ 60 mg/dL), is shown in the

bottom middle and right panels of Fig. 4. The infusion was initiated at time t ¼
0.5 h (arbitrary time units) and switched off at t¼ 2 h. A simulated gradual decline

in BG started at t ¼ 1 h and BG ¼ 60 mg/dL was attained at the switch-off point.

This response illustrates a pulsatile, rebound, glucagon secretion after the

switch-off with an almost fourfold increase in glucagon in the 45-min period

after the switch-off compared to the preswitch-off levels; and this is similar to

experimental observations: Fig. 4 (top middle and right panels).
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Therefore, the model satisfies the following conditions (i) the pulsatility timing

and (ii) the pulsatility amplitude increase from Section VI, in regard to insulin and

somatostatin switch-off.

In addition, the bottom middle and right panels of Fig. 4 demonstrate that the

model satisfies conditions (vi) >30% higher GCR response to insulin switch-off

compared to somatostatin switch-off and (vii) a better glucagon suppression by

somatostatin before a switch-off compared to suppression by insulin, from Section

VI. Of interest is the prediction that an insulin switch-off signal more potently

suppresses the basal, rather than the pulsatile, glucagon release and that it is

similar to the predictions of the previous model (Farhy and McCall, 2009).It is

necessary to explain the differences between the insulin switch-off and somatostat-

in switch-off: Fig. 4, middle versus left panels.

Note that the pulsatility of glucagon is not apparent in the plots presented in the

top panels of Fig. 4 since they reflect averaged experimental data (n ¼ 7 in the

saline group and n¼ 6 in the insulin and somatostatin switch-off groups). In Farhy

et al. (2009), glucagon pulsatility was confirmed on the individual profiles of

glucagon measured in circulation by deconvolution analysis. The current simula-

tions, which approximate the dynamics of glucagon in the portal circulation, agree

well with these results.

3. Reduction of the GCR Response by High Glucose Conditions During the Switch-Off Or by
Failure to Terminate the Intrapancreatic Signal

For purposes of comparison, Fig. 5 depicts the GCR response when an insulin

signal was infused and then switched off but without hypoglycemia (top panel) or

if the intrapancreatic insulin was infused, but not switched off during hypoglyce-

mia (bottom panel). In the first simulation, glucagon increases by only 60 pg/mL,

relative to the concentration at the switch-off point, but in the second simulation

the GCR response is reduced by approximately twofold, compared to the response

depicted in Fig. 4 (middle bottom panel). This result agrees with the observations

reported by Zhou et al. (2004) who demonstrate a lack of significant increase in

glucagon in this 1 h interval if insulin is not switched off. In an additional analysis

(results not shown), we increased the simulated rate of insulin infusion switch-off

signal by fourfold by increasing the parameter Height from 55 to 220 (see Section

VII.C) and using a stronger hypoglycemic stimulus (�40 mg/dL). The model

responded with an increase in glucagon after the switch-off, which reached con-

centrations above 800 pg/mL in the 1-h interval after the switch-off point. When

the same signal was not terminated in this simulation, the response was restricted

to a rise till about 180 pg/mL only. This outcome reproduces, more closely, the

observations by Zhou et al. (2004).

Thus, the model satisfies the following conditions: (iii) restriction of the response

to an insulin switch-off under high BG conditions and (v) the absence of a pro-

nounced GCR when no insulin switch-off is performed, as detailed in Section VI.
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F. Simulated Transition from a Normal Physiology to an Insulinopenic State

One set of simulations was performed to evaluate the model-generated glucagon

response to a stepwise decline in BG towards hypoglycemia, with both a normal

and an insulin-deficient pancreas. The response of the normal model, shown in

Fig. 6 (top panel), illustrates a pronounced glucagon response to hypoglycemia

(about fourfold increase when BG ¼ 60 mg/dL and about 14-fold increase over

baseline when BG approaches 42.5 mg/dL). Of interest, the model predicts that

when BG starts to fall, the high-frequency glucagon pulsatility during the basal

period, entrained by the insulin pulses, will be replaced by low-frequency oscilla-

tions maintained by the a-cell autofeedback response.

The model also predicts that a complete absence of BG-stimulated and basal

insulin release will result in the following abnormalities in glucagon secretion and

the response to hypoglycemia (Fig. 6, bottom panel):
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� A significant reduction in glucagon response to hypoglycemia relative to

baseline (only about 1.3-fold increase when BG ¼ 60 mg/dL and only about

threefold increase when BG approaches 42 mg/dL).

� A reduction in the absolute glucagon response to hypoglycemia (15% lower

response when BG¼ 60 mg/dL and 42% lower response when BG approaches

42.5 mg/dL).

� A delay in the GCR response (BG remains below 60 mg/dL for more than 1 h

without any sizable change in glucagon).

� A 2.5-fold increase in basal glucagon.

� Disappearance of the insulin-driven high-frequency glucagon pulsatility.

A comparison between the response of the model to hypoglycemia when BG

remained at 60 mg/dL (Fig. 4, lower left panel) and when BG fell further to about

42.5 mg/dL, in the staircase hypoglycemic clamp (Fig. 6, bottom panel), reveals

an interesting prediction that a sufficiently strong hypoglycemic stimulus may

still evoke some delayed glucagon release. However, additional analysis (results

not shown) disclosed that if the basal glucagon release (model parameter

rGL,basal) is 15–20% higher, this response will be completely suppressed. There-

fore, the model predicts that GCR abnormalities may be due to both, the lack of

an appropriate switch-off signal and significant basal hyperglucagonemia. The

same simulations were also performed under the assumption that BG declines

only to 60 mg/dL and remains at that level, similar to the experiments depicted in

the lower panels of Fig. 4 (results not shown). We detected that the glucagon

pulses released by the normal pancreas were about 47% lower, which stresses the

importance of the strength of the hypoglycemic stimulus in eliciting a GCR

response. Under conditions of a complete absence of insulin, the weaker hypo-

glycemic stimulus evokes practically no response (this outcome has already been

shown in Fig. 4, lower left panel) and the concentration of glucagon was 57%

lower compared to the response stimulated by the stepwise decline (Fig. 6,

bottom panel).

A second set of simulations was designed to test the hypothesis that this model of

theMCN can correctly predict a typical increase in insulin secretion and a decrease

in glucagon following an increase in BG. We also monitored how these two system

responses change during the transition from normal physiology to an insulinopenic

state. To this end, an increase in BG was simulated (see Section VII.C) with an

elevation in the BG concentration from 110 to about 240 mg/dL in 1 h followed by

a return to normal levels in the next 1.5 h. The predicted response of the normal

pancreas is shown on the top panel of Fig. 7. In this simulation, the BG-driven

release of insulin increased by almost ninefold which caused a significant suppres-

sion of glucagon release. The bottom plot in Fig. 7 illustrates the effect on the

response of the system to a 100% reduction in BG-stimulated insulin release. As

expected, insulin deficiency results in an increase in glucagon and a limited ability

of hyperglycemia to suppress glucagon (Meier et al., 2006).
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VIII. Advantages and Limitations of the Interdisciplinary
Approach

A key conclusion of our model-based simulations is that some of the observed

behaviors of the system (like the system response to a switch-off) emerge from an

interplay between multiple components. Models, like the networks in Figs. 1 and 3,

are certainly not uncommon in endocrine research, and typically exemplify regu-

latory hypotheses. Traditionally, such models are studied using methods that

probe individual components or interactions, in isolation from the rest of the

system. This approach has been used in the majority of the published studies

that have investigated GCR regulation (see Section V). The limitation of this

approach is that the temporal relationships between the components of the system

and the relative contribution of each interaction to the overall behavior of the

system cannot be properly assessed. Therefore, especially when the model contains

feedbacks, the individual approach cannot answer the question of whether the
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model explains systemic control mechanisms. The main reason for this limitation is

that some key specifics of system behavior, like its capability to oscillate and

respond with a rebound to a switch-off, both require, and are the result of inter-

actions of several components that vary over a time-period. If these are studied in

isolation, little information will be gained about the dynamic behavior of this

network-like mechanism. Numerous reports have documented that the glucagon

control axis is indeed a complex network-like structure, and therefore it lends itself

to complex, dynamic behavior analysis. This highlights both the significance and

necessity of the mathematical methods that we have used to analyze the experi-

mental data. Using differential equations-based modeling is perhaps the only way

to estimate the dynamic interplay of the pancreatic hormones and their importance

in GCR control.

Mathematical models have not been applied to study the GCR control mechan-

isms, but have been used to explore other aspects of BG homeostasis and its

control (Guyton et al., 1978; Insel et al., 1975; Steele et al., 1974; Yamasaki

et al., 1984). For example, theminimal model of Bergman and colleagues, proposed

in 1979 for estimating insulin sensitivity (Bergman et al., 1979), has received

considerable attention and been developed further (Bergman et al., 1987; Breda

et al., 2001; Cobelli et al., 1986, 1990; Mari, 1997; Quon et al., 1994; Toffolo et al.,

1995, 2001). We have previously used modeling methods to successfully estimate

and predict the onset of the counterregulation in T1DM patients (Kovatchev et al.,

1999, 2000) and to study other complex endocrine axes (Farhy, 2004; Farhy and

Veldhuis 2003, 2004, 2005; Farhy et al., 2001, 2002, 2007). However, despite the

proven utility of this methodology, our recent efforts were the first to apply a

combination of network modeling and in vivo studies to dissect the GCR control

axis (Farhy and McCall, 2009; Farhy et al., 2009).

The few selected MCN components cannot exhaustively recreate all the signals

that control the GCR. Indeed, in the normal pancreas, glucagon may control its

own secretion via a/b-cell interactions. For example, the human b-cells express

glucagon receptors (Huypens et al., 2000; Kieffer et al., 1996) and exogenous

glucagon stimulates insulin by glucagon- and GLP-1-receptors (Huypens et al.,

2000). One immunoneutralization study suggests that endogenous glucagon sti-

mulates insulin (Brunicardi et al., 2001), while other results imply that a-cell
glutamate may bind to receptors on b-cells to stimulate insulin and GABA

(Bertrand et al., 1992; Inagaki et al., 1995; Uehara et al., 2004).

It has been recently reported that, in human islets, a-cell glutamate serves as a

positive autocrine signal for glucagon release by acting on the ionotropic gluta-

mate receptors (iGluRs) on a-cells (Cabrera et al., 2008). Thus, the absence of

functional b-cells may cause glutamate hypersecretion, followed by desensitization

of the a-cell iGluRs, and ultimately, the defects in GCR, as conjectured (Cabrera

et al., 2008). Interestingly, a similar hypothesis to explain the defective GCR in

diabetes, by an increase in chronic a-cell activity due to lack of b-cell signaling, can
be formulated based on our results. However, in our case hyperglucagonemia is the

main reason for the defects in GCR. These two hypotheses are not mutually
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exclusive, but ours can also explain the in vivo GCR pulsatility during hypoglyce-

mia observed by us (Farhy et al., 2009) and others (Genter et al., 1998). Most

importantly, the positive autoregulation by a-cells is consistent with the proposed

negative and delayed a-cell autofeedback, which could be mediated in part by

desensitization of the iGluRs, as suggested (Cabrera et al., 2008). This autocrine

regulation is implicitly incorporated in our model equations in the parameter rGL.

The b-cells may control the d-cells, which are downstream from b-cells in the

order of intraislet vascular perfusion. However, in one study, anterograde infusion

of insulin antibody in a perfused rat pancreas stimulated both glucagon and

somatostatin (Samols and Stagner, 1988), while another immunoneutralization

study documented a decrease in somatostatin at high glucose concentrations

(Brunicardi et al., 2001). Suppression of the a-cells by insulin (as proposed here)

could explain this apparent contradiction. It is also possible that the d-cells inhibit
the b-cells (Brunicardi et al., 2003; Huypens et al., 2000; Schuit et al., 1989;

Strowski et al., 2000).

Finally, the MCN components can be influenced by numerous extrapancreatic

factors, some of which have important impacts on glucagon secretion and GCR,

including autonomic input, catecholamines, growth hormone, ghrelin, and incre-

tins (Gromada et al., 2007; Havel and Ahren, 1997; Havel and Taborsky, 1989;

Heise et al., 2004). For example, the incretin, GLP-1, inhibits glucagon, though the

mechanism of this inhibition is still controversial (Gromada et al., 2007). Also,

there are three major autonomic influences on the a-cell: sympathetic nerves,

parasympathetic nerves, and circulating epinephrine, all of which are activated

by hypoglycemia and are capable of stimulating glucagon and suppressing insulin

(Bolli and Fanelli, 1999; Brelje et al., 1989; Taborsky et al., 1998). We cannot track

all signals that control the GCR and most of them have no explicit terms in our

model. However, they have not been omitted nor have they been considered

unimportant. In fact, when we mathematically describe theMCN, we are including

the impact of the nervous system and other factors, even though they have no

individual terms in the equations. Thus, the MCN unifies all factors that control

glucagon release, based on the assumption that the primary physiological relation-

ships, that are explicit in the MCN, are influenced by these factors.

The model-based simulations suggest that the postulated MCN model of the

regulation of GCR is consistent with the experimental data. However, at this stage

we cannot estimate how good this model is, and it is therefore hard to assess the

validity of its predictions. The simulations can only reconstruct the general ‘‘aver-

aged’’ behavior of the in vivo system, and new experimental data are required to

support a very important property of the model—that it can explain the GCR

response in individual animals. These studies should involve interventional studies

which can manipulate the vascular input to the pancreas and analyze the

corresponding changes in the output by simultaneously collecting frequently sam-

pled portal vein data for multiple hormones. These must be analyzed by the

mathematical model to estimate whether the MCN provides an objectively good

description of the actions of the complex GCR control mechanism. Note that, with
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this approach, we cannot establish the model-based inferences in ‘‘micro’’ detail,

since they imply molecular mechanisms that are out of reach of in vivomethodolo-

gy. The approach cannot, nor is it intended to, address the microscopic behavior of

the a-cells or the molecular mechanisms that govern this behavior. In this regard,

insulin and glucagon (and somatostatin) should be viewed only as (macroscopic)

surrogates for the activity of the different cell types, under a variety of other intra-

and extrapancreatic influences.

Even though it is usually not stated explicitly, simple models are always used in

experimental studies, and, especially in in vivo experiments, many factors are

ignored or postulated to have no impact on the outcome. Using constructs, like

the ones described in this work, to analyze hormone concentration data has the

advantage that the underlying model is very explicit, incorporates multiple rela-

tionships and uses well-established mathematical and statistical techniques to

show its validity and reconstruct the involved signals and pathways.

IX. Conclusions

In the current work, we present our interdisciplinary efforts to investigate the

system-level, networking control mechanisms that mediate the GCR and their

abnormalities in diabetes—a concept as yet almost completely unexplored for

GCR. The results confirm the hypothesis that a streamlined model, which omits

an explicit (but not implicit) somatostatin (d-cell) node entirely, reproduces the

results of our original more complex models. Our new findings more precisely

define the components that are most critical for the system and strongly suggest

that a delayed a-cell autofeedback mechanism plays a key role in GCR regulation.

The results demonstrate that such a regulation is consistent not only with most of

the in vivo system behavior typical for the insulin-deficient pancreas, but also

explains key features that are characteristic during the transition from a normal

state to an insulin-deficient state. Amajor advantage of the current model is that its

only explicit components are BG, insulin, and glucagon. These are clinically

measurable, which would allow the new construct to be used for the study of the

control, function, and abnormalities of the human glucagon axis.
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definition, 146, 175

distributions, data, 183

FORTRAN, code, 148, 170

fractal function applications, 440

growth models, 176–177

growth rate, children, 174

measurement, 147

modifications of, 176

Monte Carlo procedure, 177–178

properties, 169

pseudorandom noise, 178

saltation and stasis model

exponential rise model, 179

infant height, 178–179

Karlberg infant model, 179–180

Monte Carlo cycles, 179

Asymptotic variance-covariance matrix (AVC),

15

B

Bayesian hierarchical models

advantages, 201

computation

g and b, 208
Markov chain Monte Carlo (MCMC), 210

SWEEP algorithm, 209

error measurement, 199

fixed and random effects, 200

Gaussian model

b-dimensional vector, 203

computation, simplified, 207–208

covariance matrices, 203

fixed-interval smoothing algorithm, 205

Kalman filter, 204

predictors, 202–203

q-dimensional vector, 203

state-space covariance algorithm, 205

state-space formulation, 203–204

inference

Bayes’ rule, 192

regression model, 193

Markov chain Monte Carlo (MCMC), 219–220

meta-regression, myocardial infarction

fibrinolytic therapy trialists (FTT), 214

Gaussian distribution, 211

GISSI–1, 212

joint posterior density, 211–212

patient subgroup estimation, 215

regression coefficients estimation, 214–215

regression line, 212

risk reduction vs. time-to-treatment., 214

thrombolytic agents, 211, 213

model checking, 220–221
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Bayesian hierarchical models (cont.)

saltatory model, infant growth

fitted growth curve, 218

height measurement, 217

saltations and stasis, 216

standard error, 218–219

stochastic process, 217

systematic changes, 216

variance components incorporation, 219

Bayesian model selection (BMS), 520–521

BG r d-cell ra-cell pathway, 598–599
Biological oscillators mathematics

autocatalysis, 295

categories of, 293

coupled oscillators

averaged interaction, 305–308

chemical species diffusion, 304

using PTCs, 304–305

excitable system

ADP amplification, 296

glycolytic model, 298

Hopf bifurcation, 297

hysteresis, 298–299

negative feedback, 295

nullclines, 294–295

numerical methods, 299

positive feedback, glycolytic oscillator, 295

stability loss, 297

two-dimensional plane, 295–296

perturbations

glycolytic model, devil’s staircase, 303

glycolytic model, phase difference curve, 301

phase locking, 302

phase resetting, 299

phase shift, 300

PTC, 300–302

pulse effect, 300

Biologic network signals

altered regularity, mechanistic hypothesis, 158

ApEn

application(dou), 147–148

definition of, 146

FORTRAN, code, 148, 170

measurement, 147

properties, 169

chaotic processes, 143, 146

cross-ApEn, 145–146

GH serum dynamics, gender differences,

153–154

growth hormone (GH) measurement, 143, 144

heart rate measurement, 143, 145

implementation and interpretation

analytic expressions, 151–152

error bars, 151

model independence, 151

m, r, and N, choice of, 148–149

regularity, normalized, 149

relative consistency, 149–150

statistics family, 149

Kolmogorov-Sinai (K-S) entropy, 143

numerical Monte Carlo methods, 167

polymorphous model, 166

queueing model, 166

randomness, 142

regularity, quantification of, 146–148

relationship

algorithms, recognition, 154–155

Chaos, statistics related to, 155–157

power spectra, 157

single homogeneous model, 166

Blood glucose (BG) homeostasis

GCR dysregulation, 589

homeostasis, 588

pancreatic network, 595

STZ-treated rats, 596–597

Boolean network

biological systems, 537

Boolean networks with perturbations (BNps),

546

computational biology, 534–535

definition, 538–539

dynamics, 535

extensive analysis, 541

function, 534

inferring Boolean networks, 548

inferring stochastic Boolean networks, 549

lac operon, 535

nested canalyzing functions (NCFs), 538

probabilistic Boolean networks (PBNs), 546

reverse-engineering, discrete models, 545–548

segment polarity network, 548

wiring diagram, 535

C

CGM analysis data, diabetes

BG levels monitor, 464

glycemia measurement

glucose traces, 467, 468

hypoglycemic range, 469

mean glucose values, 467

treatment effect, 469

interstitial glucose (IG) concentration, 465

requirements, 466–467
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risk and variability assessment

advantages, 472

BG reading, 470

euglycemic range, 471

glucose fluctuations, 471

standard deviation (SD), 469

self-monitoring of blood glucose (SMBG), 464

sensor error decomposition, 466–467

system stability, measures and plots

auto-regression algorithm, 475

CONGA, 472

patterns of oscillation, 473

Poincare’ plot, 472, 474

T1DM and T2DM, 463, 464

time-series-based prediction

glucose fluctuations, 473

statistical disadvantage, 475

Chaos

biologic network signals, 155–157

fractal function applications

anti-chaotic, 446

broad-band power spectra, 443

enzyme reactions, 437–438

motions, 443

nonlinear mappings, 445

spectral analysis, 444

irregularity and asynchrony, network signals,

155–157

Cholesky factor, 190

Circadian behavioral rhythm, 489–490

Coefficient distribution functions

contribution correction, plateau region, 353–

354

detailed procedure

averaged, 352

calculation, 352

error estimates computation, 353

differential distribution functions, 350

spatial derivative method, 350

temporal derivative method, 350–351

Computational biology

Boolean network, 534–535

extensive analysis, 541

gene regulatory network, 531

Hill function, 533

interpretation, 536

lac operon, 532

logical model, 537

nested canalyzing functions (NCFs), 538

Continuous glucose monitor (CGM). See CGM

analysis data, diabetes

Cross-ApEn

constant lag process, 163–164

correlation and spectral analyses, 163–166

definition, 160

fast Fourier transform (FFT) method, 162–163

LH-T study, men, 161–162

seasonal autoregressive integrated moving

average (SARIMA) model, 163

variable lag process, 163, 164

Cross-validation (CV)

attractions, 519

procedure, 518

time series data, 518

D

Distribution functions, proteins

applications, 258

calculation, 258

enthalpy distribution

canonical partition function, 279–280

empirical Taylor series, 281

enthalpy moments, 285

Gibbs free energy, 284

heat capacity, 281, 284

internal energy, 281

isobaric grand partition function, 283

protein barnase, 284–285

ligand-binding

average number, 264

binding isotherm/ titration curve, 259, 261

in biopolymers, 261

first moment, 262

generalization, 260

higher moment, 263

maximum-entropy, 277

methylamine, 274

Mg2þ binding, 278–279

mole fraction, 260

protein lysozyme, 273

recursion relation, 278

ribonuclease, denatured, 275

Taylor series, 263

titration curve, 276

maximum-entropy

calculation, 266

exponential function, 269

Gaussian distributions, 265–266, 269

general iteration loop, 270–273

shifted distribution, 267

titration problems, 267–268

moments, 259

self-aggregation
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Distribution functions, proteins (cont.)

ATP concentration, 290–291

cluster size, 288

monomer concentration, 288–289

monomer to cluster, 287

Durbin-Watson test

correlation, 47

parameter, 49

variance, 49

Dynamic Bayesian network (DBN), 530

E

Endocrine networks modeling

concentration dynamics simulation

deconvolution technique, 312

exemplary profiles, 314

exogenous levels, 313

Hill coefficient, 313

hormone, 312

monotonous, 313

data analysis, 311

experimental techniques, 334

multiple feedback loops, 330–332

principles, 310–312

qualitative analysis, 311

quantitative analysis, 311

single system feedback loop

formal 2-node/1-feedback network, 315–316

node identification, oscillation control, 326–

327

oscillations, periodic solution, 319–320

perturbation, 324–326

reference systems, 317–319

separating synthesis, secretion, 328–330

simulation of, experiment, 320–324

Enthalpy distribution

canonical partition function, 279–280

empirical Taylor series, 281

enthalpy moments, 285

Gibbs free energy, 284

heat capacity, 281, 284

internal energy, 281

isobaric grand partition function, 283

protein barnase, 284–285

F

Fisher’s distribution

nonlinear models, 17, 26

spatial (vector) ApEn, 167

Fourier analysis, 16

boundary analysis, 344

nonlinear least-squares, 16

physiological and behavioral rhythmicity, 480,

494

Fractal function applications

attractor, 442–443

bifurcation, 443

chaos

anti-chaotic, 446

broad-band power spectra, 443

enzyme reactions, 437–438

motions, 443

nonlinear mappings, 445

spectral analysis, 444

chaotic attractors, 451

complexity, 446–447

correlation dimension, 451

cycle, 447

dimensions, 447–449

dynamical system and state vector, 449

geometry, objects, 449

Hausdorff dimension, 450

instruction, reader, 442

limit cycle, 451–452

linear term, 452–453

manifold, 453

mappings/maps, 453–454

morphology, in mammals

bronchial tree and pulmonary blood flow,

430

fractals and scatter, biological data, 436–437

fractal time, 431

heart, 430

neurons (dendrites), 431

time history analysis, scaling noises, 431–436

vascular tree, 430

noise, 454–455

nonlinear, 455

practical guide identification

approximate entropy (ApEn), 440

concentration data, 438

correlation dimension, 439

Kolmogorov–Sinai (K–S) entropy, 440

pulsatility, 433

Quasi-periodicity, 455

spectral analysis, 456

stability, 456–457

state, 457

topobiology, 429

vectorfield, 457–458

Frequency domain analysis, rhythmicity
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Buys-Ballot, 491

circadian behavioral rhythm, 489–490

discrete Fourier analysis, heartbeat, 493–494

Fourier spectral analysis, 491

MESA, 492

periodogram, 491

prediction error filter (PEF), 495

Whitaker-Robinson periodogram, 492

G

Gaussian distributions

Bayesian hierarchical models

b-dimensional vector, 203

computation, simplified, 207–208

covariance matrices, 203

fixed-interval smoothing algorithm, 205

Kalman filter, 204

predictors, 202–203

q-dimensional vector, 203

quantifying contribution, 206–207

state-space covariance algorithm, 205

state-space formulation, 203–204

distribution functions, proteins, maximum-

entropy, 265–266, 269

Kalman filter

Cholesky factor, 190

covariance matrix, 189

Gram-Schmidt orthogonalization, 191

human biological clock estimation, 189

joint probability density, 189–190

SVD, 121

uncertainty, nonlinear least-squares, 7–12

Gibbs free energy, 284, 286

Glucagon counterregulation (GCR) network

control

advantages and limitations

a-cell glutamate, 610–611

endocrine research, 609

extrapancreatic factors, 611

immunoneutralization, 610

mathematical models, 610

MCN model, 611

systemic control mechanism, 610

b-cell-deficient rat model, 588

BG homeostasis, 588

defects

insulin switch-off, 591

minimal control network (MCN), 592

dysregulation in diabetes

GLUT transporters, 590

hypoglycemia, 589

switch-off hypothesis, 590

type 1, 590

mathematical models, STZ-treated rats

b-cell-deficient rat model, 595

a-cell inhibitor, 598
dynamic network modeling, 596

experimental findings, 596

glucagon control axis, 597

somatostatin, 596

switch-off signals, 597

minimal control network (MCN)

dynamic network approximation, 600

high glucose condition, 605–606

in silico experiments, 601–602

insulin-deficient model, hypoglycemia,

603–604

insulin-deficient model, switch-off signals,

604–605

model parameters determination, 600–601

simulated insulin deficiency, 603

simulated transition, insulinopenic state,

607–609

validation, 602–603

qualitative analysis

b-cell inhibition, a-cells, 592–593
a-cell inhibition, d-cells, 593–594
complete insulin deficiency simulation,

603–606

d-cell inhibition, a-cells, 593
glucose inhibition, a-cells, 594–595
glucose stimulation, b- and d-cells, 593–594

Glucose transporters (GLUT), 589

H

Hessian matrix, 15

Heteroscedasticity and skewness, regression

estimation method

ordinary least squares, 69–71

transform both sides, 73–77

weighted least squares, 71–73

human heart, growth model

aortic valve area (AVA), 68

BSA level, 68

cardiac development/aortic stenosis, 68

type I error, 69

type II error, 69

Hopf bifurcation, 297
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I

Inositol 1,4,5-trisphosphate (IP3), 412

Irregularity and asynchrony, network signals

altered regularity, mechanistic hypothesis, 158

ApEn

application(dou), 147–148

definition of, 146

FORTRAN, code, 148, 170

measurement, 147

properties, 169

biological applications, 153–154

chaotic processes (time series), 143, 146

cross-ApEn, 145–146

growth hormone (GH) measurement, 143, 144

heart rate measurement, 143, 145

implementation and interpretation

analytic expressions, 151–152

error bars, 151

model independence, 151

m, r, and N, choice of, 148–149

regularity, normalized, 149

relative consistency, 149–150

statistics family, 149

Kolmogorov-Sinai (K-S) entropy, 143

randomness, 142

regularity, quantification of, 146–148

relationship

algorithms, recognition, 154–155

Chaos, statistics related to, 155–157

power spectra, 157

Isothermal titration calorimetry (ITC)

correlated error, titrant volume

absorbance titration curve, 386

MC computations, 388

posteriori, 387

unweighted LS/weighted model, 389

variance-covariance matrix, 387

fit model, 1:1 binding

equilibrium expression, 378

MC calculations, 378

titration index, 379

LS variance-covariance matrix

linear least squares, 366–370

nonlinear least squares, 370–371

statistical error propagation, 371–372

statistical errors, 365

MC computational methods, 372–373

neglect of weights, 385

optimization study, 363

10% rule of thumb, 379–381

stoichiometry range and titration increments

dependence

relative errors, 383

standard error calculation, 382, 384

thermodynamics, 364

titrant volume error, 362

van’t Hoff

analysis, K
� (T), 373–377

relation, 362, 364

vs. Van’t Hoff DH�

Ba2þ complexation, crown ether, 392–394

test model, 390–392

variance function (VF), 362

K

Kalman filter

algorithm, 187–188

bayesian inference

Bayes’ rule, 192

regression model, 193

data problems

approach, 193–194

expectation and maximization (EM)

algorithm, 194

time series data, 195

extensions, 196

Gaussian evaluation

Bayesian hierarchical models, 204

Cholesky factor, 190

covariance matrix, 189

Gram-Schmidt orthogonalization, 191

human biological clock estimation, 189

joint probability density, 189–190

Markov structure, 188

transformation matrix, 188

Kolmogorov-Smirnov test, 44–45

L

Lamm equation, 342

Least-squares techniques

AVA, 71

deficiency, 71

ligand-binding titration, 2

LLS, 6

nonlinear least-squares

algorithms, 5

application, 6

asymptotic standard errors, 15

AVC, 15

confidence intervals, 14

data points, 13–14
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definition, 3

experimental uncertainty, 7

Fisher’s distribution, 17

fitting equation, 14

Fourier analysis, 16

Gaussian uncertainty, 7–12

Hessian matrix, 15

independent observation, 12–13

LLS, 6

parameter estimation, 4

temperature-jump, 5

WSSR, 4

perturbation, external, 2

prediction interval, 70

variance-covariance matrix

linear least squares, 366–370

nonlinear least squares, 370–371

statistical error propagation, 371–372

statistical errors, 365

variance, error, 70

Ligand-binding, distribution functions

average number, 264

binding isotherm/ titration curve, 259, 261

in biopolymers, 261

first moment, 262

generalization, 260

higher moment, 263

maximum-entropy, 277

methylamine, 274

Mg2þ binding, 278–279

mole fraction, 260

protein lysozyme, 273

recursion relation, 278

ribonuclease, denatured, 275

Taylor series, 263

titration curve, 276

Linear least-squares (LLS), 6

LLS. See Linear least-squares (LLS)

M

Mapping compartments, simulation geometry,

415–416

Markov chain Monte Carlo (MCMC), 210,

219–220

Markov structure

algebraic models, 544

ApEn, 146

Bayesian hierarchical models, 219

continuous glucose monitoring data, 475

Kalman filter, 188

stochastic chain formation, 157

Minimal control network (MCN)

defects, 592

dynamic network approximation, 600

high glucose condition, 605–606

insulin-deficient model, hypoglycemia, 603–604

model parameters determination, 600–601

in silico experiments, 601–602

simulated insulin deficiency, 603

simulated transition, insulinopenic state,

607–609

switch-off signals, insulin-deficient model,

604–605

validation, 602–603

Mixed-model regression analysis

analysis of variance (ANOVA)

error variance, 232

general linear model (GLM), 233

linear regression analysis, mixed-model, 234–

235

mixed design, 232

mixed-model, 228

one-way ANOVA, 229–231

psychomotor vigilance task (PVT), 228

residual variance, 232

correlation structure

intraclass correlation coefficient (ICC),

253–254

mixed-model regression, 252

definition, 226

EBLUPs, 242–243

experiment and data, 226–227

linear regression analysis, mixed-model

analysis of covariance (ANCOVA), 235

leastsquares method, 235

linear mixed effects, 237–240

nonlinear regression analysis, mixed-model

CAFF.DAT, 249

CAFFEINE, 250–251

empirical Bayes estimates (EBEs), 247–248

NONMEM, 249

parameters estimation, 247

PROC NLMIXED, 246

PVT, 244

temporal changes, 225

Model evaluation and comparison methods

Akaike information criterion (AIC)

definition, 517

dimension of, 517

generalizability, 516

Bayesian model selection (BMS) and stochastic

complexity (SC)

complexity, 521
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Model evaluation and comparison methods

(cont.)

criterion value, 520

definition, 520

principle, 520

complexity, 514

cross-validation (CV) and accumulative

prediction error (APE)

attractions, 519

procedure, 518

time series data, 518

goodness of fit (GOF) measurement, 514

parameter space partitioning (PSP), 525

protein folding models, 521–525

binding-site model (BIND), 522, 523

linear extrapolation method model (LEM),

522, 523

model recovery performance, 524

ZimmBragg theory, 521

Modeling abstractions, cellular physiology

cellular geometry, 406–407

compartmental simulations, 410–411

intuitive user interface, 404

mapping biology, mathematical description,

407–410

metabolic control analysis, 403–404

physiological models, 405–406

software, 403

spatial simulations, 411–412

standard format, lack, 403

system architecture, 404

Monte Carlo method. See also Probability

distributions

application, 58

approximate entropy (ApEn), 177–178

cycles, 58

free energy changes, 63–64

hemoglobin tetramer, 61–62

oxygen binding isotherms, 61–64

simulation

assay imprecision and inaccuracy, 566

clinical situations, 564

methods, 567–568

physiologic response, changing conditions,

566–567

tight glucose control (TGC), 565, 581

University of Washington regimen, 578–580

Yale regimen, 568–578

Myocardial infarction, meta-regression

Bayesian hierarchical models

fibrinolytic therapy trialists (FTT), 214

Gaussian distribution, 211

GISSI–1, 212

joint posterior density, 211–212

patient subgroup estimation, 215

regression coefficients estimation, 214–215

regression line, 212

risk reduction vs. time-to-treatment., 214

thrombolytic agents, 211, 213

N

Network inference

dialogue on reverse-engineering assessment and

methods (DREAM), 541

genomes sequence, 542

reverse-engineering methods validation, 544

Network signals. See Biologic network signals

Nonlinear least-squares (NLLS)

algorithms, 5

application, 6

asymptotic standard errors, 15

AVC, 15

confidence intervals, 14

data points, 13–14

definition, 3

experimental uncertainty, 7

Fisher’s distribution, 17

fitting equation, 14

Fourier analysis, 16

Gaussian uncertainty, 7–12

Hessian matrix, 15

independent observation, 12–13

LLS, 6

parameter estimation, 4

temperature-jump, 5

WSSR, 4

Nonlinear models, parameter estimation

linear regression, ELISA

antibody concentration, 25

Fisher’s distribution, 26

least square, 25

optical density, 25

parameter, 26

straight-line model, 24

nonlinear regression, p24gag concentration

approximation parameter, 29

derivative matrix, 27

least squares estimation, 28

parameters, 26

statistical analysis, 26

straight-line model, 27

variance estimation, 27
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profiling

calculation, 30

model convertion, 30–31

plots and traces, 29–30

sum of squares function, 29–30

t plots, elution data, 31

trace plots, 31–33

tetracycline metabolism

linear approximation parameter, 34

profile plot, 33

O

Optical multichannel analyzer (OMA), 84

P

Phase transition curve (PTC)

coupled oscillators, 304–305

perturbations, 300–302

Physiological and behavioral rhythmicity

analyses

biological data types

analog to digital (A/D) converter, 481

circadian, 481

Nyquist interval, 481

periodicity, 480

Poisson process, 482

sampling frequency, 481

frequency domain, analysis

Buys-Ballot, 491

circadian behavioral rhythm, 489–490

discrete Fourier analysis, heartbeat, 493–494

Fourier spectral analysis, 491

MESA, 492

periodogram, 491

prediction error filter (PEF), 495

Whitaker-Robinson periodogram, 492

practical considerations, 506–507

signal conditioning

Butterworth filter, 504

digital filter, 504

high frequency noise, 503

high pass filter, 503

problem, 502

statistical comparisons, 506–507

strength and regularity, signal, 505–506

time domain analysis

autocorrelograms, 487

cardiac system, Drosophila, 483

covariance, 485

optical digital records, 485

periodogram, 488

positive peak, 484

raster plot, 487

time and frequency, 482

time/frequency analysis

Drosophila melanogaster, 502

Fourier-based system, 496

maximum entropy spectral analysis

(MESA), 496–498

multiresolution analysis, 500

nonstationary signal/chirp, 499

wavelet decomposition, 498

Physiological model extraction, 413–415

Polynome, 549–552

Probability distributions

confidence interval, 57

estimated parameters generation

free energy changes, 63–64

hemoglobin tetramer, 61–62

noise-free data, 59

oxygen binding isotherms, 61–64

pseudorandom noise, 59

standard deviation, 59

synthetic noise, 60

implementation, 60, 62, 64–65

interpretation, 60, 62, 64–65

mathematical modeling, 57, 62

Monte Carlo method, 57–58

numerical procedure, 57

quantitative analysis, 56

Protein folding models, 521–525

binding-site model (BIND), 522, 523

linear extrapolation method model (LEM),

522, 523

model recovery performance, 524

ZimmBragg theory, 521

Psychomotor vigilance task (PVT)

regression analysis, mixed-model, 226

PTC. See Phase transition curve (PTC)

Q

Quasi-periodicity, 455

R

Regression analysis, mixed-model, 237–240

Residuals analysis

autocorrelation, 49–50

biochemical and physical model, 39
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Residuals analysis (cont.)

biochemical model, 39

c2 test, 50–51

cumulative probability distributions, 41–43

Durbin-Watson test

correlation, 47

parameter, 49

variance, 49

examination, 40

influential observation identification, 52–53

Kolmogorov-Smirnov test, 44–45

mathematical model, 39

observed vs. expected frequency

c2 statistic, 43

pseudo-Gaussian distribution, 43

residual distribution, 44

outlier, 51–52

qualitative approach, 40

runs test

application, 46

quantitative comparison, 46

variance, 45–46

scatter diagram, plots

data re-evaluation, 41

dependent variable, 40

independent variable, 40

pseudo-Gaussian distribution, 40

visual inspection, 40–41

serial lagn plots, 47–48

Reverse-engineering, discrete models

Boolean networks, 545–548

inferring Boolean networks, 548

inferring stochastic Boolean networks, 549

lac operon, 552–553, 552–555

polynome, 549–552

S

Sedimentation velocity experiments, boundary

analysis

coefficient distribution functions

contribution correction, plateau region,

353–354

detailed procedure, 351–353

differential distribution functions, 350

spatial derivative method, 350

temporal derivative method, 350–351

correcting distribution functions, 357

data acquisition methods, 340

measurement, 338

smoothing and differentiating

differentiation, 349

filtering, 345

frequency response analysis, 345

procedure, filter coefficients, 345–348

systematic dispersion, 344

traditional methods of analysis, 341–342

transport measurement, analytical

ultracentrifuge, 340

transport method

Lamm equation, 342

polydisperse system, 343

time derivative, 343–344

weight average sedimentation coefficient,

354–357

Simulation studies, analytical quality goals. See

Monte Carlo method

Singular value decomposition (SVD)

amplitude vectors., 86–87

application

calculation, 109

data matrix preparation, 107–108

experimental spectroscopist, 89

molecular species spectra, 89

output analysis, 109–111

physical models output, 116–120

principal component analysis, 89

rotation procedure, 111–115

basis spectra, 87

calculation, 89

definition, 91

goodness-of-fit, 85

kinetic model system, 85

noisy matrices

averaging, 95–98

random matrices, 94–95

statistical treatment, 98–101

photodissociation, hemoglobin, 84

properties

data matrix, 92–93

diagonal elements, 92

output components, 86

principal component analysis (PCA), 91

rectangular matrix, 91

rank–1 noise

amplitude vector, 105

data and noise, 104

eigenvalues and eigenvectors, 105

noise spectrum, 105

random amplitudes, 101

root-mean-square (RMS), 103
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skewed distribution, 102

simulations

amplitudes for random noise, 122

Gaussian distribution, 121

random and wavelength-correlated noise,

127–133

random noise, 121–127

spectra, 121

wavelength-correlated noise, 122

spectrum measurement, 85

time-resolved optical spectra, 88

Spatial (vector) ApEn

definition, 167

Fisher’s experiment, 167

latin square calculation, 168

lattice-based systems, 169

waves analysis, 169

Spatial simulation, 416–417

Statistical error, ITC. See Isothermal titration

calorimetry (ITC)

Stochastic complexity (SC)

criterion value, 520

definition, 520

drawback, 521

principle, 520

SVD. See Singular value decomposition (SVD)

T

T1DM and T2DM. See Type 1 and type

2 diabetes mellitus

Tetracycline metabolism, 33–34

Time domain analysis, rhythmicity

autocorrelograms, 487

cardiac system, Drosophila, 483

covariance, 485

optical digital records, 485

periodogram, 488

positive peak, 484

raster plot, 487

time and frequency, 482

Time/frequency analysis, rhythmicity

Drosophila melanogaster, 502

Fourier-based system, 496

maximum entropy spectral analysis (MESA),

496–498

multiresolution analysis, 500

nonstationary signal/chirp, 499

wavelet decomposition, 498
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